\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Introduction to tropical
enumerative geometry

Tropical geometry can be viewed as algesraic geometry over the tropical semining.
It works with methods from discrete mathematics (convex geometry, combinatorics) which are of intrinsic interest.

In this class, we focus completely on the discrete math - side.

Students with background knowledge in algebraic geometry con value the further motivation that tropical geometry allows a fruitful exchange of methods between algetsraic geometry and
discrete mathematics.
Students without such a background can follow without any trouble, they just won't have access to this additional motivation.

Tropical geometry has, besides its natural connection to algebraic geometry, also many connections to other fields of mathematics, e.g. optimization os biomathematics.

In this class, we focus on enumerative tropical geometry.

Enumerative geometry is an ancient area of mathematics, in which we ask questions about the number of geometric objects Cotter curves, ie. 1-dim geometric objects that satisfy certain conditions.

Example (Apollonius' Problem) How many circles in \mathbb{R}^{2} are tangut to three given circles?
(Answer: 8, see Wikipedia).
Questions line this are otter easy to ask, but difficult to answer, which is what makes the sea of enumerative geom. a lively and active research area to this day, mostly in algebraic geometry, where we count algusraic curves satisfying conditions (i.e. Solution sets of polynomials $f(x, y)$, egg.

$$
\begin{equation*}
y-x^{2}=0 \tag{1}
\end{equation*}
$$

The enumerative geometry of algebraic curves is also related to mathematical physics, logo string theory,

As already said, tropical geometry provides a translation from algebraic geometry to discrete mathematics.
Consequently, enumerative problems from algebraic geometry become enumerative problems in discrete maths.

Such problems are at the center of attention of this class. Concretely, we will answer the question:
How many rational plane tropical curves of degree d pass through generic given $3 d-1$ points in \mathbb{R}^{2} ?
(What such tropical plane curves are will also be studied in class, of course.)

We will prove a beautiful combinatorial formula to determine these numbs recursively.
This formula is named after the fields medaillist Wontsevich who first discovered it in connection with algetraic geometry and string theory Cree the class on Gromov-Wittee- theory which I gave recently and might give again in the future).

These handwritten notes are supplemented by typed notes by Reerzo Cavalier, which we will also use. $^{\text {wi }}$

Outline

1. The tropical semining, tropical polynomials, tropical hypersurfaus and duality
2. Algebraic curves and the Puiscus series
3. Abstract tropical varieties
4. Moduli spaces of rational tropical curves
5. Moduli spaces of stable maps
6. Kontsevich's formula
7. The tropical semining and tropical polynomials
1.1 Def (tropical semining)
$(R \cup\{-\infty\}, \oplus$, (0) is called the tropical semining, where

$$
\begin{aligned}
& x \oplus y:=\max \{x, y\} \\
& x \oplus y:=x+y
\end{aligned}
$$

These operations are associative:

$$
\begin{aligned}
& (x \oplus y) \oplus z=\max \{\max \{x, y\}, z\}= \\
& \max \{x, y, z\}=\max \{x,\{y, z\}\}=x \oplus(y \oplus z) \\
& (x \odot y) \odot z=(x+y)+z=x+(y+z)=x \odot(y \odot z)
\end{aligned}
$$

distributive:

$$
\begin{aligned}
& x \odot(y \oplus z)=x+\max \{y, z\}= \\
& \quad \max \{x+y, x+z\}=x \odot y \oplus x \odot z
\end{aligned}
$$

commutative.
The neutral element for addition if $-\infty$.
The neutral element for multiplication is 0 .
Multiplicative inverses are usual
additive inverses.
But \nRightarrow additive inverses, as the equation $\quad x \oplus a=-\infty \Leftrightarrow$

$$
\max \{x, a\}=-\infty
$$

has no solution.
\Rightarrow We cam not subtract tropically.
$(\mathbb{R} \cup\{-\infty\}, \oplus, \Theta)$ satisfies all field axioms except \exists additive inverses, it is called a semining or semifield.

The tropical sewing is idempotent, ie. $a \oplus \cdots \oplus a=a$.
The Freshman's dream holds tropically.

$$
\begin{aligned}
& (x \oplus y)^{2}=(x \oplus y) \odot(x \oplus y)= \\
& \max \{x, y\}+\max \{x, y\}=\max \{2 x, 2 y\} \\
& =x \oplus x \oplus y \oplus y=x^{2} \oplus y^{2}
\end{aligned}
$$

Remark Many authors use
$(\mathbb{R} \cup\{\infty\}$, min, $t)$ instead of $(\mathbb{R} \cup\{-\infty\}, \max ,+)$. This is isomorphic of course.
1.2 Def (tropical polynomials)

Usually, a polynomial is a finite sum of terms of the form $a_{\alpha} x^{\alpha}=a_{\alpha} \cdot x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}$ for $\alpha \in \mathbb{N}^{n}$ and a_{α} in the ring/field of coefficients.
Tropically, we do the same:
A tropical term is an expression of the for a_{α} (c) $x_{1}^{\alpha_{1}} \odot \cdots \odot x_{n}^{\alpha_{n}}$

$$
\begin{aligned}
& =a_{\alpha} \odot(\underbrace{x_{1} \odot \cdots x_{1}}_{\alpha_{1}}) \odot \cdots \odot(\underbrace{x_{n} \odot \cdots x_{n}}_{\alpha_{n}}) \\
& =a_{2}+(\underbrace{x_{1}+\cdots+x_{1}}_{\alpha_{1}})+\cdots+(\underbrace{x_{n}+\cdots+x_{n}}_{\alpha_{n}}) \\
& =a_{\alpha}+\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n} \\
& =a_{\alpha}+\langle\alpha, x\rangle
\end{aligned}
$$

(where $<,>$ denotes the Euclidean scalar product on \mathbb{R}^{n}).
Viewed as function $\mathbb{R}^{n} \rightarrow \mathbb{R}$, a tropical term is an athine-linear function with rational slope (ie. $\alpha \in \mathbb{N}^{n}$).

A tropical polynomial is a tropical sum of tropical terms, i.e.

$$
\max _{\alpha \in \mathbb{N}^{n}}\left\{a_{\alpha}+\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}\right\}
$$

Viewed as function $\mathbb{R}^{h} \longrightarrow \mathbb{R}$, a tropical polynomial is a piecewise attine-linear function with finitely many pieces and rational slopes, which is continuous and convex.

Remark: There is a difference between tropical polynomials and tropical polynomial functions.
(See Questions/actinties 1.1.(8) in Renzo's notes.)
1.3 Example (Cubic univariate polynomials)

Let $f(x)=a \odot x^{3} \oplus b \odot x^{2} \oplus c \odot x \oplus d$
Assume $\quad d-c \leq c-b \leq b-a$

By our assumption, all four lines are "visible" and we have three comer loci, at $x=d-c, c-b, b-a$.

With these, we obtain a factorization of f into linear terms:

$$
\begin{aligned}
& f= \\
& a \odot(x \oplus(d-c)) \odot(x \oplus(c-b)) \circledast(x \oplus(b-a))
\end{aligned}
$$

The comer low are therefore also called the zoos or roots of f.

Exercise: Every univariate tropical polynomial function can uniquely be written as product of linear terms, with comer loci as roots.

