


Introduction to tropical
-

enumerative geometry
-

Tropical geometry can be viewed

as algebraic geometry over the

tropical seeming .

It works with methods from

discrete mathematics ( convex

geometry ,
combinatorics ) which are

of intrinsic interest
.

In this class
,

we focus completely

on the discrete math - side
.

Students with background

knowledge in algebraic geometry

can value the further motivation

that tropical geometry allows

a fruitful exchange of methods

between algebraic geometry and



discrete mathematics .

Students without such a background

can follow without any
trouble

,

they just won't have access to

this additional motivation .

Tropical geometry
has

,
besides its

natural connection to algebraic

geometry ,

also many
connections to

other fields of mathematics , e.g .

optimization or biourathearatrcs .

In this class
,

we focus on

enumerative tropical geometry .

Enumerative geometry is an ancient

area of mathematics ,
in Which

we ask questions
about the

number of geometric objects ( often

curves ,
i . e

.

A - done geometric

objects ) that satisfy certain

conditions .



Exampled ( Apollonius
' Problem )

How many
circles in RZ are

tangent to three given circles ?

( Answer : 8
,

see Wikipedia )
.

Questions the this are often

easy
to ask

,

but difficult to

answer ,
which is what makes

the area of enumerative geom .

a lively and active research

area to this day ,

mostly in

algebraic geometry ,
where we count

algebraic curves satisfying

conditions ( i.e .

solution sets

of polynomials f ( x ,y )
,

log .

y - 5=0 U )
.

The enumerative geometry of

algebraic curves is also

related to mathematical physics,

e. g . string theory .



As already said
, tropical

geometry provides a translation

from algebraic geometry to discrete

mathematics .

Consequently ,

enumerative problems

from algebraic geometry become

enumerative problems in discrete

waters .

Such problems are at the

center of attention of this class
.

Concretely ,
we will answer the

question :

How many
rational plane tropical

curves of degree d pass through

generic given 3d - 1 pouts in R2 ?

( What such tropical plane curves

are will also be studied is

class , of course . )



We will prove a beautiful

combinatorial formula to

determine these numbers

recursively .

This formula is named after

the fields medaikistkoutseu.ch

who first discovered it is

connection with algebraic geometry

and string theory C see the

class on
Gromov - Witten - theory which

I gave recently and might give

again in the future )
.

These handwritten notes are

Supplemented by typed notes

by Renzo Cavalieri
,

which

we
win also use .
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1
.

The tropical Semin
-

ng
and

-

tropical polynomials
-

IDF C tropical semi ring )

( IR uh - -3
,

to
,

@ ) is called the

tropical seeming ,

where

X toy : =
maxhx ,y3 ,

X ⑨ y : = Xty

These operations
are associative :

( X tog) to 2- =

maxfmaxhx.ylgf-3-maxtx.y.z3-maxfx.ly,z3J= X to Cytoz)

(X①y)①Z = ( Xty )tz= Xtcgtz )= Xoocyooz)

distributive :

XO ( y to Z ) =

xtmaxty.zf-maxhxty.XTZJ-X.oytox.DZ

commutative .

The neutral element for addition

is - a
.

The neutral element for multiplication

is 0 .

Multiplicative inverses are usual



additive inverses
.

But ¥ additive inverses
,

as the

equation × to a =  - a ⇐

rnaxhx ,a}= - -

has no solution .

⇒ We cannot subtract tropically .

( Rut - -3
,

@
,

-0 ) satisfies all field

axioms except F additive inverses
,

it is called a swingorSeeuifeld .

The tropical seeming is idempotent,

i . e .

Ato - .  - to a = a
.

The Freshman 's dream holds tropically ,

④ y
)2= (XtoyI@CXtoyl-maxhx.y

} t tnaxfxsy ) = math 2X ,2y }

= X⑨X to y @ y = XZ ⑦ y2

Reina Many authors use

( Ru { a }
,

min
,

t ) instead of

( Ruh - -3
,

wax
,

t )
.

This is

isomorphic of course .



1. 2 Def C tropical polynomials )

-

Usually ,

a polynomial is a finite

sum of terms of the form

ad Ed = ad . Xndn .
.

.

. . Xndu for a EN
"

and ad in the ring Ifield of coefficients
.

