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Introduction

The main goal of this minicourse is to introduce students to tropical
geometry and (some of) its enumerative applications. Tropical geometry is
a combinatorialization of ordinary geometry. By either doing algebraic ge-
ometry over the tropical semi-field or over fields with a valuation, one may
associate piecewise linear objects to ordinary algebraic varieties. Remark-
ably such highly degenerate objects retain a lot of geometric information
about the original algebraic varieties. For example, the notion of dimension
is preserved: thus to an algebraic curve is associated a graph. Further, the
genus of the curve generically is equal to the genus of the graph. In the
last twenty-some years many groups of researchers have explored these con-
nections, providing a wealth of correspondence theorems: statements on how
to recover classical information from its tropical counterpart. In this mini-
course we will focus in particular on a celebrated result of Mikhalkin, which
shows that the count of rational tropical plane curves of degree d through
3d−1 points in general position equals the classical count. The material will
be distributed among the six classes as follows:

Day 1: The tropical semi-field. Tropical plane curves as determined
by polynomial equations valued in the tropical semi-field. The New-
ton polygon of a polynomial in two variables. Tropical curves are
dual to a subdivision of a Newton polygon. The notion of balancing.

Day 2: The field of Puiseaux series. Axiomatic definition of a field
with a valuation. Algebraic curves over valued fields and their tropi-
calization. Intersection multiplicity of two tropical curves. Bézout’s
theorem for plane tropical curves.

Day 3: Cones, fans, and their morphisms. The notion of a balanced
fan, and criteria to verify that a fan is balanced. The push-forward
of a balanced fan is balanced.

Day 4: Moduli spaces of tropical rational curves M
trop
0,n as balanced

fans. The forgetful morphisms.
Day 5: Moduli spaces of tropical rational stable maps to the tropical

plane. Evaluation morphisms and incidence conditions. The key
enumerative question (how many plane curves of a given degree
pass through a number of points in general position?), and how to
interpret it in terms of a question of intersection on a moduli space
of tropical stable maps.

Day 6: Mikhalkin’s correspondence theorem, recovering Kontsevich’s
recursive formula to answer the key enumerative question.
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6 INTRODUCTION

The material will be covered partly through lectures, partly through
direct involvement of the students, whom will be asked to work on exercises
and to complete worksheets aimed at helping them assimilate the material.
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DAY 1

Tropical algebra and geometry

Definition 1.1. The tropical semifield T = (R ∪ {−∞},⊕,⊙) consists
of the real numbers union the symbol −∞, with the two operations:

tropical sum:
a⊕ b ∶=max(a, b),

where we understand that −∞ is considered to be smaller than any
real number.

tropical multiplication:

a⊙ b ∶= a + b.
Definition 1.2. A tropical polynomial p(x1, . . . , xn) is a finite sum

of tropical monomials:

p(x1, . . . , xn) = �
I=(i1,...,in)

↵I ⊙ x
⊙i1
1 ⊙ . . .⊙ x

⊙in
n , (1)

where all the ij ∈ Z≥0 , and x
⊙i = x⊙ . . .⊙ x���������������������������������������������

i−times

.

Questions/Activities 1.1.

(1) Show that ⊕ has an identity element. What is it? Show that no
element other than the identity has an additive inverse.

(2) Show that T�{−∞} is an abelian group. What is the multiplicative
identity? What is the multiplicative inverse of a ∈ R?

(3) What is 5⊙0?
(4) Given the tropical polynomial 0⊕ x

⊙2, what is the coefficient of x?
What is the coefficient of x⊙2?
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8 1. TROPICAL ALGEBRA AND GEOMETRY

(5) Consider the tropical monomial µ(x, y) = 3⊙ x
⊙2 ⊙ y: show that it

gives rise to an affine linear function fµ ∶ R2 → R.
(6) Are the tropical polynomials x, 1⊙ x and x⊕ 0 equal or different?
(7) What kind of function corresponds to the polynomial p(x) = 0⊕1⊙

x⊕ x
⊙2? Draw its graph.

(8) Show that the two tropical polynomials p(x) = 0⊕x⊕(1⊙x⊙2) and
q(x) = 0⊕ (1⊙ x

⊙2) give rise to the same function.

●
● −∞●

●

Definition 1.3. Let p be a tropical polynomial in n-variables and fp ∶
Rn → R the corresponding piecewise linear function. We define

V (p) ∶= {x ∈ Rn�the maximum value for fp is attained by at least two monomials}.
In other words, V (p) is the corner locus of the piecewise linear function fp,
i.e. the values of the domain where fp is not differentiable.

If p is a polynomial in two variables, we call V (p) a tropical plane
curve. We denote a tropical plane curve by � when focusing on its piecewise
linear structure rather than on the tropical polynomial from which it arose.

Example 1.1. Let p(x, y) = x ⊕ y ⊕ 0. The associated function is
fp(x, y) =max(x, y,0). The corresponding tropical curve, called a tropical
line because it is associated to a linear polynomial, is depicted in Figure 1.1.

Questions/Activities 1.2.

(1) Draw the tropical line associated to the tropical polyomial a⊙ x⊕
b ⊙ y ⊕ c for a, b, c ∈ T. Analyse also the case when some of the
coefficients equal −∞.

(2) Show that there is a unique tropical line through two general points
in the plane. What does “general” mean here?

(3) Show that two general lines intersect in exactly one point. What
does “general” mean here?

(4) Draw the tropical curve associated to the tropical polyomials:● (x⊙ y)⊕ x⊕ y ⊕ 0.● (x⊙ y)⊕ x⊕ y ⊕ (−1).● (x⊙ y)⊕ (−1⊙ x)⊕ y ⊕ 0.
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x =max(x, y,0)

y =max(x, y,0)

0 =max(x, y,0)
x = 0 =max(x, y,0)

x = y =max(x, y,0)

y = 0 =max(x, y,0)

Figure 1.1. The tropical line from Example 1.1. The do-
main plane is subdivided in three parts, according to which
of the functions x, y and 0 attains the maximum value. The
tropical line V (p) is the tripod separating these regions.

Figure 1.2. Examples of the outward normal fan (red) of a
polygon (blue).