Remark: Already in the bivariate case, there is no unique factorization, log.

$$
\begin{aligned}
& (x \oplus 0) \odot(y \oplus 0) \odot(x \odot y \oplus 0) \\
& =(x \odot y \oplus x \oplus 0) \odot(x \odot y \oplus y \oplus 0)
\end{aligned}
$$

Questions/Actinities 1.1 in Renzo's notes are useful now.

Tropical operation naturally appear in optimization:
Let G be a directed graph with n vertices $1, \ldots, n$. Let $d_{i j}>0$ be the tenth of the edge from $;$ to j.
Let D_{G} be the adjacency matrix, i.e. $d_{i i}=0, d_{i j}=\infty$ if no edge exists, $D_{G}=\left(d_{i j}\right)_{i j}$.
1.4 Prop

- $\left(\left(-D_{G}\right)^{n-1}\right)_{i j}$, where the matrix multiplication is tropical, is the length of the shortest path from i to j in G.

Proof:
Let $d_{i j}^{(r)}$ be the the length of a shortest path from i to j which takes at most r edges.
Then $d_{i j}{ }^{(1)}=d_{i j}$.
As $d_{i j}>0$ a shortest path can visit each vertex at most once. In particular, it takes at most $n-1$ edges, and $d_{i j}^{(n-1)}$ is the desired length.
We have to show $d_{i j}^{(u-1)}=-\left(\left(-D_{G}\right)^{n-1}\right)_{i j}$
For $r \geqslant 2$ we have

$$
\begin{aligned}
& d_{i j}^{(r)}=\min _{k}\left\{d_{i_{k}}^{(r-1)}+d_{k_{j}}\right\}= \\
& -\max _{k}\left\{-d_{i k}^{(r-1)}-d_{k_{j}}\right\}=
\end{aligned}
$$

$$
\begin{array}{r}
-\left(\left(-d_{i}^{(r-1)}\right) \odot\left(-d_{1 j}\right) \oplus \cdots \oplus\right. \\
\left(\left(-d_{i n}\right)^{(r-1)} \circlearrowleft\left(-d_{n j}\right)\right)= \\
-\left(-d_{i 1}^{(r-1)}, \cdots,-d_{i n}^{(r-1)}\right) \odot\left(\begin{array}{c}
-d_{1 j} \\
\vdots \\
-d_{n j}
\end{array}\right)
\end{array}
$$

By induction, we conclude that

$$
\begin{equation*}
d_{i j}^{(r)}=-\left(\left(-D_{G}\right)^{r}\right)_{i j} \tag{1}
\end{equation*}
$$

Thus finding shortest paths on graphs (optimization) is equivalent to taking tropical powers of matrices.

Example

$$
-D_{G}=\left(\begin{array}{cccc}
0 & -1 & -3 & -7 \\
-2 & 0 & -1 & -3 \\
-4 & -5 & 0 & -1 \\
-6 & -3 & -1 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& \left(-D_{G}\right)^{2}=\left(\begin{array}{rrrr}
0 & -1 & -2 & -4 \\
-2 & 0 & -1 & -2 \\
-4 & -4 & 0 & -1 \\
-5 & -3 & -1 & 0
\end{array}\right) \\
& \left(-D_{G}\right)^{3}=\left(\begin{array}{rrrr}
0 & -1 & -2 & -3 \\
-2 & 0 & -1 & -2 \\
-4 & -4 & 0 & -1 \\
-5 & -3 & -1 & 0
\end{array}\right)
\end{aligned}
$$

For example, to go from 1 to 4 :

- directly:7
- in two steps: $1 \rightarrow 3 \rightarrow 4: 4$
- in three steps: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4: 3$

The tropical computation reflects the following usual computation:
Let t be a variable and consider the matrix

$$
\left(\begin{array}{llll}
1 & t & t^{3} & t^{7} \\
t^{2} & 1 & t & t^{3} \\
t^{4} & t^{5} & 1 & t \\
t^{6} & t^{3} & t & 1
\end{array}\right)
$$

Then minus the (smallest) exponents of
the (usual)
powers of this matrix equals the tropical matrices above.
1.5 Def (tropical hypersurface)

Let f be a tropical polynomial in n variable. Then
$V(f)=\left\{x \in \mathbb{R}^{n}\right)$ the maximum of f is attained at least by two monomials?
$=$ the cover locus of the piecewise linear function f is called the tropical hypersurface defined by f. If $n=2$, we call it a plane cure.

Example:

$$
\begin{aligned}
& f=x \oplus y \oplus 0=\max \{x, y, 0\} \\
& V(f)=
\end{aligned}
$$

a tropical line

Questions/actin'ties 1.2 in Reazo's notes are useful now.

To describe the structure of tropical hypersurfaces better, we need to introduce a bit of convex geometry.
We will not be very formal or detailed with this, but as the subject is intuitively accessible, this should be no harm.
1.6 Def (convex hulls, polytops)
$X \subset \mathbb{R}^{n}$ is convex, if $\forall u, v \in X$ $\forall 0 \leq \lambda \leq 1 \quad \lambda u+(1-\lambda) v \in X$, i.e. the line segment connecting u and v is in X.
The convex hull conv (G) of $U \subset \mathbb{R}^{2}$ is the smallest convex set containing u. If $u=\left\{u_{1}, \ldots, u_{r}\right\}$ is finite, $\operatorname{conv}(u)=\left\{\sum_{i=1}^{\infty} d_{i} u_{i} \mid 0 \leq d_{i} \leq 1, \sum d_{i}=1\right\}$ is called a polytop.
If $U \subset \mathbb{Z}^{n}$ is finite, $\operatorname{conv}(u)$ is called a lattice polytope.

A cone is the positive hull of finituly many vectors in \mathbb{R}^{n} :

$$
C=\text { cone }\left(v_{1}, \ldots, v_{r}\right):=\left\{\sum_{i=1}^{c} \lambda_{i} v_{i}, \lambda_{i} \geqslant 0\right\}
$$

not convex

a polytope

convex

a cone

If $n=2$, a polytope is called polygon.
A cone is strictly convex if it contains no subspace of positive dimension.

Remark:
Each cone $C=\operatorname{cone}\left(v_{1}, \ldots, v_{r}\right)$ can be given by inequalities, ie. of the form $C=\{x \mid A x \geqslant 0\}$
for some matrix A.
Egg. $C=$ cone $\left(\binom{1}{0},\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right)=$

$$
\begin{aligned}
& \left\{\left.\binom{x}{y} \right\rvert\, x \geqslant 0, \quad y \leq x\right\} \\
= & \left\{\binom{x}{y} \left\lvert\,\left(\begin{array}{cc}
1 & 0 \\
1 & -1
\end{array}\right)\binom{x}{y} \geqslant 0\right.\right\}
\end{aligned}
$$

1.7 Def (faces)

A face of a cone C is given by a linear functional in $\left(\mathbb{R}^{n}\right)^{v}$:
Let $w \in\left(\mathbb{R}^{n}\right)^{v}$ so tho wo y $w 0$ $\forall y \in C$, then

$$
\text { faces }(c):=\{x \in C \mid w \cdot x=0\}
$$

Setting $w=0, C$ is a face of itself by definition.
Example
$C=\operatorname{Cone}(C 1),(1))$
$w=\binom{-2}{1}$ satisfies $w \cdot\binom{x}{y} \leq 0 \quad \forall\binom{x}{y} \in C$.
face $(C)=\{0\}$

$$
\begin{gathered}
w=\binom{-1}{0} \\
\text { face }_{w}(C)=\{0\} \\
w=\binom{0}{-1}, \text { face }(c)=\text { Cone }\binom{1}{0} \\
w=\binom{-1}{1}, \text { face }_{w}(C)=\text { Cone }\binom{1}{1}
\end{gathered}
$$

Analogously to 1.7, we define faces of polytops, only here we allow affine functionals lie. linear with a shift).