Tropically ,
we

do the same :

A tnperm is an expression

of the form ad ③ Xsd '

@ .  -
- ① Xuan

= ad @ ( X .  - ⑨ Xn ) @ - - -
 ⑨ ( Xu -0 .  - ① Xu )

-

-
a

Ln

= Agt ( Xnt -

-
. t Xn ) t

'
.  -

 t ( Xut
- - t Xu )
-

-
du

Ln

= As t An Xnt -
-

- + Ln Xu

= Aa t LL
,

I >

( where C
,

S denotes the Euclidean

scalar product on IR
" )

.

Viewed as function IR
"

→ R
,

a

tropical term is an after-tax function

with rationale C i.e
.

L E N
" )

.



A tropicalpolynonn.at is a tropical

sum of tropical terms
,

i. e
.

Max { ad t Lax ,
t -

-
. + dnxn }

LEIN
"

Viewed as function Rh - SIR
,

a

tropical polynomial is a

piecewise
affine - linear function with

finitely many pieces and rational

slopes ,

which is continuous and

convex .

Remote : There is a difference

between tropical polynomials and

tropical polynomial functions .

( See Questions Iactiities 1. 1. (8)

in Renzo 's notes . )

1.3 Example ( Cubic univariate polynomials )

-Let flex ) = a @ Is to boo x2⑤C⑨X①d

Assume d - c e c - b E b - a



Atx
^

bt2X

Ctx

d

I I I 7

d- c c - b b - a

By our assumption ,
all four lines are

" visible
" and we

have three

come loci
,

at x -

- d - c
,

C - b
,

b - a
.

with these
,

we obtain a

factorization of f into linear terms :

f- =

a @ Cx to Cd
-

d)
⑥ Cx to 6-61 )⑥(X④G-aD

The corner low are therefore also

called the Zoos or roots of f .



Exercise : Every univariate tropical

polynomial function can uniquely be

written as product of linear terms
,

with corner loci as
roots

.

Remake : Already in the bivariate case
,

there is no unique factorization , e.g .

Cx⑤ O ) ⑨ ( y o ) ⑤ ( X .oy O )

= ( x @ y to X too ) ⑨ C x @ y ⑤ y O )

Questions Activities 1.1 in Renzo 's notes

are useful now .

Tropical operation naturally appear

in optimization :

Let G be a directed graph
with n vertices A

,
- . . ,n .

Let dig. so be the length of the

edge from i to j .

Let DG be the adjacency matrix
,

i. e . di ;
 -_ O

, dij = a if no edge

exists
,

Dos = Cdijij .



t.lt#s
- G-Dg )

" " )ij ,
where the matrix

multiplication
is tropical ,

is the

length of
the shortest path from

i to j in G
.

Proof :

Let dig
'

be the the length of

a shortest path from i to j

which takes at most r edges .

Then dig "
= dig .

As dig so a shortest path can

visit each vertex at most once .

In particular ,

it takes at most n -1

edges ,
and dry

→
is the

desired length .

We have to show dig
" ! - CC - Dai

-

! .

For r > 2 we have

dicjr
'

= minus diff "

tdkj } =

- mgxf - dich " '
- dkj } =



- ( ( - di ?
" ' I @f- dnj ) to .  - - ④

( Eden )
" "

⑨ fdnj ) ) =

- ( - din
" "

,
.

-

-

,
- did

" ' ) ⑨ g)
By induction ,

we conclude that

dig
'

=

- C EDGY )ij .

g

Thus finding shortest paths on

graphs
Coptimization ) is equivalent

to taking tropical powers of

matrices .

Exampled

⇒c÷÷÷÷,•#o



c-Dai -

⇐ a " ÷:

For example ,
to go from Ito 4 :

- directly : 7

-
in two steps : A → 3 → 4 : 4

- in three steps : A → 2-03-14 :3

The tropical computation reflects the

following usual computation :

Let t be a variable and consider

the matrix

A t t 't

f:÷÷÷
.

an "

±E÷
:* .

the Casual )

powers of this

matrix equals the

tropical matrices

above .



t.DE C tropical hypersurface )

Let f be a tropical polynomial in

h variables .

Their

✓ (f) = f x ER
" ) the maximum

of f is
attained at least

by
two

monomials ]

= the cone locus of the

piecewise
linear function f

is called the tropicalhypusufa#
defined by f .

If n=2
,

we call it

a plane cure
-

Example .

-

f- = X⑦y⑦0= maxtx
, y ,

o )

Vhf ) -

-

µ
a tropical

line

Questions / activities 1.2 in Renzo 's notes

are useful now .