Given a polygon P ⊂ R2, we call the outward normal fan of P the
collection of half-lines, centered at the origin, which are perpendicular to
edges of P , and point outward from P in the sense that they have the same
orientation as some parallel half-line which originates inside P , and crosses
the edge to go out towards infinity. The examples in Figure 1.2 should help
clear any doubt on what this means.

Given a monomial in two variables x⊙m⊙y⊙n, one may naturally associate
to it the point of the plane (m,n), which always has integer coordinates.

Definition 1.4. Given a polynomial p(x, y) ∈ T[x, y], the Newton
polygon �p of p consists of the convex hull of the points in the plane
associated to the monomials with non-(−∞) coefficients (see Figure 1.3).
We call these monomials the support of p.

The Newton polygon only cares about which coefficients of p are non-(−∞). The actual values of the coefficients give us some more refined in-
formation. To any monomial µ = aµ ⊙ x

⊙m
y
⊙n associate the point Pµ =(m,n, aµ) ∈ R3. The convex hull of the points Pµ, for all monomials µ in the

support of p, is a polytope �̃p ⊂ R3, that maps onto the Newton polygon via
vertical projection. Any face of �̃p whose outward normal vector points up
(i.e. has positive z coordinate) is called an upper face.

Definition 1.5. Given a polynomial p(x, y), the dual Newton sub-
division of �p is the image via vertical projection of the edges of the upper
faces of �̃p.
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p1(x, y) = x⊙3 + (2⊙ y⊙3) + 5 + x⊙2 p2(x, y) = x⊙3 + (2⊙ y⊙3) + 5 + x⊙3 ⊙ y⊙3 p3(x, y) = x⊙2 + (2⊙ y⊙3) + 5 + x⊙2 ⊙ y⊙2

Figure 1.3. Three polynomials of degree three and their
associated Newton polygons. The red points correspond to
the monomials with non-(−∞) coefficients.

Example 1.2. We illustrate these definitions in some one dimensional
examples. In the two figures below, the Newton polygon is the segment [0,2]
(since the polynomials are univariate and of degree 2). The red dots in the
Newton polygons represent the dual Newton subdivisions associated to the
two polynomials. The yellow triangles are the �̃p’s, whose upper edges are
colored red.

�p ∶
p(x, y) = 0⊕ (2⊙ x)⊕ (1⊙ x

⊙2)

�̃p

�p ∶
p(x, y) = 1⊕ x⊕ (2⊙ x

⊙2)

�̃p

Questions/Activities 1.3.

(1) Compute the dual Newton subdivisions of the three polynomials
from Exercise (4) in the previous activity session. Any relationship
to the tropical curves you wrote?

(2) Suppose the coefficients for all monomials in the support of p are
equal. What is the dual Newton subdivision of p?

(3) Consider the polynomial p(x, y) = 0⊕ a⊙ x⊕ x
2. Describe how the

Newton subdivision varies as a varies. Describe the corresponding
tropical plane curves.

(4) Associate to two points P1 = (m1, n1, a) and P2 = (m2, n2, b) the
affine linear functions (in ordinary algebra) L1 =m1x+n1y + a and
L2 =m2x+n2y+b. Show that the line where L1 = L2 is perpendicular
to the vertical projection of the segment P1P2.

p

p
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Theorem 1.1. Let p(x, y) be a tropical polynomial. Then the tropical
curve V (p) associated to p is dual to the Newton subdivision of p in the
following sense:

(1) There is a vertex for V (p) for every polygon in the Newton subdi-
vision.

(2) There is an edge for V (p) for every edge in the Newton subdivision.
(3) The edge joining two vertices of V (p) is perpendicular to the com-

mon edge for the corresponding polygons in the Newton subdivision.
Further, the coordinates of a vertex w of V (p) may be determined by solving
the linear system Lv1 = . . . = Lvk , where the vi’s are the vertices of the polygon
dual to w and the Lvi are the associated affine linear functions as in Exercise(4) in the last activity session.

Example 1.3. Figure 1 shows three examples of tropical curves dual to
Newton subdivisions of a triangle of sidelength 2.

2

Figure 1.4. Examples of tropical conics (red), and their
dual Newton subdivisions (black).

For the sake of time, we will not give a complete proof of this theorem.
We mention however that the proof follows from carefully combining these
ideas:

● The affine linear functions associated to the vertices of �̃p are the
functions that arise when writing fp in terms of ordinary algebra.● For any pair of vertices of �̃p, consider the segment joining them.
We saw in Activity 1.3.4 that the locus of points where the corre-
sponding linear functions in fp are equal is perpendicular to this
segment. A non-empty part of this locus of points appears in the
tropical curve V (p) if and only if for some (x, y) the value of those
affine linear functions is the maximum of among all affine linear
functions in fp.● This happens precisely when the segment in question is the edge of
an upper face for �̃p.

Now we add some structure to tropical curves. Let S be a segment in R2

with endpoints with integer coordinates; if S contains N points with integral
coordinates, we say that the lattice length of S is equal to N − 1.

Definition 1.6. The weight of an edge e of a tropical curve is the
lattice length of the corresponding edge in the dual Newton subdivision.

We say a vector in R2 with integer coordinates is primitive if the gcd

of its coordinates is 1.
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Definition 1.7. Let � be a tropical plane curve. For any oriented edge
e of �, denote by pe the primitive vector of e and we the weight of e. For
any vertex v of �, let e1, . . . ek be the edges of � adjacent to v, oriented away
from the vertex. Then we say � is balanced at v if

k�
i=1weipei = 0. (2)

If a plane tropical curve satisfies the balancing condition at every vertex, we
say � is balanced.

Theorem 1.2. Plane tropical curves are balanced.

Questions/Activities 1.4.

(1) Draw the tropical curves which are dual to the following Newton
subdivisions, and compute the weights of their edges. Verify that
the balancing condition holds.

(2) Prove Theorem 1.2. First reduce it to a statement about lattice
polygons (polygons whose vertices have integral coordinates). Then
you may do induction on the area of the polygon.

Further exercises

Exercise 1.1. Let p(x) = a0 ⊕ (a1 ⊙ x) ⊕ . . . ⊕ (ad ⊙ x
⊙d) be a tropical

polynomial of degree d. Prove that the graph of fp can have at most d

corners. What conditions on the coefficients ai must hold in order for the
graph of fp to have exactly d corners? In this case, call x1, . . . xd the x-
coordinate of the corners. Prove that p factors in linear factors:

p(x) = a0 ⊙ (x⊕ x1)⊙ . . .⊙ (x⊕ xd). (3)
We say that the x-coordinates of the corners are the roots of the tropical
polynomial p.