The dimension of a cone or convex set is the dimension of the smallest affine subspace it is contained in.

A face of maximal dimension which is not C is a facet. A face of $\operatorname{dim} 0$ is a vertex, a face of $\operatorname{dim} 1$ in a cone is a ray.
1.8 Def (Fan)

A fan is a set of cones in \mathbb{R}^{2}, s,th. The intersection of two is a face of both, and such that all faces are contained.

a fan

a fan

not a fan

1. 9 Def (outer nomal fan)

Let $P \subset \mathbb{R}^{n}$ be a polytope.
The outer nomal fan M_{p} consists
of the cones

$$
\mathcal{N}_{p}(F)=\frac{\left\{w \in\left(\mathbb{R}^{n}\right)^{\vee} / \operatorname{face}_{w}(P)=F\right\}}{\{ }
$$

where F is a face of P.
Example:

W_{p} has 7 cones:

$$
\alpha_{0\}}=N_{p}(P)
$$

$$
\operatorname{cone}(1)=N_{p}\left(E_{1}\right)
$$

Cone $\binom{0}{-1}=N_{p}\left(E_{2}\right)$, Cone $\binom{-1}{0}=N_{p}\left(E_{3}\right)$,

$$
\operatorname{Cone}\left(\binom{-1}{0},\binom{1}{1}\right)=N_{p}\left(V_{1}\right)
$$

Cone $\left((1),\left(\begin{array}{c}(-1)\end{array}\right)\right)=N_{p}\left(v_{2}\right), \quad \operatorname{Cone}((-1),(-0))=W_{p}\left(v_{3}\right)$
1.10 Def

The Newton polytope of a (tropical) polynomial $f=\sum_{\alpha \in \mathbb{N}^{n}} a_{\alpha} x^{\alpha} \in K\left[x_{1}, \ldots, x_{2}\right]$
is Newt $(f):=\operatorname{Conv}\left(\alpha \mid a_{\alpha} \neq 0\right) \subset \mathbb{R}^{n}$
resp. $a_{d}+-\infty$
Example: $f=x+y+1$
1.11 Def (marked polytope and subdivision) Let $Q \subset \mathbb{R}^{n}$ be a lattice polytope and $A=Q \cap \mathbb{Z}^{n}$ the lattice points of Q.
$\left(Q, A^{\prime}\right)$ is a mashed polytope if A^{\prime} contains the vertices of Q. A marked subdivision of Q is a set $\left\{\left(Q_{i}, A_{i}\right) / i=1, \ldots, k\right\}$ s. th.

1) $\left(Q_{i}, A_{i}\right)$ is a marked polytope
2) $Q=\bigcup_{i=1}^{k} Q_{i}$ is a subdivision of Q, i.e. $Q_{i} \cap Q_{j}$ is a face (possibly empty) of Q_{i} and Q_{j}
3) $(A ; \subset A \quad \forall i$
4) $A_{i} \cap\left(Q_{i} \cap Q_{j}\right)=A_{j} \cap\left(Q_{i} \cap Q_{j}\right)$

Examples:
We draw moved points (in A) black

By 4), marked subdivisions can le drawn like this.

Using a height function (e.g. by defining the coethieient of a tropical polynomial to be the height), we can define a marked subdivision, the so-called dual Newton subdivision, by projection of upper faces, see Def. 1.5 and the paragraph above in Renzo's notes.
Read also example 1.2 and think about Questions/activities 1.3.

Read Theorem 1.1, it states the duality of tropical hypersurfaces and the deal Newton subdivision. We include more ideas on the proof here:

1) Assume first that $a_{\alpha}=0 \forall \alpha$,

$$
\text { i.e. } f=\max _{\alpha}\{\alpha \cdot x\}
$$

The top-dim cones of $W_{\text {Newt }}(f)$ correspond to the
votices, the cones of Codimension Λ to the edges. An edge E connects two voices Corresponding to α_{1} and α_{2}. Then $W_{\text {Newt }(f)}(E)$ is contained in the hyperplane whose normal vector is E.
This hyperplane is given by the equation $\alpha_{1} \cdot x=\alpha_{2} \cdot x$. $N_{\text {Newt (f) }}(E)$ is precisely the subset of this hyperplane for which the maximum is attained at $\alpha_{1} \cdot x=\alpha_{2} \cdot x$.
Example:

2) If not $a_{\alpha}=0$:

Set $\tilde{f}=\sum t^{a_{\alpha}} \underline{x}^{\alpha}$ (possibly a polynomial with real exponents, but that does not make any change here), then the Newton polytope of \tilde{f} is what we project to obtain the subdivision.
By 1), the tropical hypersurface $V(\tilde{f})$ is the codim-1- skeleton of $W_{\text {New }}(\vec{f})$.

$$
V(f)=V(\tilde{f}) \cap\{t=1\}
$$

A monomial of f yields a vertex of the upper lull of Newt (f) (which we project to obtain the susdivision) \Longleftrightarrow top-dim cone in $W_{\text {Newt }}(\tilde{f})$ spanned by vectors for which the t-coordinate is positive \Leftrightarrow the intusection with $\{t=1\}$ produces a component of $R^{n} \backslash V(f)$ 。
This explains the duality $\{v e r t i c e s ~ o f ~ t h e ~ s u b d i v i s i o n\} ~ \leftrightarrow ~$ $\left\{\right.$ components of $\left.\mathbb{R}^{n} \backslash V(f)\right\}$
with this, we obtain
$\{$ edges in the dual subdivision $\} \longleftrightarrow$ \{edges of $V(f)$ (separating two corrected components of $\left.\left.\mathbb{R}^{n} V V(f)\right)\right\}$ and so on.

Example
using duality, one can draw tropical plane curves quickly:
Let $f=0 \oplus 1 \oplus x \oplus x^{2} \oplus 10 y \oplus$ $10 x \oplus y \oplus y^{2}$

Newt (f)

to project

subdivision

The vortex dual to Q_{1} satisfies:
$Q_{1}: \quad 2 y=1+y=1+x+y \Rightarrow x=0, y=1$
$Q_{2}: 1+x=1+x+y=1+y \Rightarrow x=0, y=0$
$Q_{3}: 0=1+x=1+y \Rightarrow x=-1, y=-1$
Qu: $2 x=1+x+y=1+x \Rightarrow y=0, x=1$

Read Def 1.6, 1.7 and Theorem 1.2 in Renzo's notes.
Questions/Activities 1.4 are useful now.
1.12 Def (deg d)

We say a tropical plane curve has degree d if it is dual to the polygon $\operatorname{Com}((0,0),(d, 0),(0, d))$
1.13 Def (transversal intersection and intersection multiplicity)

Two tropical plane curves $V(f)$ and $V(g)$ intersect transversally if they irtusect at finitely many points which are all interior points of edges of both.

transversal

not

not

Let $p \in V(f) \cap V(g)$ be transversal. Let w_{1} be the weight of the edge e_{1} of $V(f)$ in which
p is, and V_{1} its direction, and anologously for e_{2}.
Then we define the intersection multiplicity of $V(f)$ and $V(g)$ at p to be $\operatorname{mult}_{p}(V(f), V(g))=w_{1} \cdot w_{2} \cdot\left|\operatorname{det}\left(v_{1}, v_{2}\right)\right|$

Ex:

$$
1 \cdot 1 \cdot\left|\operatorname{det}\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)\right|=1
$$

Two lines intersect in a point with multiplicity 1.
1.14 Theorem (Bézout)

A tropical plane curve of degree d and a tropical plane
cure of deg e which intersect transversally intersect in doe points, counted with multiplicity.