To describe the structure of tropical

hypersurface
better ,

we need to introduce

a
bit of convex geometry .

We will not be very formal or

detailed with this
,

but as
the

subject is intuitively
accessible

,

this

should be no harm
.

A.6Def_ C convex hulls
, polytopes )

Xc Rn is convex
,

if t u ,v EX

toed E A dutch - b) v EX
,

i
. e

.

the line segment connecting u

and v is in X
.

The correct Comr CU ) of UCR '

is the smallest convex set containing

U
. If U= fun

,
. .  - our ] is finite

,

cow Cle ) -

- f S÷diui to Edict
,

Edith }
is called a polytope .

If Uc Z
"

is finite
,

conv ( us

is called a 1aHiapo_gope .



A core is
the positive huh of

finitely many vectors in Rho
.

C = concur
,

.
. sur ) : -_{÷Edivi I di 3 o )

"¥:* .E÷÷÷
If n=2

,
a polytope is called polygons .

A cone is stn-ctlycon.it it

contains no subspace of positive dimensions
.

a

¥E .

strictly convex

\
not strictly convex

Reinas :

Each come C = cone C ur ,
-

- our ) can

be given by inequalities ,
i . e

. of

the form C- Six tax > o }

for some matrix A
.

E. g .

G- cone CCol ,
D=

{ Cy ) I x > o
, yex }

= { (5) I 9)(f) 303



I :ii :

1.714 C faces )

A face of a come C is given by

a
linear functional in ④n5 :

Let w E CR'T s .

1h
. way EO

A y
E C

,
then

facewcc ) : = EXEC I w .x=o }

Setting w - o
,

C is a face of itself by

definition .

Example
C- Cone C Cbl ,CH )

W =

fy
)

satisfies
w . (5) Eo K Cfl EC

.

faaw CCI =
to }

¥÷i i:a .
. .

"

w= ) ,faawCd= Correct )

II w - CI )
,

faawcct Couch )



Analogously to A. 7
,

we define feces

of poly tops , only here we allow

affine functionals C i.e .

linear with

a shift )
.

The dimension of a come or convex

set is the dimension of the smallest

affine subspace
it is contained in

.

A face of maximal dimension which

is not C is a

facet
. A face of

dim 0 is a Vertex
,

a face of

dim A in a Cone is a ray .

1e8Def_ C Fau )

A fair is a set of cones in IR
"

,

s .
th

.

the intersection of two rs

a face of both
,

and such that

all faces are contained .

HE t.ee
A " "

a fan a fan
not  a fan



1.922nF C outer normal fan )

Let Pc IR
" be a polytope .

The outer normal fan Np consists
-

of the

CotesUp CF ) = f WE
" T I faaw CP ) - FT

where I is a face of P
.

Eixample :

Vn

⇐ Li¥-71, %ff.E.com
:

vz Ez
k

Couch ) = Np ( En )

Cone )=NpC EL )
,

Cone ( - f) = Up ( E3 )
,

Coned -8 )
,

Ch ) ) -

- Np Cvn )
,

Cone ,⇐D=WpCm ,
Come )

,
D= Up Cvs )

1. to Def
-

The Newtonpoytope of a C tropical )

polynomial f  = Eas It E Kfxn
,

. .
.

,
xD

QEINH

is Newt Cfl a = Cow C a lad to ) CR
"

a

Exampled : f= ×+y+ ,
mr*¥TIp

•

•⑥



FI C marked polytope and subdivision )

Let Q CR
" be a laltiupolytope

and it -- QnZ
"

the Lattice points

of Q
.

( Q
,

it
' ) is a

marhedpolytopeif
A

' contains the vertices of Q
.

A marhedsubdin.io# of Q is a

set L C Qi
,

Ai ) lies ,
-

- - ok ] s
.

th
.

A ) f Qi
,

Hi ) is a mashed polytope

2) Q = ¥
,

Qi is a subdivision

of Q
,

i . e
.

Qin Qj is a face

C possibly empty ) of Qi and Qj

3) it :c A ti

4) Ain C Qin Qj ) - Ain C Qin Qj )

Ees :

We draw mashed points Cin cti ) black

By 4)
,

marked

•q••D⇒• Gedsubdivisions

toooo
can be drawn

x
a vertex

✓
of Qr is not like this .

washed



Using a height function C e.g . by

defining the coefficient of a tropical

polynomial to be the height )
,

we can define a marked subdivision
,

the so-called dual Newton subdivision
- ,

by projection of upper faces ,

see Def .