Exercise 1.2. In analysis we define the exponential function as:

e
x ∶= ∞�

n=0
x
n

n!
. (4)

Let us define the tropical exponential function e
⊙x by replacing all the

operations by their tropical counterparts (be careful: what do division, and
factorials correspond to tropically?). Describe the graph of e⊙x and its roots.

Exercise 1.3. Find tropical polynomials whose associated tropical curves
are dual to the subdivisions in Example 1.3.



DAY 2

Geometry over a valued field.

d1 d2 d1d2

The field of Puiseaux series C{{t}} consists of formal expressions of
the form

c(t) = c1ta1 + c2ta2 + . . . , (5)
where

● ci are non-zero complex numbers;● ai are rational numbers, and ai < ai+1;● the sum is countable;● the set of all exponents ai admits a common denominator.
If we define addition and multiplication of Puiseaux series the same way we
do with ordinary power series, we easily see the that set of all Puiseaux series
forms a field. In fact it is an algebraically closed field.

x
2 + 1 = 0

x = ±i

Definition 2.1. A valuation on a field K is a function
val ∶K → R ∪ {+∞}

such that:
● val(x) = +∞ ⇐⇒ x = 0;● val(xy) = val(x) + val(y);● val(x + y) ≥ min(val(x), val(y)), with equality holding if val(x) �=
val(y).

13



14 2. GEOMETRY OVER A VALUED FIELD.

Questions/Activities 2.1.

(1) Which of these expressions is a Puiseaux series?● c(t) = 1
t + t;● c(t) = t 1
3 + t 1

2 ;

● c(t) = t√2;● c(t) = ∑+∞i=0 ti;● c(t) = ∑+∞i=0 t−i;● c(t) = ∑+∞i=−5 ti;● c(t) = ∑+∞i=1 t 1
i .

(2) Let K be a field with a valuation. Denote by 1 the multiplicative
identity of K. What is val(1)? If x �= 0, how does val(1�x) compare
to val(x)? How about val(−x)?

(3) The function
val ∶ C{{t}}→ R ∪ {+∞} (6)

defined by
val(0) = +∞ val(c1ta1 + c2ta2 + . . .) = a1 (7)

is a valuation on the field of Puiseaux series. Write down the valu-
ation for all the Puiseaux series from Problem 1. Write an example
of two Puiseaux series c1(t) and c2(t) such that

val(c1(t) + c2(t)) >min(val(c1(t)), val(c2(t))). (8)

Definition 2.2. The tropicalization function Trop ∶ (C{{t}}�{0})2 →
R2 is defined by

Trop(x, y) = (−val(x),−val(y)). (9)

The connection between tropical curves and curves definied over the field
of Puiseaux series is made precise by the following theorem.

Theorem 2.1 (Kapranov). Given p(x, y) = ∑ c↵(t)x↵1y
↵2 ∈ C{{t}}[x, y],

define
Trop(p) ∶=�−val(c↵(t))⊙ x

⊙↵1 ⊙ y
⊙↵2 , (10)

and
V (p) ∶= {(x, y) ∈ C{{t}}2�p(x, y) = 0}. (11)

Then
Trop(V (p)) = V (Trop(p)), (12)

where the overline means closure with respect to the Euclidean topology in
R2.
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�1 �2 �2�1 �2�1

Figure 2.1. The leftmost tropical curves do not intersect
transversely because their intersection consists of infinitely
many points. The central pair also do not intersect trans-
versely, since the intersection point is a vertex of �1. The
right hand side tropical curves intersect transversely.

p

p

p

Questions/Activities 2.2.

(1) Verify Theorem 2.1 in the case of a line. Consider the equation
x + y + 1 = 0, and write a parameterization of its solution set (this
just means solve for y). Then show that taking Trop of the points
of the solution set produces a tropical line.

(2) Given a monomial µ = a(t)xmy
n and a point in the Puiseaux plane

Q = (x0(t), y0(t)), show that

−val(µ(Q)) = Trop(µ)(Trop(Q)). (13)

(3) Now consider a binomial p(x, y) = µ1 +µ2, and assume Q is a point
in the Puiseaux plane such that p(Q) = 0. Prove that

−val(µ1(Q)) = −val(µ2(Q)). (14)

(4) Based on the previous exercises, argue that for any polynomial P ∈
C{{t}}[x, y] we have

Trop(V (p)) ⊆ V (Trop(p)). (15)

(5) Consider a polynomial of degree d of the form p(x, y) = xd +yd +5+
pd−1(x, y), where pd−1 is a polynomial of degree d− 1 with complex
coefficients (complex numbers can also be thought as Puiseaux se-
ries!). Compute Trop(V (p)) without using Theorem 2.1 and verify
that it does satisfy the statement of Theorem 2.1.

Definition 2.3. A tropical plane curve has degree d if it is dual to
some subdivision of the triangle �d with vertices (0,0), (d,0), (0, d).

We say that two tropical plane curves intersect transversely if they
intersect in a finite number of points which are not vertices for either of the
curves, as shown in Figure 2.1.
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Definition 2.4. Let �1,�2 be two tropical curves, which intersect trans-
versely at the point P . Denote by e1 the edge of �1 containing P , p1 the
primitive vector in the direction of e1 and w1 the weight of e1, and similarly
for the second curve. We define the multiplicity of intersection of �1 and
�2 at P to be

multP (�1,�2) ∶= �det�� x(w1p1) x(w2p2)
y(w1p1) y(w2p2) ��� . (16)

Theorem 2.2 (Bézout). Let �1 be a tropical plane curve of degree d1

and �2 a tropical plane curve of degree d2; assume that �1 and �2 intersect
transversely. Then:

�1 ⋅ �2 ∶= �
P ∈�1∩�2

multP (�1,�2) = d1d2. (17)

Questions/Activities 2.3.

(1) Compute �1 ⋅ �2 for the following pairs of curves, and verify the
statement of Bézout’s theorem.