Proof: Exercise.
2. Algebraic curves and the

Prisux series

The goal of this section is to see that tropical plane curves (or, more guerally, tropical hypersurfaces) are really shadows of algebraic plane curves (hypersurfaces).
This provides an additional motivation for their study.
For those who are acquainted with algebraic geometry, you know that we like to work with algebraically closed fields.
For the others, you know that polynomials "have more solutions"
over \mathbb{C} (which is algebraically Closed : $\log . x^{2}+1=0$ has no solutions over \mathbb{R} but 2 over \mathbb{C}.

For that reason, our first step is to define an interesting new algebraically closed field in which we can study zeros of polynomials.
Read the beginning of chapter 2, Def 2.1 of Renzo's notes.
Questions/Actinities 2.1 are useful.
Def $R=\operatorname{val}^{-1}\left(\mathbb{R}_{\geqslant 0}\right) \subset \mathbb{C}\{\{t\}\}, m=$ $\left.\operatorname{val}^{-1}(\mathbb{R}>0) \subset \mathbb{C}\{t t\}\right\}$
2.1 Theorem

The field $K=\mathbb{C}\{\{t\}\}$ of Puiseux series is algebraically closed.
Proof:
Let $F=\sum_{i=0}^{n} c_{i} x^{i} \in K[x]$.
We have to show: $\exists y \in K$:

$$
F(y)=0
$$

We will describe an algorithm
which constructs y term by tom.
First, we show that we can assume the following properties for F :

1) $\operatorname{val}\left(c_{i}\right) \geqslant 0 \quad \forall i$
2) $子 j: \operatorname{val}\left(c_{j}\right)=0$
3) $C_{0} \neq 0$
4) $\operatorname{val}\left(\mathrm{C}_{0}\right)>0$

Let $\alpha=\min \left\{\operatorname{val}\left(C_{i}\right)\right\}$, the multiplication of F with $t^{-\alpha}$ does not change the existence of a zero, thus we con assume 1) and 2).
If $c_{0}=0, y=0$ is a zero, so we can assume 3).
Assume F satisfies 1)-3), but not 4).
If $\operatorname{val}\left(\mathrm{C}_{n}\right)>0$, let

$$
G(x)=x^{n} \cdot F\left(\frac{1}{x}\right)=\sum_{i=1}^{n} C_{n-i} x^{i}
$$

G satisfies 1)-4), and if
$G\left(y^{\prime}\right)=0$ then $F\left(\frac{1}{y^{\prime}}\right)=0$, so it is sufficient to construct a zoo for G.
If $\operatorname{val}\left(c_{0}\right)=\operatorname{val}\left(c_{n}\right)=0$, consider $f=\bar{F} \in \mathbb{C}[x]$ the image of F under the quotient map

$$
R[x] \longrightarrow \mathbb{R} / m[x]=\mathbb{C}[x] \text {. }
$$

f is not constant, as $\operatorname{val}\left(c_{n}\right)=0$.
As \mathbb{C} is algebraically closed \exists

$$
\lambda: f(\lambda)=0
$$

Let $\tilde{F}(x)=F(x+\lambda)=$

$$
\begin{aligned}
& c_{0}+c_{1}(x+\lambda)+c_{2}(x+\lambda)^{2}+\cdots+c_{n}(x+\lambda)^{n} \\
& =\sum_{i=0}^{n}\left(\sum_{j=i}^{n} c_{j}\binom{j}{i} \lambda^{j-i}\right) x^{i}
\end{aligned}
$$

$\tilde{F}(x)$ has the constant term
$\tilde{F}(0)=F(\lambda)=f(\lambda)+$ terms of higher valuation
$=0+$ toms of nigher valuation

The highest tom of $\underset{F}{ }$ is c_{n} of valuation O.
Thus we can assume 1)-4) for \tilde{F}, and if we find y^{\prime} with $\tilde{F}\left(y^{\prime}\right)=0$, then $F\left(y^{\prime}+\lambda\right)=0$, so it is suthivient to construct a wo of \neq.

Thus, we can now assume F satisfies 1)-4).

We construct a sequence of polynomials $\quad F_{i}=\sum_{j=0}^{n} C_{j}^{i} x^{j}$
which all satisfy 1) - 4).
Set $F_{0}:=F$.
Consider $\operatorname{conv}\left(\left(k, j^{\circ}\right) / \operatorname{val}\left(c_{k}^{i}\right) \leq j\right)$

We know $\operatorname{val}\left(C_{0}^{i}\right)>0$, $\exists k: \operatorname{val}\left(c_{k}^{i}\right)=0$, thus \exists edge
of negative slope connecting
(0, $\operatorname{val}\left(C_{0}^{i}\right)$) with another vertex (ki, $\left.\operatorname{kal}\left(C_{k_{i}}^{i}\right)\right)$ 。
Set $w_{i}=\frac{\operatorname{val}\left(C_{0}^{i}\right)-\operatorname{val}\left(C_{k_{i}}^{i}\right)}{k_{i}}$

$$
F_{i}^{\text {and consider }}\left(t^{w_{i}} \cdot x\right)=\sum_{j=0}^{n} c_{j}^{i}\left(t^{w_{i}} x\right)^{j}
$$

Then the valuation of the constant coefficient is val (cis), and of the lei the:
$\operatorname{val}\left(c_{k_{i}}^{i} t^{w_{i} k_{i}}\right)=\operatorname{val}\left(C_{k_{i}}^{i} t^{\mathrm{val} c_{0}^{i}-\operatorname{val} c_{k_{i}}^{i}}\right)$
$=\operatorname{val}\left(c_{0}\right)$,
all other coethicients have higher valuation.
This operation "evens the edge with negative slope":

$$
\begin{aligned}
& \text { Next, consider } \\
& t^{-v a l(c i o)} \cdot F_{i}\left(t^{w_{i}} x\right)
\end{aligned}
$$

this "moves it down":

Then $\operatorname{deg}\left(f_{i}\right)=k_{i}, \quad f_{i}(0) \neq 0$
As \mathbb{C} is algebraically closed, $\exists d_{i} \in \mathbb{C}$: $f_{i}\left(d_{i}\right)=0$. Let r_{i+1} be the multiplicity of this zoo, i.e.