1.5 and the paragraph

above in Renzo 's notes
.

Read also example 1.2 and

think about Questions lactones 13
.

Read Theorem lot
,

it States the

Ey of tropical hyper surfaces

and the dual Newton subdivision
.

We include more
ideas on the

proof heres

A) Assume first that an -0 Ha
,

i.e . f = magda . x }
.

The top - dim cones of

✓ Newt Cf ) correspond to the



vertices
,

the cones of

codimension A to the edges .

An edge E connects two

verticesCorresponding to a
,

and Lz
.Then

Wnew
,

( E ) is contained

in the hyperplane
whose normal

vector is E
.

This hyperplane is given by

the equation tix = Lz . X .

Nvewtcf
,

CE ) is precisely the

Subset of this hyperplane for

which the maximum is attained

at are X=dz . X
.

Example
:

x=y

max at
L

V
3 , yu

i :*.

* °¥5.7omiaxat V2
,

O

Xtoyto 0
p

y
-

- O



2) If not an = o :

Sef I - Etadxd ( possibly a

polynomial
with real exponents ,

but

that does not make any change here )
,

then the Newton polytope of I

is what we project to obtain the

subdivision .

By n )
,

the tropical hypersurface

VCE ) is
the code 'm - A- skeleton of

Nnewtcf ) .
Vcf ) = VC f) n her }

A monomial of f yields a

vertex of the upper huh of Newt Cf )

( which we project to obtain the

subdivision ) ⇐ F top -
dim cone

in NNewtCf ) Spawned by
vectors

for which the t -

coordinate
is

positive ⇐ the intersection with

{ ⇐ 13 produces a component of

pi\VCf ) .

This explains
the duality

{ vertices of the subdivision ) ←

{ components of IR
" Wcf ) }



with this
,

we obtain

{ edges in the dual subdivision } ←

{ edges of Ucf ) Cseparating two

Connected components of IR
" Wcf ) ) }

and so on .

D

Example
Using duality ,

one can draw

tropical plane curves quickly :

Let f  = Oto 10x to x2① toy to

10x @ y to yZ
O a

• of
• 9

^•: aQ00 O

Newt Cf ) to project
subdivision

The vertex dual to Qr satisfies :

Qr : 2y = tty - ttxty ⇒ X - o
, y -1

Qz : Atx = Atxty = lty ⇒ x - o
, y

= O

Qz : 0=1 tx = tty ⇒ x - -1
, y=

- n

Qy : 2X -_ At Xty Atx ⇒ y
- o

, x=n

•

Q ,

• • 7QBQ2 Qy



Read Def 1.6
,

1.7 and Theorem 12

in Renzo 's holes
.

Questions ) Activities 1.4 are useful now
.

t.AZ#efCdegd )

We say
a tropical plane curve has

degreed if it is dual to

the polygon
Comr ( Corot ,

Cd ,o )
,

Co ,ds )

1. 13 Def C transversal intersection and

- intersection multiplicity )

Two tropical plane curves Ucf ) and

✓ Lg ) intersect transversely if they

intersect at finitely many points

which are
all interior points of

edges of both
.

II. IT Fr
not

Let p
E Vcflnvcg ) be transversal

.

Let we be the weight of

the edge en of Vcf ) in which



p
is

,

and Un its direction
,

and analogously for ez
.

Then we define the intersection

multiplicity of Vcf ) and Kg ) at

p
to be

multp C VCH , Vcgl ) = Waewz . ldetcv.int

IfIt
Ey :

If tetldetc -3931=1

Two lines intersect in a point with

multiplicity A
.

n ( Beizout )

A tropical plane curve of

degree d and a tropical plane



came of dig e which intersect

transversely intersect in d. e points ,

Counted with multiplicity .

Proof : Exercise .



2 . Algebraic curves and the
-

Puiseux series
-

The goal of this section is to see

that tropical plane curves Cor
,

more generally ,
tropical hypersurface )

are really shadows of algebraic

plane curves
C hypersurface )

.

This provides an
additional motivation

for their study .

For those who are acquainted with

algebraic geometry , you
know that

we like to work with algebraically
closed fields .

For the others
, you

know that

polynomials
" have more solutions "

over
¢ ( which is algebraically

closed ) : log .
£+1 = O has

no solutions over R but

2 over ¢
.