2 2

(2) In the following picture, v is a balanced vertex of a tropical curve
�: the three edges have weights wi and primitive vectors pi such
that ∑wipi = 0. The lines `1 and `2 are parallel. Denote P1, P2,Q

the intersection points. Prove that

multP1(�, `1) +multP2(�, `1) =multQ(�, `2). (18)

v

�

`1 `2

Q

P1

P2

(3) Use the idea from the previous exercise to devise a strategy of proof
for Bézout’s theorem.
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Further exercises

Exercise 2.1. Show that the function val defined in (7) is a valuation
for the field of Puiseaux series.

Exercise 2.2. Given two integral vectors v1,v2 ∈ R2, prove that

�det�� x(v1) x(v2)
y(v1) y(v2) ��� = �

Z2

Zv1 +Zv2
� . (19)

This number is called the lattice index of the lattice generated by the
vectors v1,v2 inside the lattice Z2.

Exercise 2.3. Give a complete and detailed proof of Bézout’s theorem.





DAY 3

Cones and Fans

⌧

⌧

Definition 3.1. A rational polyhedral cone � ⊆ RN can be defined
in two equivalent ways:

(1) The non-negative span of a collection of vectors with rational coor-
dinates:

� = � k�
i=1�ivi��i ∈ R≥0,vi ∈ QN� . (20)

(2) The intersection of a finite number of linear, rational, closed half-
spaces:

� = l�
i=1H

+
i , (21)

with
H
+ = {↵1x1 + . . . + ↵NxN ≥ 0�↵i ∈ Q} . (22)

A cone � is called strictly convex there isn’t any non-zero vector v
such that v and −v both belong to �. If we take the first perspective and
think of a cone as spanned by a set of vectors, given a strictly convex cone �

there is always a unique minimal set of primitive vectors generating �. The
half-lines inside the cone spanned by these vectors are called the rays of �.

Definition 3.2. A rational polyhedral fan ⌃ ⊂ RN is a collection
of rational polyhedral cones with the property that any two cones intersect
along faces:

⌃ = k�
i=1�i, (23)

such that for any i, j, �i ∩ �j is a face of both �i and �j .
19
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A maximal cone of ⌃ is any cone which is not a face of another cone
of ⌃. We say that a fan ⌃ is pure dimensional if all maximal cones have
the same dimension. In this case, we call the dimension of maximal cones
the dimension of ⌃.

Questions/Activities 3.1.

(1) Which of the following pictures represent a rational polyhedral
cone?

(2) We did not give precise definitions of the notions of dimension
of a cone, and face of a cone. Given the intuitive discussions we
have had about them, try and formulate precise definitions for these
concepts.

(3) Which of the following pictures represent a rational polyhedral fan?
Which ones are pure dimensional?

(4) Given a rational polyhedral fan ⌃, we define the support of ⌃,
denoted �⌃�, to be the set of points in RN that belong to some cone
of ⌃. Decide which of the following statements are true:
(a) The support of ⌃ is a linear subspace of Rn.
(b) The support of ⌃ is a convex subset of Rn.
(c) If x ∈ �⌃� and � is a non-negative number, then �x ∈ �⌃�.
(d) If �⌃1� = �⌃2�, then ⌃1 = ⌃2.

A weight function !⌃ on a fan ⌃ is a function from the set of cones of
⌃ to the non-negative integers Z≥0.

Given a codimension one cone ⌧ ∈ ⌃, we define a normal vector to ⌧ in
�, denoted u⌧��, to be any vector in � which descends to a generator of the
lattice Span(�)∩ZN

Span(⌧) . Note that there are typically many choices for u⌧�� ∈ RN ;
however, they all descend to the same vector in RN�Span(⌧).

Definition 3.3. A pure dimensional, rational, polyhedral fan with a
weight function is balanced if for every codimension one face ⌧ of ⌃ we
have: �

��⌧ !⌃(�)u⌧�� = 0 ∈ RN�Span(⌧). (24)

The notation � � ⌧ means: ⌧ is a face of �.
Definition 3.4. A marking on a Z-rational, simplicial fan is a choice

of an integral vector (not necessarily primitive) on each ray of the fan (see
Figure 3.1). A fan with a marking is called a marked fan.
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⌧

�1

�2

�3

v1

v⌧

v2

v3

Figure 3.1. An illustration of a marking on a two dimen-
sional fan.

A marking on a fan ⌃ ⊂ RN is a way to give the fan a weight function.
Given any cone ⌧ ∈ ⌃, let ⇢1, . . . ,⇢k be the rays bounding ⌧ and v1, . . . ,vk

the corresponding vectors in the marking. We define:

!⌃(⌧) ∶= � Span(⌧) ∩ZN

Zv1 + . . . +Zvk
� . (25)

(25)
�

� (16)

v1, . . .vk

Span(⌧) ∩ZN

A nice feature of weight functions induced by a marking is that one can
easily check if a fan is balanced, as we show in the next Lemma.

Lemma 3.1. Consider a marked fan ⌃, a codimension one cone ⌧ ∈ ⌃
and a top dimensional cone � � ⌧ . There is a unique vector in the marking
that belongs to � and does not belong to ⌧ , denote it by v��⌧ . Then ⌃ is a
balanced fan if and only if

�
��⌧ v��⌧ = 0 ∈ RN�Span(⌧). (26)

Proof. We rewrite the balancing condition (24) and show it is equiv-
alent to (26). Let RK+1 ≅ Span(�) ⊇ � � ⌧ ⊆ Span(⌧) ≅ RK . Up to the
action of a matrix in SL(K + 1,Z), we may assume that ⌧ is contained in
the hyperplane xK+1 = 0. We then have the two following important facts:

v��⌧ = xK+1(v��⌧)u⌧��. (27)

!⌃(�) = xK+1(v��⌧)!⌃(⌧). (28)
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We now deduce

�
��⌧ !⌃(�)u⌧�� = �

��⌧ x
�
K+1(v��⌧)!⌃(⌧) v��⌧

x
�
K+1(v��⌧) = !⌃(⌧)�

��⌧ v��⌧ . (29)

Since we assume ⌃ is a simplicial fan, !⌃(⌧) �= 0, which implies that

�
��⌧ !⌃(�)u⌧�� ∈ Span(⌧) ⇐⇒ �

��⌧ v��⌧ ∈ Span(⌧). (30)

⇤

Questions/Activities 3.2.