$$
\begin{aligned}
& f_{i}=\left(x-\lambda_{i}\right)^{r_{i}+1} \cdot g_{i}(x), \quad g_{i}\left(\lambda_{i}\right) \neq 0 \text {. } \\
& \text { Set } F_{i+1}(x)=t^{-\mathrm{val}\left(c_{i}\right)} F_{i}\left(t^{w_{i}}\left(x+\lambda_{i}\right)\right) \\
& =t^{-\mathrm{val}\left(c_{i}^{i}\right)} \cdot \sum_{l=0}^{n} c_{l}^{\prime}\left(t^{w_{j}}\left(x+\lambda_{i}\right)\right)^{l}= \\
& t^{-\mathrm{val}\left(c_{i}^{i}\right)} \cdot \sum_{l=0}^{n} c_{l}^{i} \cdot \sum_{j=0}^{l}\binom{l}{j} t^{l \cdot w_{i}} x^{j} \lambda_{i}^{l-j} \\
& =\sum_{j=0}^{n}\left(\sum_{l=j}^{n} c_{l}^{i} t^{l \cdot w_{i}-\text { talc }_{l}^{i}}\binom{l}{j} \lambda_{i}^{l-j}\right) x^{j} \\
& =: \sum_{j=0}^{n} c_{j}^{i+1} x^{j}
\end{aligned}
$$

Consider again $f_{i}={t^{- \text {valci }} F_{i}\left(t^{w_{i}} x\right)}_{\text {Cr }}$
$=\overline{\sum_{j=0}^{n} c_{j}^{i} t^{j \cdot w_{i}-\text { valc } c_{0}^{i}} x^{j}}$
$=\sum \overline{c_{e}^{i}} x^{l}$
$e \mid l \cdot w_{i}-$ valcion $\operatorname{vall}_{e}^{i}=0$
We have $\frac{1}{j!} \frac{\partial \dot{\delta} f_{i}}{(\partial x)^{\delta}}\left(\lambda_{i}\right)=$

$$
\begin{aligned}
& \frac{1}{j!} \cdot \sum_{e \mid l \cdot w_{i}-\text { val } c_{i}^{j}+\text { val } c_{e}^{i}=0} \overline{C_{e}^{!}} \frac{l!}{(l-j)!} \lambda_{i}^{l j}= \\
& \sum_{e \mid l \cdot w_{i}-\text { val } c_{i}^{i}+v_{l}}\binom{l}{j} \overline{c_{e}^{i}} \lambda_{i}^{l-j}=0
\end{aligned}
$$

As d_{i} is a zuo of mult r_{i+1},

$$
\begin{aligned}
& \frac{\partial \delta f_{i}}{\left(\partial \times j^{j}\right.}\left(d_{i}\right)= \begin{cases}0 & \forall 0 \leq j<r_{i+1} \\
\neq 0 & j=r_{i+1}\end{cases} \\
& \Rightarrow \operatorname{val}\left(c_{j}^{i+1}\right) \quad \begin{cases}>0 & 0 \leq j<r_{i+1} \\
=0 & j=r_{i+1}\end{cases}
\end{aligned}
$$

If $c_{0}^{i+1}=0, \quad x=0$ is a zoo of $F_{i+1}, \lambda_{i} t^{w i}$ a zero of F_{i} and

$$
\sum_{j=0}^{i} d_{j} t^{w_{0}+\cdots+w_{j}}
$$

a zoo of Fo.

Thus we can assume $C_{0}^{i+1} \neq 0$ and then F_{i+1} satisfies 1)-4) and we continue the construction.

As $\operatorname{val}\left(C_{r_{i+1}}^{i+1}\right)=0$ we know $k_{i+1} \leq r_{i+1}$, and as r_{i+1} is the multiplicity of a zero of fir of $\operatorname{deg} k_{i}$, also $r_{i+1} \leq k_{i}$
As n is finite, $k i$ can get smaller only finitely many times $\Longrightarrow \exists k \in\{1, \ldots, n\}, m \in \mathcal{N}$,

$$
\begin{aligned}
& k_{i}=k \quad \forall i \geqslant m, \quad r_{i}=k \quad \forall i>m \\
& \Rightarrow f_{i}=\mu_{i} \cdot\left(x-\lambda_{i}\right)^{k} \quad \forall i>m
\end{aligned}
$$ and some $\mu_{i} \in \mathbb{G}$.

Let N_{i} sotho $c_{j}^{i} \in \mathbb{C}\left(\left(t^{\frac{1}{N}}\right)\right)$ $\forall 0 \leq j \leq n$.
As $F_{i+1}(x)=t^{- \text {valci } i} F_{i}\left(t^{w_{i}}\left(x+d_{i}\right)\right)$
$\frac{1}{N_{i+1}}$ is the common denominator of $\frac{1}{N_{i}}$ and w_{i}.
Claim: $N_{i+1}=N_{i} \quad \forall i>m$.
We have $w_{i}=\frac{\mathrm{val} c_{i}^{i}}{k}$, thus it is sufficient to see $\operatorname{val}\left(c_{0}^{i}\right) \in \frac{k}{N_{i}} \cdot K$ $\forall i>m$.
As $f_{i}=\mu_{i}\left(x-d_{i}\right)^{k}$ we have $\operatorname{val}\left(c_{j}^{i}\right)=\frac{k-j}{k}, \operatorname{val}\left(c_{0}\right)$
in particular for $\hat{j}=k-1$:
$\operatorname{val}\left(c_{k=1}^{i}\right)=\frac{1}{k} \cdot \operatorname{val}\left(c_{0}^{i}\right)$

But $\operatorname{val}\left(c_{k-1}^{i}\right) \in \frac{1}{N_{i}} \mathbb{Z} \Rightarrow$

$$
\frac{1}{k} \operatorname{val}\left(c_{0}^{i}\right) \in \frac{1}{N_{i}} \mathbb{Z} \Rightarrow
$$

$\operatorname{val}\left(c_{i}\right) \in \frac{k}{N_{i}} \mathbb{Z} \Rightarrow N_{i+1}=N_{i} \forall i>m$.
Let $y_{i}=\sum_{j=0}^{i} \lambda_{j} t^{w_{0}+\cdots+w_{j}} \in \mathbb{C}\left(\left(t^{\frac{1}{N_{i+1}}}\right)\right)$
as $N_{i+1}=N_{i} \quad \forall i>m \quad \exists \mathrm{~N}$ doth.
$\left.y_{i} \in \mathbb{C}\left(C t^{\frac{1}{N}}\right)\right) \forall i$, such the
limit $y=\sum_{j \geqslant 0} \lambda_{j} t^{w_{0}+\cdots+\omega_{j}} \in \mathbb{C}\left(\left(t^{\frac{1}{N}}\right)\right)$
is a Puisenx series.
It remains to see $F(g)=0$.
Let $z_{i}=\sum_{j \geqslant i} d_{j} t^{w_{i}+\cdots+w_{j}}$, then $y=y_{i-1}+t^{w_{0}+\cdots+w_{i-1}} \cdot z_{i} \quad$ for $i>0$.
We have $F_{i}\left(z_{i}\right)=t^{\mathrm{val}\left(C_{i}\right)} F_{i+1}\left(z_{i+1}\right)$
As $z_{0}=y$ we have

$$
\begin{aligned}
& \operatorname{val}\left(F\left(y^{\prime}\right)=\sum_{j=0}^{i} \operatorname{val}\left(c_{0}^{j}\right)+\operatorname{val}\left(F_{i+1}\left(z_{i+1}\right)\right)\right. \\
& \left.>\sum_{j=0}^{i} \operatorname{val} C_{c_{0}^{j}}\right) \quad \forall i>0
\end{aligned}
$$

