Introduction to Commutative Algebra and algebraic Geometry Presence Exercise to Sheet 8

Exercise 1.

Compute $I \cap K[y, z]$ for $I=\left\langle x^{2}+y^{2}+1, z-x-1\right\rangle$.
Can you generalise the result for $J=\langle f(x, y), z-x-1\rangle$ with $f \in K[x, y]$?
Solution: Choose $>_{l p}$ with $x>y>z$. By algorithm 2.5 . 3 we have to compute a Gröbner basis S of I w.r.t. $>_{l p}$.

$$
\begin{aligned}
f_{1} & =x^{2}+y^{2}+1 \\
f_{2} & =-x+z-1 \\
\operatorname{spoly}\left(f_{1}, f_{2}\right)=-\left(x^{2}+y^{2}+1\right)-x(-x+z-1) & \\
& = \\
q_{2} & =z \\
r & =-y^{2}-1-x z+x-z(-x+z-1) \\
& =x-y^{2}-1-z^{2}+z \\
q_{2} & =z-1 \\
r & =x-y^{2}-1-z^{2}+z-(-x+z-1) \\
& =-y^{2}-z^{2}+2 z-2 \\
\operatorname{LM}\left(-y^{2}-z^{2}+2 z-2\right) & =y^{2} \\
\mathrm{LM}\left(f_{1}\right) & =x^{2}, \mathrm{LM}\left(f_{2}\right)=x
\end{aligned}
$$

$\Rightarrow S=\left\{f_{1}, f_{2},-y^{2}-z^{2}+2 z-2\right\}$. By the product criterion this is a Gröbner basis of I.
$\Rightarrow I \cap K[y, z]=\left\langle-y^{2}-z^{2}+2 z-2\right\rangle$.
Can we generalise the result?
We observe that $I \cap K[y, z]=\left\langle-y^{2}-z^{2}+2 z-2\right\rangle=\left\langle f_{1}(z-1, y)\right\rangle$.
Does this work for any $f \in K[x, y]$?
Take $J=\langle f(x, y),-x+z-1\rangle$. Write $\operatorname{LM}(f)=x^{k} y^{l}$. w.l.o.g. we can assume $k>0$, since otherwise J would already be given by a Gröbner basis by the product criterion. Further by our choice of monomial order this implies that $f \in K[y]$ and thus $J \cap K[y, z]=\langle f(y)\rangle$ which fits with our theory. We compute the spoly:

$$
\begin{aligned}
\operatorname{spoly}(f(x, y),-x+z-1) & =-f(x, y)-\mathrm{LC}(f) x^{k-1} y^{l}(-x+z-1) \\
& =-\operatorname{tail}(f)-\mathrm{LC}(f) x^{k-1} y^{l}(z-1)
\end{aligned}
$$

The leading Term of this is $\operatorname{LC}(f) x^{k-1} y^{l} z$. If $k-1=0$ the algorithm terminates and the output is $f(z-1, y)$. Otherwise we continue with indeterminate division with $-x+z-1$:

$$
\begin{aligned}
q_{2} & =\mathrm{LC}(f) x^{k-2} y^{l} z \\
r & =-\mathrm{LC}(f) x^{k-1} y^{l}(z-1)-\operatorname{tail}(f)-\mathrm{LC}(f) x^{k-2} y^{l} z(-x+z-1) \\
& =\mathrm{LC}(f) x^{k-1} y^{l}-\operatorname{tail}(f)-\mathrm{LC}(f) x^{k-2} y^{l} z^{2}+\mathrm{LC}(f) x^{k-2} y^{l} z \\
q_{2} & =\mathrm{LC}(f) x^{k-2} y^{l} z-\mathrm{LC}(f) x^{k-2} y^{l} \\
r & =\mathrm{LC}(f) x^{k-1} y^{l}-\operatorname{tail}(f)-\mathrm{LC}(f) x^{k-2} y^{l} z^{2}+\mathrm{LC}(f) x^{k-2} y^{l} z+\mathrm{LC}(f) x^{k-2} y^{l}(-x+z-1) \\
& =-\operatorname{tail}(f)-\mathrm{LC}(f) x^{k-2} y^{l} z^{2}+\mathrm{LC}(f) x^{k-2} y^{l} z+\mathrm{LC}(f) x^{k-2} y^{l}(z-1) \\
& =-\operatorname{tail}(f)-\mathrm{LC}(f) x^{k-2} y^{l} z^{2}+2 \mathrm{LC}(f) x^{k-2} y^{l} z-\mathrm{LC}(f) x^{k-2} y^{l} \\
& =-\operatorname{tail}(f)-\mathrm{LC}(f) x^{k-2} y^{l}(z-1)^{2}
\end{aligned}
$$

We see that continuous use of the the indeterminate division with $(-x+z-1)$ will eliminate x and lead to the output $f(z-1, y)$.