(1) What does the balancing condition state if ⌃ is a one-dimensional
fan? What are the normal vectors to a codimension one face of ⌃?

(2) Consider a two dimensional fan ⌃ ⊆ R3 and assume a portion of it
looks like Figure 3.1, with v⌧ = [1,0,0],v1 = [1,1,0],v2 = [2,2,2]
and v3 = [1,−3,−2]. Compute the weights !⌃(�i) for the three top
dimensional cones, compute the normal vectors u⌧�� and verify that
⌃ is balanced at the face ⌧ .

Definition 3.5. Let ⌃1 ⊆ RM and ⌃2 ⊆ RN . A map f ∶ �⌃1� → �⌃2� is
called a map of fans if f is the restriction of a Z-linear map RM → RN .

We would like a map of fans to be a function that sends cones to cones.
Note that with this definition in place, this is not necessarily the case. How-
ever, given a map of fans, one may always subdivide some cones (both in the
source and target fans) to obtain two new fans with the support, such that
the same map now has the property of mapping cones to cones. So from
now on when we talk about maps of fans let us assume that this additional
property is verified. We define the push-forward of the fan ⌃1 via f to be

f∗(⌃1) ∶= �f(�)�� is a maximal cone in ⌃1 and f�� is injective� . (31)

If ⌃1 has a weight function, we can induce a weight function on f∗(⌃1)
as follows. If ⌧ is a cone of f∗(⌃1), we define:

!f∗(⌃1)(⌧) ∶= �
⌧̃ s.t. f(⌧̃)=⌧

!⌃1(⌧̃) � Span(⌧) ∩ZN

f(Span(⌧̃) ∩ZM) � . (32)

Example 3.1. Consider the fans ⌃1 ⊆ R2, ⌃2 ⊆ R as depticted in Figure
3.2; all cones have weight one. In the first case, f(x, y) = y is horizontal
projection. Using (32), we have:

!f∗(⌃1)(�1) = � Span(�1) ∩Z
f(Span(�̃1) ∩Z2) � = �

Z ⋅ 1
Z ⋅ f([1,1]) � = 1, (33)

!f∗(⌃1)(�2) = � Span(�2) ∩Z
f(Span(�̃2) ∩Z2) � = �

Z ⋅ (−1)
Z ⋅ f([0,−1]) � = 1. (34)

We conclude that f∗(⌃1) = ⌃2.
Now consider the function g(x, y) = x + y. Now we have

!g∗(⌃1)(�1) = � Span(�1) ∩Z
g(Span(�̃1) ∩Z2) � = �

Z ⋅ 1
Z ⋅ g([1,1]) � = 2, (35)
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⌃1

�̃3

�̃2

�̃1

f

⌃2

�2

�1

�̃3

�̃2

�̃1⌃1

g

�2

�1⌃2

Figure 3.2. Two examples of maps of fans.

!g∗(⌃1)(�2) = � Span(�2) ∩Z
g(Span(�̃2) ∩Z2) � + �

Span(�2) ∩Z
g(Span(�̃3) ∩Z2) �

= � Z ⋅ (−1)
Z ⋅ g([0,−1]) � + �

Z ⋅ (−1)
Z ⋅ g([−1,0]) � = 1 + 1. (36)

We conclude that in this case g∗(⌃1) = 2⌃2.

Lemma 3.2. Let ⌃1 ⊆ RM be a balanced fan, and f a map of fans. Then
f∗(⌃1) is a balanced fan.

Questions/Activities 3.3.

(1) For each of the pictures below, consider the identity function Id ∶
R2 → R2. Decide if Id induces a map of fans as in Definition 3.5. If
it does, show how the cones of ⌃1 and ⌃2 should be subdivided in
order for the map of fans to send cones to cones.

⌃1

Id

⌃2 ⌃1

Id

⌃2

⌃1

Id

⌃2 ⌃1

Id

⌃2

(2) If ⌃1 is a pure dimensional fan of dimension k, what is the dimension
of f∗(⌃)?

(3) Consider the fan ⌃1 ⊆ R2, consisting of four rays generated by±e1,±e2. What are the conditions on the weights on the four rays
for ⌃1 to be a balanced fan? Now consider the map f ∶ R2 → R
defined by f(x, y) = 2x + 3y. Describe the fan f∗(⌃1) and check it
is balanced.

Definition 3.6. A balanced fan ⌃ ⊆ RM is irreducible if it cannot be
decomposed as the sum of two balanced fans with different supports. Here
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⌃1
⌃2

= ∪
⌃′2

⌃
′′
2

Figure 3.3. The fan ⌃1 is irreducible. The fan ⌃2 is reducible.

by sum of two balanced fans we mean taking the union of the cones in each
fan, and adding the weights for any cone that appears in both fans.

Example 3.2. Consider the two fans in Figure 3.3, where all cones have
weight one. The fan ⌃1 is irreducible, while ⌃2 is not, as it may be decom-
posed as the sum of the two subfans ⌃′2 ∪⌃′′2 .

Lemma 3.3. Suppose ⌃1,⌃2 are two balanced fans of the same dimension,
⌃1 is irreducible, and �⌃2� ⊆ �⌃1�. Then, up to subdivision, there exists a
positive rational number � such that

⌃1 = �⌃2. (37)

We now come to the definition of the degree of a map of balanced fans.

Definition 3.7. Let ⌃1 ⊆ RM
,⌃2 ⊆ RN be two balanced fans of the same

dimension, f ∶ ⌃1 → ⌃2 a map of fans.

multP (f) ∶= !⌃1(�P )
!⌃2(�f(P ))

�����������
Span(�f(P )) ∩ZN

f(Span(�P ) ∩ZM)
����������� . (38)

Next assume ⌃2 is irreducible. We define the degree of f . For any point
Q in the interior of a maximal cone of ⌃2:

deg(f) ∶= �
P s.t. f(P )=Q

multP (f). (39)

The next theorem shows that the degree of f is well-defined.