As $\operatorname{val}\left(c_{0}^{j}\right) \in \frac{1}{N} \mathbb{N}$, we can conclude val $(F(y))=\infty \Rightarrow$ $F(y)=0$.
2.2 Def (Tropicalization) Let $K=\mathbb{C}\{\{t\}\}$.
We define the tropicalization map Trop: $\left(K^{*}\right)^{n} \longrightarrow \mathbb{R}^{n}$:

$$
\left(x_{1}, \ldots, x_{n}\right) \longmapsto\left(-\operatorname{val} x_{1}, \ldots,- \text { val } x_{n}\right)
$$

Exercise:
Compute Trop (L) for a Line $L \subset\left(k^{*}\right)^{2}$ 。
2.3 Def (tropicalization of polynomials)

Let $f=\sum_{\alpha \in \mathbb{N}^{n}} C_{\alpha} x_{n}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$
$\in \mathbb{C}\{\{t\}\}\left[x_{2}, \ldots x_{n}\right]$, then

$$
\operatorname{Trop}(f):=\max \left\{-\operatorname{val}\left(c_{\alpha}\right)+\alpha \cdot x\right\}
$$ is the tropicalization of f.

2.4 Def (Hypersurface, plane curve)

Let K be any (algebraically closed) field.
Let $f \in W\left[x_{1}, \ldots, x_{n}\right]$.
The hypersurface of f is

$$
V(f)=\left\{x \in K^{n} \mid f(x)=0\right\}
$$

If $n=2$, we call $V(f)$ a plane curve.
Example: $V\left(y-x^{2}\right)=$

2.5 Theorem (Kapranov, see 2.1 in Renzo's notes)

Let $f=\sum_{\alpha \in \mathbb{N}^{n}} C_{\alpha} x_{n}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$

$$
\in \mathbb{C}\{\{t\}\}\left[x_{1}, \ldots, x_{n}\right]
$$

Then

$$
\operatorname{Trop}\left(V(f) \cap\left(k^{*}\right)^{n}\right)=V(\operatorname{Trop}(f))
$$

(where we take the closme in the

Euclidean topology).
Proof, part I:
"C" Let $x \in V(f) \cap\left(k^{*}\right)^{n}$
$\Rightarrow \sum c_{\alpha} x_{1}{ }^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}=0$
Let $x_{1}=a_{1} t^{-w_{1}}+\cdots, \quad x_{n}=a_{n} t^{-w_{n}}+\cdots$
Then -val $x_{i}=W_{i}$.
We have to show, $w_{i} \in V(\operatorname{Tropf})$,

$$
i . e . \max \left\{-\operatorname{val} c_{\alpha}+\alpha \cdot w\right\} \text { is }
$$

attained at least twice.

$$
O=f(x)=\sum c_{\alpha}\left(a_{n} t^{-w_{1}}+\cdots\right)^{\alpha_{1}} \cdots\left(a_{n} t^{-w_{n}}+\cdots\right)^{\alpha_{n}}
$$

The lowest order of a summand is

$$
\operatorname{val}\left(c_{\alpha}\right)-w_{1} \alpha_{1} \ldots-w_{n} \alpha_{n}
$$

The lowest order of the whole sum is $\min \left\{\operatorname{val}\left(c_{\alpha}\right)-\omega_{1} \alpha_{1} \cdots-\omega_{n} \alpha_{n}\right\}$
As the sum is 0 , the toms cancel away, in partimbar the terms of lowest order cancel away, in particular there must be
at least two terms of lowest order $\Rightarrow \min \left\{\operatorname{val}\left(c_{\alpha}\right)-\omega_{1} \alpha_{1} \ldots . \omega_{n} \alpha_{n}\right\}$
is attained at least trice $\Rightarrow \max \left\{-\operatorname{val}\left(c_{\alpha}\right)+w-\alpha\right\} \quad$ is attained at least twice.
2.6 Lemma

Let k be any field, $g \in k\left[x_{1}, . ., x_{n}\right]$. g has at least two terms \Longleftrightarrow g has a zero in $\left(k^{*}\right)^{n}$.
The proof is easy for those who are fauniliar with algebraic geometry, those who aren't I would like to ask to just believe the statement for now.
2.7 Def (initial forms)

$$
\text { Let } f=\sum_{\alpha \in N^{n}} C_{\alpha} x_{n}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}
$$

$$
\in \mathbb{C}\{\{t\}\}\left[x_{1}, \ldots, x_{n}\right]
$$

Let $w \in \mathbb{R}^{n}, \quad W=\operatorname{Trop}(f)(w)$,
set $\operatorname{inw} f={t^{W}}^{W} \sum_{\alpha} c_{\alpha} t^{-w \cdot \alpha} x^{\alpha} \in \mathbb{C}[\underline{x}]$ inn f is called the initial for of f w.r.t. w.

We have $\operatorname{inw}_{w}(f)=\sum \overline{c_{\alpha} t^{-\operatorname{valca}_{\alpha}}} x^{\alpha}$ $\alpha \mid-\operatorname{val}\left(c_{\alpha}\right)+w-\alpha=W$

$$
=\overline{t^{w} f\left(t^{-w_{1}} x_{1}, \ldots, t^{-w_{n}} x_{n}\right)} .
$$

- val $c_{\alpha}+\alpha \omega$ is called the ω-weight of the term $c_{\alpha} \underline{x}^{\alpha}$. The initial form is thus the sum of the classes of the toms of biggest w-weight.

Example:

$$
\begin{aligned}
& f=\left(t+t^{2}\right) x+2 t^{2} y+3 t^{4} z \\
& \in \mathbb{C}\{\{t\}\}[x, y, z] \\
& w=(0,0,0) \\
& t^{w} f\left(t^{-w} x, t^{-w_{2}} y, t^{-w_{3}} z\right) W=\max \{-1,-2,-4\}=-1 \\
&= \frac{t^{-1}\left(\left(t+t^{2}\right) x+2 t^{2} y+3 t^{4} z\right)}{(1+t) x+2 t y+3 t^{3} z}=x=\operatorname{in}_{w} f
\end{aligned}
$$

$$
\begin{aligned}
& W=(-4,-2,0) \\
& W=\max \{-1-4,-2-2,-4\}=-4 \\
& \operatorname{inw} f=\frac{t^{-4}\left(t+t^{2}\right) t^{4} x+t^{-4} 2 t^{2} t^{2} y}{+t^{-4} 3 t^{4} t^{0} z}= \\
& \quad \frac{\left(t+t^{2}\right) x+2 y+3 z}{(t)}=2 y+3 z .
\end{aligned}
$$

Proof of Kapranov's theorem 2.5, Part II:
$\supset^{\prime \prime}$ We do induction on n. The induction beginning $n=1$ asks us to construct a of a Pliseux series polynomial of a given valuation. This can be done with the algorithm of Tum 2.1 (Puiseux series are algebraically (closed). $n-1 \rightarrow n$: Let $w \in V(\operatorname{Trop} f) \cap Q^{n}$ We want to lift w to a Puiseux series $x($ with $-v a l x=w)$ s.th $f(x)=0$.
As $w \in V($ Tropf $) \Rightarrow$ the max Trope is attained at least twice
$\Longrightarrow i_{w} f$ has at least two tums 2.6

$$
\stackrel{1.6}{\Rightarrow} \exists \text { zoo } c=\left(c_{1}, \ldots, c_{n}\right) \text { of }
$$

inc $\in\left(\mathbb{C}^{x}\right)^{n}$.
Case 1: $3 j$: $\operatorname{inw} f\left(x_{1}, \ldots, c_{j}, \ldots,\right) \neq 0$
$E j=1$. Set $w=\left(w_{1}, w^{\prime}\right), x=\left(x_{1}, x^{\prime}\right)$,
$C=\left(C_{1}, c^{\prime}\right)$ and consider

$$
\tilde{f}\left(x^{\prime}\right):=f\left(c_{1} t^{-w_{1}}, x^{\prime}\right)
$$

