Introduction to Commutative Algebra and algebraic Geometry Presence Exercise to Sheet 6

Exercise 1.

For $R = \mathbb{Q}[x, y, z]$ compute spoly $(xy - y, 2x^2 + yz)$ and spoly $(xy - y, -y^3 - 2y)$ with respect to $>_{lp}$.

Solution:

• $\mathsf{LM}(2x^2 + yz) = x^2$ and $\mathsf{LM}(xy - y) = xy$ so $gcd(x^2, xy) = x$.

$$spoly(xy - y, 2x^{2} + yz) = \frac{2x^{2}}{x} \cdot (xy - y) - \frac{xy}{x} \cdot (2x^{2} + yz)$$
$$= 2x \cdot (xy - y) - y \cdot (2x^{2} + yz)$$
$$= -2xy - y^{2}z$$

• $LM(-y^3-2y) = y^3$ and LM(xy-y) = xy so $gcd(y^3, xy) = y$.

$$\begin{aligned} \mathsf{spoly}(xy - y, -y^3 - 2y) &= \frac{-y^3}{y} \cdot (xy - y) - \frac{xy}{y} \cdot (-y^3 - 2y) \\ &= -y^2 \cdot (xy - y) - x \cdot (-y^3 - 2y) \\ &= y^3 + 2xy \end{aligned}$$

Exercise 2.

A polynomial $f = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha} \underline{x}^{\alpha} \in K[x_1, \dots, x_n]$ is called *homogeneous* if for all α with $a_{\alpha} \neq 0$ the absolute value $|\alpha|$ is constant.

An ideal $I \subset K[x_1, \ldots, x_n]$ is called *homogeneous* if it is generated by a set of homogeneous polynomials.

Let I be a homogeneous ideal in $K[\underline{x}]$. Show that the degree reverse lexicographic ordering $>_{dp}$ satisfies the property:

$$L(I + \langle x_n^d \rangle) = L(I) + \langle x_n^d \rangle$$
 for any $d \ge 1$.

Hint: Show that if I is homogeneous, we only have to consider homogeneous polynomials, e.g. $L(I) = \langle LM(f) | f \in I, f \text{ homogeneous} \rangle$.

You are allowed to use that the sum of homogeneous ideals is again a homogeneous ideal.

Proof: First we prove the statement in the hint: For every $f \in I$ homogeneous we know that LM(f) with respect to $>_{dp}$ is contained in the leading ideal $L_{>_{dp}}(I)$ w.r.t. $>_{dp}$.

For the other inclusion let $f \in I$. We write $g = \deg(\mathsf{LM}(f))$ -part of $f \in K[\underline{x}]$. Since I is homogeneous we obtain that $g \in I$. Moreover, we have $\mathsf{LM}(f) = \mathsf{LM}(g)$ with $g \in I$ homogeneous.

Now we prove the statement from the exercise:

- $\mathsf{LM}(f)$ appears in $x_n^d \cdot h \Rightarrow \mathsf{LM}(f) \in x_n^d \cdot h$
- $\mathsf{LM}(f)$ appears in g: If $\mathsf{LM}(f) = \mathsf{LM}(g) \Rightarrow \mathsf{LM}(f) \in L(I)$ since $g \in I$. Otherwise $\mathsf{LM}(g) > \mathsf{LM}(f)$ and $\underline{x}^{\gamma} := \mathsf{LM}(f)$ appears in $g_{\gamma} = \deg(\mathsf{LM}(f))$ -part of g. Further we know that $\mathsf{LM}(g) = x_n^d \cdot h'$ for some $h' \in K[\underline{x}]$, since $f = g + x_n^d \cdot h$. Since $\underline{x}^{\beta} := x_n^d \cdot h' = \mathsf{LM}(g) >_{dp} \underline{x}^{\gamma}$ in $>_{dp}$ we have $\beta_n < \gamma_n$, so $\underline{x}^{\gamma} \in \langle x_n^d \rangle$.