Introduction to Commutative Algebra and algebraic Geometry Presence Exercise to Sheet 6

Exercise 1.

For $R=\mathbb{Q}[x, y, z]$ compute $\operatorname{spoly}\left(x y-y, 2 x^{2}+y z\right)$ and $\operatorname{spoly}\left(x y-y,-y^{3}-2 y\right)$ with respect to $>_{l p}$.

Solution:

- $\mathrm{LM}\left(2 x^{2}+y z\right)=x^{2}$ and $\operatorname{LM}(x y-y)=x y$ so $\operatorname{gcd}\left(x^{2}, x y\right)=x$.

$$
\begin{aligned}
\operatorname{spoly}\left(x y-y, 2 x^{2}+y z\right) & =\frac{2 x^{2}}{x} \cdot(x y-y)-\frac{x y}{x} \cdot\left(2 x^{2}+y z\right) \\
& =2 x \cdot(x y-y)-y \cdot\left(2 x^{2}+y z\right) \\
& =-2 x y-y^{2} z
\end{aligned}
$$

- $\operatorname{LM}\left(-y^{3}-2 y\right)=y^{3}$ and $\operatorname{LM}(x y-y)=x y$ so $\operatorname{gcd}\left(y^{3}, x y\right)=y$.

$$
\begin{aligned}
\operatorname{spoly}\left(x y-y,-y^{3}-2 y\right) & =\frac{-y^{3}}{y} \cdot(x y-y)-\frac{x y}{y} \cdot\left(-y^{3}-2 y\right) \\
& =-y^{2} \cdot(x y-y)-x \cdot\left(-y^{3}-2 y\right) \\
& =y^{3}+2 x y
\end{aligned}
$$

Exercise 2.

A polynomial $f=\sum_{\alpha \in \mathbb{N}^{n}} a_{\alpha} \underline{x}^{\alpha} \in K\left[x_{1}, \ldots, x_{n}\right]$ is called homogeneous if for all α with $a_{\alpha} \neq 0$ the absolute value $|\alpha|$ is constant.
An ideal $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ is called homogeneous if it is generated by a set of homogeneous polynomials.
Let I be a homogeneous ideal in $K[\underline{x}]$. Show that the degree reverse lexicographic ordering $>_{d p}$ satisfies the property:

$$
L\left(I+\left\langle x_{n}^{d}\right\rangle\right)=L(I)+\left\langle x_{n}^{d}\right\rangle \text { for any } d \geq 1
$$

Hint: Show that if I is homogeneous, we only have to consider homogeneous polynomials, e.g. $L(I)=\langle L M(f)| f \in$ I, f homogeneous \rangle.
You are allowed to use that the sum of homogeneous ideals is again a homogeneous ideal.
Proof: First we prove the statement in the hint: For every $f \in I$ homogeneous we know that $\mathrm{LM}(f)$ with respect to $>_{d p}$ is contained in the leading ideal $L_{>_{d p}}(I)$ w.r.t. $>_{d p}$.
For the other inclusion let $f \in I$. We write $g=\operatorname{deg}(\operatorname{LM}(f))$-part of $f \in K[\underline{x}]$. Since I is homogeneous we obtain that $g \in I$. Moreover, we have $\mathrm{LM}(f)=\mathrm{LM}(g)$ with $g \in I$ homogeneous.
Now we prove the statement from the exercise:
", ${ }^{\prime \prime}: L_{>_{d p}}(I) \subset L_{>_{d p}}\left(I+\left\langle x_{n}^{d}\right\rangle\right)$ and $\left\langle x_{n}^{d}\right\rangle \subset L_{>_{d p}}\left(I+\left\langle x_{n}^{d}\right\rangle\right)$
, $\subset^{\prime \prime}$: Let $f=g+x_{n}^{d} \cdot h, g \in I, h \in K[\underline{x}]$. Since $I+\left\langle x_{n}^{d}\right\rangle$ is homogeneous (Hint) we can assume that f is homogeneous. Note that $\mathrm{LM}(f)$ appears in g or in $x_{n}^{d} \cdot h$. We distinguish these cases:

- $\mathrm{LM}(f)$ appears in $x_{n}^{d} \cdot h \Rightarrow \mathrm{LM}(f) \in x_{n}^{d} \cdot h$
- $\operatorname{LM}(f)$ appears in g : If $\mathrm{LM}(f)=\mathrm{LM}(g) \Rightarrow \mathrm{LM}(f) \in L(I)$ since $g \in I$. Otherwise $\operatorname{LM}(g)>\operatorname{LM}(f)$ and $\underline{x}^{\gamma}:=\operatorname{LM}(f)$ appears in $g_{\gamma}=\operatorname{deg}(\operatorname{LM}(f))$-part of g. Further we know that $\mathrm{LM}(g)=x_{n}^{d} \cdot h^{\prime}$ for some $h^{\prime} \in K[\underline{x}]$, since $f=g+x_{n}^{d} \cdot h$. Since $\underline{x}^{\beta}:=x_{n}^{d} \cdot h^{\prime}=\operatorname{LM}(g)>_{d p} \underline{x}^{\gamma}$ in $>_{d p}$ we have $\beta_{n}<\gamma_{n}$, so $\underline{x}^{\gamma} \in\left\langle x_{n}^{d}\right\rangle$.