Thee $\tilde{f}\left(t^{-\omega_{2}} x_{2}, \ldots, t^{-\omega_{n}} x_{n}\right)=$

$$
\begin{aligned}
& f\left(c_{1} t^{-\omega_{1}}, t^{-\omega_{2}} x_{2}, \ldots, t^{-\omega_{n}} x_{n}\right)= \\
& \underbrace{f i n f\left(c_{1}, x^{\prime}\right) \cdot t^{-\operatorname{Trop} f(\omega)}+\begin{array}{l}
\text { higher order } \\
\text { toms }
\end{array}}_{\neq 0} \\
& \Rightarrow \operatorname{Trop} \tilde{f}\left(\omega^{\prime}\right)=\operatorname{Trop} f(\omega) \text { and } \\
& \Rightarrow \operatorname{in} \omega^{\prime} \tilde{f}\left(x^{\prime}\right)=\operatorname{inw} f\left(c_{1}, x^{\prime}\right) \\
& \Rightarrow \operatorname{in} w^{\prime} \tilde{f}\left(c^{\prime}\right)=0 \text {, and as } c^{\prime} \in\left(\mathbb{C}^{x}\right)^{n-1}
\end{aligned}
$$

2.6
$\Rightarrow i n \omega$ in has at least two terms
$\Rightarrow \quad w^{\prime} \in V(\operatorname{Trop}(\tilde{f}))$
By induction assumption, we can lilt w^{\prime} to x^{\prime} and add $c_{1} t^{-w_{1}}$
as first component.
Case 2: Assume inv $f\left(x_{1}, \ldots, c_{j}, \ldots, x_{n}\right)=0 \forall j$
Write

$$
\operatorname{in} w f=\left(x_{1}-c_{1}\right)^{k}\left(x_{2}-c_{2}\right) \cdots\left(x_{n}-c_{n}\right) \cdot g\left(x_{1}, \ldots, x_{n}\right)
$$

with $g\left(C_{1}, x^{\prime}\right) \neq 0$
Let $\left.\tilde{f}\left(x^{\prime}\right):=f\left(c_{1}+t^{\frac{1}{k}}\right) t^{-w_{1}}, x^{\prime}\right)$
Then $\tilde{f}\left(t^{-\omega_{2}} x_{2}, \ldots, t^{-\omega_{n}} x_{n}\right)=$

$$
f\left(\left(c_{1}+t^{\frac{1}{k}}\right) t^{-\omega_{1}}, t^{-\omega_{2}} x_{2}, \ldots, t^{-\omega_{n}} x_{n}\right)=
$$

$$
t^{\operatorname{Trop}(p)(\omega)}\left(t^{\frac{1}{k}}\right)^{k}\left(x_{2}-c_{2}\right) \cdots\left(x_{n}-c_{n}\right) q\left(c_{1}+t^{\hat{k}}, x_{2}, \ldots, x_{n}\right)+
$$

hoot.

As $q \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right], \quad q\left(c_{1}+t^{\frac{1}{2}}, x_{2}, \ldots, x_{n}\right)$
$=q\left(C_{1}, x_{2}, \ldots, x_{n}\right)+$ terms of order at least $\frac{1}{k}$

$$
\begin{aligned}
& \Rightarrow \operatorname{Trop} \tilde{f}\left(w^{\prime}\right)=\operatorname{Trop} f(\omega)+1 \\
& \operatorname{in}_{w}, \tilde{f}=\left(x_{2}-c_{2}\right) \cdots\left(x_{n}-c_{n}\right) \cdot g\left(c_{1}, x_{2}, \ldots, x_{n}\right) \\
& \Rightarrow \operatorname{in}_{w} \vec{f}^{\prime}\left(c^{\prime}\right)=0, \quad w^{\prime} \in V(\operatorname{Trop} \tilde{f})
\end{aligned}
$$ and we car use induction again.

Example:

$$
\begin{aligned}
& \text { Example: } \\
& f=-3 t^{2}+3 t x-t^{2} y+t x y-t^{3} x y^{4}+\left(t^{4}+t^{5}\right) y^{4}+x^{5} \\
& \text { Top }=\max \{-2,-1+x,-2+y,-1+x+y,-3+x+4 y, \\
& \quad-4+4 y, 5 x\}
\end{aligned}
$$

$$
w=(-1,0) \in V(\operatorname{Trop} f)
$$

$$
\operatorname{inn}_{w} f=-3+3 x-y+x y \quad \operatorname{inw} f(1,-3)=0
$$

As $\operatorname{inw} f(1, y)=\operatorname{inw} f(x,-3)=0$, we are in Care 2.
Replace $x=t+t^{2}$ in f, write

$$
\begin{aligned}
& \operatorname{inw} f=(x-1)(\underbrace{(y+3)} \quad \text { and } \\
& \tilde{f}(y)=f\left(t+t^{2}, y\right)= \\
& -\underline{3 t^{2}}+\underline{3 t\left(t+t^{2}\right)-t^{2} y+t\left(t+t^{2}\right) y} \\
& -t^{3}\left(t+t^{2}\right) y^{4}+\left(t^{4}+t^{5}\right) y^{4}+\left(t+t^{2}\right)^{5}= \\
& 3 t^{3}+t^{5}+5 t^{6}+10 t^{7}+10 t^{8}+5 t^{9}+t^{10}+t^{3} y
\end{aligned}
$$

$0 \in$ Prop \tilde{f}, here can can solve for y and obtain

$$
\begin{aligned}
& y=-3-t^{2}-5 t^{3}-10 t^{4}-10 t^{5}-5 t^{6}-t^{7} \\
& \text { So }(x, y)=\left(t+t^{2},\right.
\end{aligned}
$$

satisfies $(-\operatorname{val} x,-\operatorname{val} y)=(-1,0)$
and $f(x, y)=0$ as required.
3. Abstract varieties

Read Def 3.3, 3.4, Lemma 3.1, Questions / Activities 3.2, Def 3.5, Lemma 3.2, Questions/ Activities 3.3 in Renzo's notes.
We include a proof of Lemma 3.2 here:
3.1 Lemma

Let A, B, C be finite groups and $O \rightarrow A \xrightarrow{g} B \xrightarrow{f} C \rightarrow 0 \quad a$ short exact sequence.
Then $|A| \cdot|C|=|B|$.
Proof:
For $g, h \in B$ set

$$
g \sim h: \Leftrightarrow \quad f(g)=f(h) \in C
$$

In each equivalence doss, there are |kerf elements \Rightarrow
$|B|=|B / \sim| \cdot \mid$ Kerf|. But $|B / \sim|=|C|$ as f is surjective, and
Ser $f=|\operatorname{mg} g \Rightarrow| \operatorname{Ker} f|=||m g|=|A|$ where the latter equality holds as g is injective $\Rightarrow|B|=|C| \cdot|A|$.