For that reason
,

our first step

is to define an interesting new

algebraically closed field in

which we can study zeros of

polynomials .

Read the beginning of chapter 2
,

Def 2.1 of Renzo 's notes .

Questions I Activities 2.1 are useful .

Defy D= rat
' C IR

> o
)cEHt33 ,

Me

valin CR > o ) cakes ]

Tnettheorecn
The field

KICKED
of puiseuxsen.es

is algebraically Closed
.

Proof :

n

Let F  = Sci X
"

E KCXI
.

1-
 

to

We have to show : Fy EK :

Fly ) = o
.

We will describe an algorithm



which constructs y
term by term

.

First
,

we show that we can assume

the following properties for F :

1)
val Cci ) 30 fi

2)
I j : val Ccj ) = o

3)Co to4)Val Cco ) > o

Let D= mind valcci ) } ,
the multiplication

of F with Ed does not change the

existence of a zero
,

thus we can

assume 1 ) and 2 )
.

If 6=0
, y

-

- O is a zero
,

so we

Can assume
37

.

Assume F satisfies I ) - 37
,

but

not 4)
.

If wallow ) so
,

let

GCxI=x
"

. FCE ) = EE Cui X
"

.

G satisfies A ) - 4)
,

and if



G ( y
' ) -

- O then FCI ) = O
,

so it

is sufficient to construct a too

for G
.

If val Cco )= valccn ) - O
,

consider

f  = E E ① Cx ] the image of F

under the quotient map

R

Rex
] →

Im
I x ) = Nx ]

.

f- is not constant ,

as valccu ) = o
.

As I is algebraically closed I

d : f Cd ) = O
.

Let Ecx )= Text d) =

Co t C
,

Cxtd ) t Czcxxd Rt - - - t Cn ( xxd )
"

= .si/?..g.c:sv-ilx: .

F- Cx ) has the constant term

Eco ) = Fct ) = fcx ) t terms of

higher valuation

= O t
terms of

higher valuation



The highest turn of I is on

of valuation O
.

Thus we can assume A ) - 4) for

F-
,

and if we find y
' with

⇐ C y
' ) = o

,

then FCy'td ) = O
,

so it is
sufficient to construct

a too of F
.

Thus
,

we can how assume F

satisfies 1) - 4 )
.

We construct a sequence of

polynomials Foe = ¥2 Cj x
't

which all satisfy s ) - 4)
.

Set Fo :=F
.

Consider comic C k
,8) / valccpilej )

t.im#.:i.:::c::E::no
.

thus I edge



of negative slope connecting

( o
,

val ) with another vertex

C ki
,

valcciki ) ) .

Set wi
 =

Valle : ) - valuing )
-

ki

and consider

Fiction ) = jo cijctwixjt
Then the valuation of the constant

coefficient is valccio )
,

and of the

ki tu .

val C ok
.

.

twiki )= val Cci ,
tralcio

- valcin .

)

= val Caio )
,

all other coefficients have higher

valuation .

This operation
"

evens the edge with

negative slope
"

:

Hell Next ,

Consider

µ.÷ t-vdccid.fi#wixl
,

I this "
moves it down "

:
ki



k.EE#-
ki -

Let fi = Ed
" "

Fictwix ) Eecx ]

Then degcfi ) = ki
,

fi G) to
.

As ¢ is algebraically closed
,

F dice :

f , Cdi ) - o . Let rite be the

multiplicity of this zero
,

i . e
.

fi  = C x - di )
" th

. g : Cx )
,

gild :) to
.

Set Fia Cx ) - Ed
'

Fictwicxtdi ) )

= Eda " ? ⇐ defeatist =

Edam . € je . €f.)twiggierj

=

,

f Eg
.

cite
. "  

-
we "

a.eig×j
= : fig city XI



Consider again fi = Edifice
-

= £Cig.

wi - valcio
y

g.

j=o

= I Ee xe

et e. wi
- valciotvalcie = o

We have
.

28 fi

⇐ i
( di ) =

I.
.

. I cIe7÷
.

dit '
=

et e. wi
- valciotvalcie = o

E diet = c
et e. wi

- valciotvalcie = o

As di is a zero of mutt ran
,

28 fi

⇒ . ( di ) = { ° V-oejcri.in

to j - rite

⇒ val Ccj
' ) {

So oejcriei

=0 j= rith



If Coit '
=o

,
X -_ O is a zero

of Fitr
,

ditwi a zero of Fi and

§gdj two
" - ' + wi

a zoo of Fo
.