Theorem 3.1. If ⌃2 is an irreducible fan, and Q, Q̃ are two points in
the interior of maximal cones of ⌃2, then

�
P s.t. f(P )=Q

multP (f) = �
P s.t. f(P )=Q̃

multP (f). (40)

Proof. Cosider the weighted fan f∗(⌃1). Since its support is contained
in ⌃2 which is irreducible, by Lemma 3.3 there exists a rational number �

such that
�⌃2 = f∗(⌃1). (41)

This implies that for any point Q in the interior of a maximal cone of ⌃2,

�!⌃2(�Q) = !f∗(⌃1)(�Q) = �
P s.t. f(P )=Q

!⌃1(�P ) � Span(�Q) ∩ZN

f(Span(�P ) ∩ZM) � ,
(42)



FURTHER EXERCISES 25

where the last equality is (32). The theorem is proved by dividing by !⌃2(�Q)
and observing that �, which is independent of Q, equals the definition of
deg(f).

⇤

Questions/Activities 3.4.

(1) Show that the fan in the picture below is not irreducible, and further
that it may be decomposed as a sum of balanced fans in more than
one way.

⌃

(2) Prove Lemma 3.3.

Remark 3.1 (Very Important!). Assume ⌃1,⌃2 are marked fans, denote
v1, . . . , vn the marking on the rays of a top dimensional cone �P ∈ ⌃1 and by
w1, . . . ,wn the marking on the rays of �Q = f(�P ) ∈ ⌃2. Then

multP (f) = det(Mf), (43)
where Mf is the matrix representing the linear function f in the bases
v1, . . . , vn and w1, . . . ,wn.

To see that this is true, pick orthonormal bases �1 for Span(�P ) and �2

for Span(�Q), and denote by M
v
�1

and M
�2
w the matrices of the changes of

bases with respect to the bases given by the markings. Also denote by �Mf

the matrix representing f in the two bases �1 and �2. Then we have:
Mf =M�2

w
�MfM

v
�1
, (44)

which implies
det(Mf) = det(M�2

w )det(�Mf)det(Mv
�1
). (45)

The remark now follows by observing that

det(M�2
w ) = 1

!⌃2(�Q) , det(�Mf) = � Span(�Q) ∩ZN

f(Span(�P ) ∩ZM) � , det(Mv
�1
) = !⌃1(�P ).

(46)

Further exercises

Exercise 3.1. Prove Lemma 3.2. Focus on a codimension one face ⌧ and
a top dimensional face � � ⌧ in f∗(⌃), and on a face �̃ ∈ ⌃ such that f(�̃) = �.
You may assume that you use a transformation in SL(Span(�),Z) so that ⌧
lives in the hyperplane where the last coordinate is zero. Then compute the



26 3. CONES AND FANS

contribution by �̃ to the weight of � in f∗(⌃), and compute the relationship
between the vector u⌧�� and f(u⌧̃��̃).

Exercise 3.2. Let ⌃ ⊆ R3 be a pure two dimensional fan whose maximal
cones consist of the twelve coordinate orthants of R3. Choose a marking on
this fan that makes it into a balanced fan. What are the weights of the
maximal cones with your choice of marking? Consider the linear function
f ∶ R3 → R2 given by f(x, y, z) = 2y + 3z. Describe the fan f∗(⌃).

Exercise 3.3. Suppose p ∈ C{{t}}[x, y] and Trop(V (p)) equals the
reducible fan ⌃2 in Figure 3.3. Does this imply that the polynomial p must
be a reducible polynomial?



DAY 4

Abstract tropical curves and their moduli

1
n M

trop
0,n

Definition 4.1. An abstract, rational, n-pointed tropical curve
is a tree T with n labeled ends, and a function (called the metric) from the
set of edges m ∶ E(T ) → R≥0. A curve is called stable if each vertex has
valence ≥ 3.

We consider ends to be unbounded edges. In particular, there is only
one vertex adjacent to an end. See Figure 4.1 for some examples.

0

Forgetting the information of the metric for a tropical curve �, we obtain
a stable tree, called the topological type of �.

5⇡

3
4
1

7
2
5

6

v1 v3

v2 5⇡

7
4
1

3
2
5

v1 v3

v2 5⇡

√
2

7
4
1

3
2
5

v1 v3

v2

Figure 4.1. The first picture is an example of a stable, ab-
stract, rational, tropical curve, with three vertices, two edges
and seven labeled ends. The length of the edges is written in
gray. The second picture is not stable because v1 has valence
2. The third picture is not rational, as it has a loop starting
and ending at v2.

27
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y

x

z

1

2

3

4

y

1

3

2

4

z

1

4

2

3

x

1

4

2

3

Figure 4.2. The cone complex M
trop
0,4 is obtained by identi-

fying the vertices of three one dimensional cones (rays). The
picture illustrates the cone complex, and in gray the tropical
curves parameterized by each ray.

Questions/Activities 4.1.

(1) What are the topological types of abstract, rational, stable, n-
pointed tropical curves, for n = 3,4,5?

(2) What are the minimum and maximum number of compact edges
that an abstract, rational, stable, n-pointed tropical curve can have?

Let T be a stable tree with n-ends and m edges. The set of all tropical
curves of topological type T , or equivalently, the set of all possible metriza-
tions of the edges of T , is naturally parameterized by the cone (R≥0)m =∶ CT .

Definition 4.2. We denote by M
trop
0,n the parameter space for stable,

abstract, rational, n-pointed tropical curves. It consists of the cone complex

�
T

CT�∼, (47)

where the disjoint union is over all topological types of stable trees with n

ends, and two points [�] ∈ CT , [�′] ∈ CT ′ are identified if � ∼ �′, i.e. if they
are equal after contracting all edges with length 0.

The space M
trop
0,4 is illustrated in Figure 4.2.

The tropical forgetful morphim

⇡
trop
n+1 ∶M trop

0,n+1 →M
trop
0,n

assigns to a graph with (n+ 1)-ends � a graph �′ obtained by forgetting the
end labeled (n+ 1) and stabilizing the result if needed. This means that if a
2-valent vertex v is formed when forgetting (n+ 1), it should be demoted to
an ordinary point. Then:
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1

n + 1
�

�
d

⇡n+1
1

�

�

�
n + 1

�

�

�
d2d1

⇡n+1
d1 + d2�

� �

�

Figure 4.3. The process of stabilizing a graph after forget-
ting the (n + 1)-th end.