Proof of Renzo's Thm-3.2:
We have to show that $f_{*} \Sigma_{1}$ is balanced.
Let $\tau^{\prime} \in f_{*} \varepsilon_{1}$ be of codim 1 and let $\tau \in \Sigma_{1}$ of codim 1 with $f(\tau)=\tau$ '. Around τ we have the balancing condition:

$$
\sum_{\tau<b} w_{\Sigma_{1}}(b) \cdot u_{b_{/ \tau}}=0 \text { in } \mathbb{R}^{M} / \operatorname{span} \tau
$$

Apply f to this equation:

$$
\sum_{\tau<b}^{\text {Apply }} \omega_{\Sigma_{1}}(b) \cdot f\left(u_{b / \tau}\right)=0 \text { in } \mathbb{R}^{\omega^{\prime}} / s \operatorname{san} \tau^{\prime}
$$

Let $\tau^{\prime} \subset \sigma^{\prime}$ and $t \subset \sigma$ with $f(6)=b$?

The primitive vector u_{b} / τ and $u_{b / \tau}$ satisfy:

$$
\begin{aligned}
& \text { satisfy: } \\
& f\left(u_{b / \tau}\right)=\left|\frac{\left.\operatorname{span}\left(z^{\prime}\right)\right) \wedge \mathbb{Z}^{\mu)}}{\operatorname{span}\left(\tau^{\prime}\right) \wedge \mathbb{Z}^{(\mu)}+\mathbb{Z} \cdot f\left(u_{b / \tau}\right)}\right| \cdot u_{\sigma^{\prime} / \tau}
\end{aligned}
$$

if f is injective on 3 and $f\left(u_{0 / \tau}\right)=0$ else.
The following sequence is exact:

$$
\begin{aligned}
& O \rightarrow \frac{\operatorname{span} \tau^{\prime} \cap \mathbb{Z}^{\mu}}{\operatorname{span} z^{\prime} \cap \mathbb{Z}^{\mu}} \\
& f\left(\operatorname{span} \subset \cap \mathbb{Z}^{M}\right) \quad f\left(\text { span } \cap \mathbb{Z}^{M}\right) \\
& \operatorname{span} \sigma^{\prime} \cap \mathbb{Z}^{\left({ }^{\prime}\right)} \\
& \longrightarrow \quad \operatorname{span} \tau^{\prime} \cap \mathbb{Z}^{M^{\prime}}+\mathbb{Z} \cdot f\left(u_{z / \tau}\right) \\
& \Rightarrow\left|\frac{\operatorname{span} z^{\prime} \cap \mathbb{Z}^{\mu^{\prime}}}{\operatorname{span} \mathbb{Z}^{\prime} \cap \mathbb{Z}^{\mu \prime}+\mathbb{Z} \cdot f\left(u_{z / \tau}\right)}\right| \\
& =\frac{1}{\left(\begin{array}{l}
\operatorname{span} \tau^{\prime} \cap \mathbb{Z}^{(\mu)} \\
f\left(\operatorname{span}\left(\cap \mathbb{Z}^{(M)}\right)\right.
\end{array}\right.} \cdot\left|\begin{array}{c}
\operatorname{span} z^{\prime} \cap \mathbb{Z}^{\mu)} \\
f\left(\operatorname{span} \delta \cap \mathbb{Z}^{\mu}\right)
\end{array}\right|
\end{aligned}
$$

Insert this in the above, the frost factor is the same for all summons and
can be taken out, so we obtain:

$$
\sum_{z \subset b} W_{\Sigma_{1}}(b)\left|\frac{\left.\operatorname{span} z^{\prime} \cap \mathbb{z}^{\mu}\right)}{f\left(\operatorname{span} z \cap \mathbb{Z}^{M}\right)}\right| \cdot u_{b^{\prime} / \tau^{\prime}}=0
$$

fl_{z} infective

$$
\text { in } \mathbb{R}^{M^{\prime}} / \operatorname{san} \tau^{\prime}
$$

We now sum over all τ with $f(\tau)=\tau^{3}$:

$$
\begin{aligned}
& 0= \\
& \sum_{\tau} \sum_{\tau(b} W_{\varepsilon_{1}}(b)\left|\frac{\operatorname{span} \sigma^{\prime} \cap \mathbb{Z}^{\mu)}}{f\left(\operatorname{span} \theta \cap \mathbb{Z}^{\mu}\right)}\right| \cdot u_{b^{\prime} / \tau}= \\
& f(\tau)=\tau) \quad f l_{b} \text { in. } \\
& \sum_{\tau^{\prime}\left(b^{\prime}\right.}\left(\sum_{\substack{\delta \\
f(z)=b^{\prime}}} W_{\Sigma_{1}}(b)\left|\frac{\left.\operatorname{span} z^{\prime} \cap z^{\mu}\right)}{f\left(\text { span } \cap \mathbb{Z}^{\mu}\right)}\right|\right) \cdot u_{b^{\prime} / \tau^{\prime}}= \\
& \sum_{\tau^{\prime} \subset b^{\prime}} w_{f_{*} \Sigma_{1}}\left(b^{\prime}\right) \cdot u_{b^{\prime}} / \tau^{\prime} \quad \text { in } \mathbb{R}^{\mu^{2}} \operatorname{span} \tau^{\prime}
\end{aligned}
$$

thus the balancing condition is satisfied.

Read Def. 3.6, Example 3.2 and Lemma 3.3 in Renzo's notes.

Proof of Lemma 3.3 in Renzo's notes"
As Σ_{1} is irred, $\operatorname{supp}\left(\Sigma_{2}\right)=\operatorname{supp}\left(\Sigma_{1}\right)$ Replace \sum_{1} and Σ_{2} with refinements, s.th. both fans have the same cones, and only the wights are potentially different. Set $\left.\lambda:=\min ^{b \in \Sigma_{1} \text { of }} \begin{array}{l}\text { top dim }\end{array} \frac{\omega_{\Sigma_{2}}(b)}{\omega_{\Sigma_{1}}(b)}\right\}$
and choose $\alpha \in \mathbb{Z}_{>0}$ with $\alpha \lambda \in \mathbb{Z}_{>0}$.
Take a new wright function

$$
\omega(b)=\alpha\left(w_{\varepsilon_{2}}(b)-\lambda \omega_{\varepsilon_{1}}(b)\right)
$$

Then $w(z) \in \mathbb{Z}$, and $w(z)=0$ at least once.
Take the four $\sum=\left\{b \in \Sigma_{1}\right.$ topdim with $\omega(b)>0$ and their faces\}.
Thee \sum is balanced, as \sum_{1} and Σ_{2} are, but if $\sum \neq \phi$ then $\operatorname{supp}\left(\sum\right) \notin \sum_{1} \sum$ to \sum_{1} irred $\Rightarrow \Sigma=\varnothing \Rightarrow \omega_{\Sigma_{2}}(b)=\lambda \omega_{\Sigma_{1}}(b)$
$\forall b \in \Sigma_{1}$ top-dim.

Read Def 3.7, Thm. 3.1 and Remork 3.1 in Renzo's notos.

Sections 4,5 and 6: Read in Reezo's notes.