Thus we can assume Coith to

and then Fit ,
satisfies A ) - 4 )

and we continue the construction .

As val Ccir!! ) = o we know

Kien E rrtn
,

and as run is the

multiplicity of a two of fi of

deg ki
,

also rien Eki

As u
is finite ,

ki can get smaller

only finitely many
times

⇒ F k E L1
,

. .  . in }
,

MEN :

ki = k K i > m
, ri = k fi > m

⇒ fi -

- hi . ( x - disk Hi > m

and some fei E Q .



Let Ni s .tn . cij E date :D

tf OEJ Eh
.

As Fits Cx ) -
- Ed "

Fi Ctwicxxdi I )

I is the common denominator of

Nien

NT
.

and wi .

Chayim :
Nien = Ni tf i > on

.

valcio

We have wi  
= T

,
thus it

is sufficient to see val Caio ) EIN,
ez

H i >
m .

As fi -

- hi
Cx - disk we have

val Ccij ) = kit .
val Gio )

.lµ
in particular for j-k.ee

.

val

Coin
)= Fee valccio )

But vaccine ) E Ii 7L ⇒

Feral E fu ;
K ⇒



valccio ) E tf .
I ⇒ Nita -

- Ni tism
.

Let yi
- dj two

"  - two
E Ect end

as Nit ,
= Ni fi > m

F N s .tn
.

Yi E ECCE
I ) ) f i

,

such the

limit y = §o djtw
" " " wi

E ICED

is a
Puiseux series

.

It remains to see Fcg ) - O
.

Let Zi - § ,
dj twit

→ WJ
,

then

Y = Yi ,
+ two

.  -

- + win

• Z , for iso
.

We have Fi C Zi )= Eat
'

Fit ,
( zees )

As to = y we have

val ( Icy , ) = f valccto ) t Val ( Fits C zits ) )

> val Ccj ) Kiso
.



As rat Cc I ) E IN IN
,

we can

conclude val Cfcg , ) = a ⇒

Fly ) =O
. D

2.2.DE/-CTropi#alizatiouILetK--CHt33
.

We define the topicality map

Trope. @
* )

"

- s IR
"

:

( Xs ,
. .

.

, xn ) 1- C- valxr
,

- -
-

,

- valxn )

Exercise :
-

Compute Trop CL ) for a Line

L c Ck* R
.

2.3.DE#Ctropicalization of polynomials)

Let f = I ca Xndn
.

.
. xin

LE Nh

E ¢Ht33[ Xs ,
- - y Xu ]

,

then

Trop Cf ) :=maax{- valent 2. X }

is the tnopicalizatron of f .



Z.LI#DefCHypersurface , plane curve )

Let K be any (algebraically closed )

field .

Let f E Kcxr
,

-
.

 -

,
XD

.

The hypersurface of f is

Vcf ) = f x E K
"

I fCxI=o3 .

If n=2
,

we call V Cf ) a

place .

Exaimpe : VC y
- xz ) = ¥

2. 5 Theorem C Kasparov ,
see 2.1 is

- Renzo 's notes )

Let f = I ca Xndn
.

.
. xin

LEN

E ¢Ht33[ Xs ,
- ⇒ Xu ]

Their

t.fr ) = VC Trop Cfl )

( where we take the closure in the



Euclidean topology )
.

Proof,par :

"
C

" Let x E Vcf ) n (KM
"

⇒ E aah .
. .

xndn = o

Let Xn -

- an Emt -

.  -

,

Xn=qEWht .
.

.

Then - valxi  

= Wi .

We have to show
,

Wi E Vctropf )
,

i .
e . max { - valca + a - w } is

attained at least twice .

o=fCxI= Eglantine .  - I ?
. . Cant -4

.  .

In

The lowest order of a summand is

val Cca ) - wah
-

- -
-

- wud .

The lowest order of the whole sum is

min { val Cca ) - wah
-

- -
-

- wud }

As the sum
is O

,

the terms

Cancel away ,

in particular
the terms

of lowest order cancel away ,

in particular there must be



at least two turns of lowest order

⇒ min { valcca ) - man
-

- -
-

- wind }

is attained at least twice

⇒ max L - vodka ) -1 w - a ] is

attained at least twice
. D

2.GL#emma
Let k be any field , g

Ekfxs
,

. ok ]
.

g
has at least two terms ⇐

g
has a zero in ( k*J ?