(1) If v separated two edges of length d1 and d2, we now have only one
edge of length d1 + d2;

(2) If v was adjacent to an edge and an end, then only the end is left.

See Figure 4.3 for an illustration.

Questions/Activities 4.2.

(1) Describe the space M
trop
0,3 .

(2) Understand that the space M trop
0,5 is two dimensional, and it is (com-

binatorially) represented as the cone over the Petersen graph, as
shown in Figure 4.4. Label the two-dimensional cones in Figure 4.4
by the topological types of the curves that they parameterize.

(3) What is the dimension of M trop
0,n ? Give a combinatorial description

of the tropical curves parameterized by the top dimensional cones,
and by the codimension one cones.

(4) Understand the forgetful morphism ⇡5 ∶M trop
0,5 →M

trop
0,4 .

(5) Show that the tropical forgetful morphisms map cones to cones.
Characterize which cones it is bijective on, and which cones it con-
tracts to lower dimensional cones.

Now we define an embedding of M trop
0,n into R�n2� as follows:

dist ∶ M
trop
0,n → R�n2�[�] � (d(i, j))(i,j) ,

where d(i, j) denotes the distance between the i-th and the j-th end of the
tropical curve using the edge metric.We will check that this is a piecewise
linear embedding of M trop

0,n , and see the image cannot be made into a balanced
fan (this already fails at n = 4). So we take a quotient of R�n2�.
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12

45

2314

35

34

13

1525

24

Figure 4.4. The cone complex M
trop
0,5 is the cone over the

Petersen graph depicted here. Each ray parameterizes a trop-
ical curve with one edge, two ends on one side, and three on
the other. On the corresponding vertex of the Petersen graph
we have marked the labels of the two ends that are together
in the tropical curve.

Define the linear function:

� ∶ Rn → R�n2�(a1, . . . , an) � (ai + aj)(i,j) ,

and define the quotient space Q = R�n2��Im(�).
For any subset I ⊂ [n] such that 2 ≤ �I � ≤ n−2, consider the tropical curve

�I consisting of two vertices joined by one edge of length one, the marks in
I attached to one vertex, and the marks in I

c attached to the other. We
define

vI ∶= dist(�I) ⊂ R�n2�. (48)

vI

Q

dist dist

Q dist ∶ M trop
0,n → Q

Questions/Activities 4.3.

(1) Study the function dist ∶ M trop
0,4 → R6. Show that it is injective,

and linear on each cone of M trop
0,4 . Show the image of dist cannot

be made into a balanced fan in R6. Show that v{12} + v{13} + v{14}
lies in the image of � and conclude that M

trop
0,4 can be made into a

balanced fan in Q.
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(2) Consider the tropical curve [�] ∈ M trop
0,6 depicted in the following

picture. Write down the coordinates of the vectors dist([�]),v134,v25

in the table. Are the three vectors linearly independent?

2⇡⇡

3
4
1

2
5

6

v1 v3

v2

dist([�])
v{134}
v{25}

(12) (13) (14) (15) (16) (23) (24) (25) (26) (34) (35) (36) (45) (46) (56)

(3) Let � be an abstract, rational, tropical, n-pointed curve. Each edge
e of � defines a two-part partition [n] = Ie ∪ Ice of the set of indices,
by considering the indices that lie on either side of the edge. If we
denote by l(e) the length of the edge e, show that we have:

dist(�) =�
e∈� levIe . (49)

(4) Given a topological type T , consider the cone CT ≅ (R≥0)m and
denote by ei the standard basis vector corresponding to the i-th
edge ei. Show that

dist(ei) = vIei
. (50)

(5) If � belongs to the interior of a cone ⌧ = CT of M trop
0,n , show that if

the vIe from the previous exercises are choosen as the markings on
the rays of ⌧ , then the weight of ⌧ is equal to 1.

Theorem 4.1. The image of dist(M trop
0,n ), with all cones taken with

weight one, is a balanced, marked fan in Q.

Let us prove this theorem together, in the next group of activities.

Questions/Activities 4.4.

(1) Recall Lemma 3.1, and spell it out in this particular case. In par-
ticular, what does it mean for the sum of the v��⌧ to live in the
span of ⌧ inside Q?

(2) Consider a codimension one cone ⌧ : it must parameterize curves
with exactly one four-valent vertex, and all other vertices trivalent.
Call A,B,C,D the four components of the graph attached to the
four-valent vertex. Note that A,B,C,D are either ends or trivalent
trees. Describe the top dimensional cones � that contain ⌧ as a
face.

(3) Let �̃ be a curve obtained by starting by any curve in ⌧ , contracting
all edges not adjacent to the four-valent vertex, and giving length
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one to the surviving edges. Note that �̃ may have at most four
edges, but it may have fewer. Why?

(4) Let x = (x1, . . . , xn) be defined by xi = 1 if the mark i is adjacent to
the four valent vertex for a general curve in ⌧ , and xi = 0 otherwise.
Describe �(x).

(5) Show that

vA∪B + vA∪C + vA∪D = dist(�̃) +�(x) ∈ R�n2�. (51)
You may check that (51) holds by checking it for every coordinate
of R�n2�.

(6) Argue that you just proved Theorem 4.1! Celebrate!

M
trop
0,n Q

Further exercises

Exercise 4.1. Show that for n ≥ 4:
��I �=2,1�∈I vI = �(1, n − 3, n − 3, . . . , n − 3). (52)

Exercise 4.2. Prove that the map dist ∶ M trop
0,n → Q is an injective

function.

Exercise 4.3. Verify that the morphism ⇡
trop
n+1 functions as a universal

family in the sense that:

⇡
trop
n+1 −1([�]) ≅ � ⊆M trop

0,n+1.
Further, prove that ⇡

trop
n+1 is a map of fans, i.e. it is induced by a linear

function.

Exercise 4.4. Show that M
trop
0,n is connected through codimension one,

i.e. that given any two points P , Q living in two top dimensional cones,
there exists a path � from P to Q that lives entirely in the interior of top
dimensional and codimension one cones. Equivalently, this means that M trop

0,n
remains connected after you remove all cones of codimension greater than
one.
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Moduli Spaces of Tropical Stable Maps

M
trop
0,n

Definition 5.1. A tropical, rational, n-marked stable map to the
plane consists of a tuple (�,'), where:

● � ∈M trop
0,n+m is an abstract, stable, tropical, rational curve with n+m

ends, with n ≥ 0 and m ≥ 2;● ' ∶ � → R2 is a continuous function which restricts to an integral
affine linear function on each edge or end of � (i.e. if t is the
length coordinate on the edge, the restriction of ' is of the form
'(t) = vt + a, with v ∈ Z2).

