Prof. Hannah Markwig
18. January 2021

Alheydis Geiger

Introduction to Commutative Algebra and algebraic Geometry Presence Exercise to Sheet 9

Exercise 1.

Let K be an algebraically closed field. Determine the algebra of regular functions $\mathcal{O}\left(U_{i}\right)$ for the following open sets U_{i} :

- $U_{1}=K$,
- $U_{2}=K \backslash\{0,1\}$,
- $U_{3}=(X \backslash V(f)) \subset X$, where $X=V\left(x \cdot y \cdot z, x^{2}-x y^{3}\right) \subset K^{3}$ and $f=x^{2}+y^{2}+z^{2}-1 \in K[x, y, z]$.

Solution:

- $U_{1}=K,: \mathcal{O}(K)=K[X]$, since we know that the coordinate ring to K is $K[X]$ and by choosing $X=K$ and $g=1$ in 3.2.9 we obtain the claim.
- $U_{2}=K \backslash\{0,1\}$: We apply 3.2.9 for $X=K$ and $g=X(X-1)$. We obtain: $\mathcal{O}(K \backslash\{0,1\})=K[X]_{X(X-1)}$.
- $U_{3}=(X \backslash V(f)) \subset X, X=V\left(x \cdot y \cdot z, x^{2}-x y^{3}\right) \subset K^{3}$ and $f=x^{2}+y^{2}+z^{2}-1 \in K[x, y, z]$. We know $K[X]=K[x, y, z] / I(X)$ and $I(X)=\sqrt{\left\langle x \cdot y \cdot z, x^{2}-x y^{3}\right\rangle}\left(=\left\langle x \cdot z, x-x^{2} y^{3}\right\rangle\right)$.
Now $X \backslash V(f)$ is the same as $X \cap D(g)$ where $g=\bar{f} \in K[x, y, z] / I(X)$. By 3.2.9 we know that $\mathcal{O}\left(U_{3}\right)=$ $K[X]_{g}=(K[x, y, z] / I(X))_{\overline{x^{2}+y^{2}+z^{2}-1}}$.