The proof is easy for those who

are familiar with algebraic geometry ,

those who aren't I would like

to ask to just believe the statement

for how .

2feC initial forms )

Let f = I caxndn .
.

. xin
LEN

E ¢Ht33[ Xs ,
- ⇒ Xu ]

Let w E IR
"

,
W = Topcftcwl ,



-

set inw f  = IN

EGEW"
xd Elche ]

a

iuwf is called the initiator of f

w .

rt .

w
.

-

- wake a

We have inw (f) = I Cat ×

at - vodka )+w-a=W

-

= tw f C E
"

xn .
. .

,
Ewhxn )

.

- valcatdw is called the w-weight of

the term CLI
.

The initial form is

thus the sum of the classes of

the terms of biggest w - weight .

Example
-

:

f- = Htt ) x t 2Ey t 3T
'

z

E QKtD[ x. git ]

W= Co
, 0,0 ) W= math -1

,
-2

,
-43=-1

-

-

twfct-%E3.EE/--E(CttE)xt2Eyt3tz

)

= (Att)xt2tyt3t3z- =X = inwf



W = C - 4 , -2,07

W= max f - t - 4
,

-2-2
,

-43=-4

inwf = E4CttE)t4xtE42Et#tE43E'Ez=

-

= 2yt3Z .( ttE4xt2yt3Z

PfKaprauov 's theorem 2.5
,

Part I :

,

J
"

We do induction on n
.

The induction beginning he A

asks us to construct a 0 of

a
Puiseux Series polynomial of

a given valuation
.

This can be

done with the algorithm of Than 2.1

( Puiseux series are algebraically Closed )
.

h - A → he .
Let w E V C Trop f In @ 's

We want to lift w to a Puiseux

series x ( with - valx -_ w ) s.tl
.

f- C x ) = o
.

As WE Vctropf ) ⇒ the max

Tropf is attained at least twice



⇒ inwf has at least two terms

?

I zero C
-

- Ccn
,

. .

. .ca ) of

ihwf E CCM .

Canet : I j : inwfcxs ,
.

.  -

, Cj ,
-

.

.

,
) t O

E j=1 .

Set w - Cw
, ,w

' I ,X=Cxs,x
' I

,

( = C Cr
,

c
' ) and consider

I Cx ' I :  = f C crews
,

x
' )

Then I ( Ehxz
,

. .

.

,
time ) =

f- Cat
"

,
-52×2

,
.

. .

,

E
"

xn ) =

inwfccn ,
x

' ) .

ETHNO
)

-1 higher order

- terms

to

⇒ Topi ( w
' I = Trop f Cw ) and

inw
' I Cx ' I = inwfcc . ,x

' I

⇒ inwsfcol - O
,

and as c
' E @ * 54

⇐ , ihwnf has at least two terns

⇒ w
' E Vcttoplft )

By induction assumption ,
we can

lift w
' to X

' and add cat
"



as first component .

Casey : Assume inwfcxn ,
. .  -

, Cj ,
. .  -

,
Xu 7=0 Hj

Write

inwf = (Xn -G) kcxz - ca ) - - . Guen ) . gcxn .
-

- Txu )

with g C G ,
x

' I # O

Let Fcx ' ) :  - f C att
't ) E

"

,
xD

Then f ( Ehkxz ,
. .

. ,E" xn ) =

f- ( Cattle ) EM
,

Ewzxz ,
. . .

,

E
"

xn ) =

- Tsopcf ) C w )
+ h.at

.

=

inwf ( att , Xz ,
. .  .

,
xn ) .

t

trot"
" 'µE)kC×⇒.

. ( xn - on ) g
( att ?xzi-sxulh.at

.

As g
E QCXS ,

-  . axis
, g ( att } Xz ,

- .
.

,
Xu )

= 9 ( Cn
,

Xz ,
.

.
 -

,
Xu ) t terms of order at least I

⇒ Top Icw
' ) = Top fcwltt ,

in
w

, I = ( Xz
- Cz ) - -

- ( Xu
- Cu ) . gccr ,Xz ,

- → xn )

⇒ ihw . I Cc
' )
-0

,
w

'
E Vctropf )

and we car use induction again .

g



Exaimpk :

f =
- 3t2t3tx - tyttxy - Exy4t(t4ttDyY+×

Tropf  = mail -2
,

- Atx
,

- Zty
,

- ttxty ,
- 3txt4y

,

-4+4 y ,
5×3

÷¥¥¥÷T
w= Gmo ) E Vctropf )

.

inwf =  
- 3+3 X - ytxy inwfct ,

-31=0

As inwf Ct , g) = iuwfcx ,
-33=0

,
we

are in Case 2
.

Replace X
-

- txt is f
,

write

inwf  = C x - i ) ( yt3 ) and

-9

I (g) = f ( ttt
, y

) =

- 3t2-3tct.tt ) - thy ttctx E) y
-

-

-
-

- t3CttE ) y4t C tht'T y4t #Eh
5

=

3 test test StG -1 lot -1 both 5t9tto+t3y

O E Top I ,
here can can solve

for y and obtain



y
=-3 - t - 5t3 - lot 't

- rot - sit
'

- tf
.

So ( x , g) = ( Ett
,

" )

satisfies fvalx,

- rally ) =  f-1,0 )

and fcx ,y)=o as required .



Zastava
Read Def 3.3

,
3-4

,
Lemma 3.1

,

Questions / Activities 3.2
,

Def 3.5
,

Lemma 3.2
,

Questions ) Activities 3.3

in Renzo 's notes
.

We include aproofof Lemma 3.2

here :

3.tl#ma
Let A

,
B

,

C be finite groups and

O →

AesBE
c → O a

short exact sequence .

Then IAI . let = I Bl
.

Proof :

For g.
h E B set

g-
he . ⇐ f Cgl = f Ch ) EC

In each equivalence class
,

there

are
I Ker fl elements ⇒



IBI =
I Btu to Ikefl .

But 11341=14

as f is Surjective ,
and

kerf  = 1mg ⇒ Ikerft= 11mg) = IAI

where the latter equality holds as

g is injective ⇒ 1131=1 Cl - IAI
.

B

P¥fRenzo 's Thon
.

3.2 :

We have to show that f *
E

,
is

balanced
.

Let T
'

E f* E
,

be of code 'm t

and let 2 c- E
,

of codeine A with

f- ( It = I
'

.
Around I we

have the

balancing condition :

§
,

Waco ) . Hope =0 in R%pauZ

Apply f to this equation :

€
,

wench
. f- Cuba ) -

- O in R%pane

Let e' Cb
' and T.cz with f- (6) =3 ?



The primitive vector U% ,
and Uso

,z

satisfy :

f- C aye ) =
spauG'Jnz

\ spankYnzmtk.fcuo.es/oU6' A

if f is injective on 3 and f- Cuz ,z)=o

else
.

The following Sequence
is exact ,

O →
Spare 'nzm

'

fcspkenzmg-ssparzsnz.mg
fcspanzn EM )

→
spans

'nzM
'

# → o

span
Tink

"
tk . f- C use )

⇒
Spano

' nzml

\ TERM 'tZfCuz

.es/--FI:Ien..iYTIs:h....l

Insert this in the above
,

the first factor

is the same for all suurmands and



can
be taken out

,
so we obtain ,

Igwe.cn/sPYIspTan..*,/.uoa.--oflziujeoh
're

in R%spanE '

We now sum over all I with fake !

O =

E.¥÷.am/sran::pI...n,l.uoa.-fCTI=E
'

⇐,

wet " Man
.ie?pT..*l).uoxi&z.wf*EnCb

' ) . Ub 't '
in Ripka ,

thus the balancing condition is

satisfied .

D

Read Def . 3.6
,

Example 3.2 and

Lemma 3.3 in Renzo 's notes
.



PIO of Lemma 3.3 in Renzo 's notes :

As En is irred
, Supp C Ez ) - supper )

Replace En and Ez with refinements
,

s .

th
.

both fans have the same comes
,

and only the weights are potentially

different .

Set de =

,
meine

,.ffI%qg ,
}

top dim

and choose a ER
> o

with did E Zoo
.

Take a new weight function
who ) = 2C wezcb ) - d wench )

Then who ) EI
,

and who )=o at

least once
.

Take the fan E = { 6 E Er top -

dim with W (6) 30 and their faces }
.

Then { is balanced
,

as In and Ez

are ,
but if

It
0 then

supp CE ) ¥ En 2 to § irred

⇒ 2--0 ⇒ wszcb )=dwqC b )

tf 6 EE
, top -

dim
.

D



Read Def 3.7
,

Thin
.

3-1 and

Remark 3. A in Renzo 's notes
.

Sections 4,5 and 6 :

Read in Renzo 's notes
.