We call v as above the direction vector of the edge or end. Note that in
fact the sign of the direction vector depends on the choice of an orientation
for the edge. We also have the following requirements:

balancing: for every vertex v of �, the sum of the direction vectors
of the adjacent edges/ends, oriented outgoing from the vertex, is 0:

�
e∋vve = 0. (53)

marks: the direction vector for each of the first n-ends equals 0.
ends: the direction vectors for the last m-ends are different from 0.

We see an example of a tropical stable maps in Figure 5.1. For simplicity
of notation, we often draw a tropical stable maps just by drawing the image
of the map, and we omit the labeling of the m ends that are not contracted.

Remark 5.1. Let (�,') be a tropical stable map. We may give weights
to the edges of '(�) as follows: if ve = (xe, ye) is the direction vector as-
sociated to an edge e, we define the weight we = gcd(xe, ye). With this
convention, the image curve '(�) satisfies the balancing condition as stated
in Definition 1.7.

33
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4 5

6 1 2

837

'
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4

5

6 1

2

7

3

8

Figure 5.1. An example of a tropical stable map. The red
marked ends are contracted to points. The blue 2, which
can be thought as a weight on an end, reminds us that the
direction vector for that end is twice the primitive vector in
that direction.

Definition 5.2. The ordered list of non-zero direction vectors of the
ends of � is called the degree of the map ' and denoted by �.

Definition 5.3. We denote by M
trop
0,n (R2

,�) the parameter space of
tropical rational, n-marked stable maps to the plane of degree �. In par-
ticular, denoting by e1 and e2 the standard basis of R2 , if � consists of d
copies of the vector −e1, d copies of the vector −e2 and d copies of the vector
e1 + e2, then we say the maps have degree d, and the target is tropical P2,
and denote the space M

trop
0,n (P2

, d).
Questions/Activities 5.1.

(1) What is the degree of the tropical stable map in Figure 5.1? What
moduli space does it belong to?

(2) Describe explicitly M
trop
0,0 (P2

,1) and M
trop
0,1 (P2

,1).
Definition 5.4. For i = 1, . . . , n we define the i-th evaluation mor-

phism
evi ∶M trop

0,n (R2
,�)→ R2 (54)

by
evi(�,') ∶= '(i), (55)

where i denotes the i-th marked end (which is contracted to a point by ').

Theorem 5.1. Denote by m = ���. Then the function

s × ev1 ∶M trop
0,n (R2

,�)→M
trop
0,n+m × R2 (56)

defined by (�,')� (�,'(1)) (57)
is a bijection.
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M
trop
0,n

Proof. The theorem is proven by explicitly constructing an inverse
function. Given a curve � ∈M trop

0,n+m, and a point P ∈ R2, we wish to construct
a tropical stable map ' ∶ � → R2 in M

trop
0,n (R2

,�). Note that the direction
vectors for the last m ends are specified by �. The balancing condition at
all vertices uniquely determines all other direction vectors. Therefore ' is
determined up to a global translation in R2. Imposing that the vertex adja-
cent to the first mark maps to P fixes uniquely such translation, and yields
a unique map '. ⇤

Evaluation functions are linear functions when restricted to cones ⌧ of
M

trop
0,n (R2�) ≅ M trop

0,n+m × R2. For this purpose, recall from (49) that we can
use the vectors vIe as a basis for Span(⌧) ⊂ Q and the length of edges
le as dual coordinates. Then, for any (�, (x, y)) ∈ ⌧ × R2, let P1→i be the
unique oriented path from the vertex adjacent to the first mark to the vertex
adjacent to the i-th mark; then we have

evi(�, (x, y)) = � x

y
� + �

e∈P1→i

leve. (58)

In fact a stronger statement holds. We state it here and leave the proof
as an exercise.

Lemma 5.1. The maps evi ∶M trop
0,n (R2

,�)→ R2 are restriction of integral
linear functions Li ∶ Q × R2 → R2.

Questions/Activities 5.2.

(1) Using the tacks on the axes as units, compute ev1(�,'), ev2(�,'), ev3(�,')
for the stable map in Figure 5.1.

(2) Consider the abstract tropical curve in Figure 5.1, and the point(0,0) ∈ R2. Construct the tropical stable map of degree �, where
v4 = (−1,0),v5 = (−1,0)v6 = (1,1),v7 = (1,1),v8 = (0,−2), associ-
ated to (�, (0,0)) via the inverse of the function s × ev1 defined in
Theorem 5.1.

(3) Let � = {(−1,0), (0,−1), (1,0), (0,1)}. Consider the cone ⌧ × R2 of
M

trop
0,2 (R2

,�) ≅M trop
0,6 ×R2 identified by the curve � pictured below.

Recall that v{134},v{25} give a basis for the cone ⌧ . Write down the
matrices for the functions ev1, ev2 using this basis and the standard
basis for (both copies of) R2.

l2l1

3
4
1

�

2
5

6

v1 v3

v2
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Now we consider the special case in which n = ��� − 1. Observe that
in this case the dimension of M trop

0,n (R2
,�) is equal to 2(��� − 1). We now

consider the linear function

Ev ∶= ev1 × . . . × evn ∶M trop
0,n (R2

,�)→ R2 × . . . × R2
. (59)

Let us believe for now that Ev preserves the dimension of all top dimen-
sional cones of M trop

0,n (R2
,�). Therefore Ev ∶M trop

0,n (R2
,�)→ Ev∗(M trop

0,n (R2
,�))

is a map of balanced fans, which in particular implies that Ev is surjective.
By Definition 3.7 we know that we have a well defined notion of degree of
Ev, and Remark 3.1 tells us how to compute it!

Definition 5.5. Given any degree �, and all notation as above,

N
trop
� ∶= deg(Ev), (60)

gives the (weighted) number of tropical maps of degree � whose image in R2

is a tropical curve passing through ��� − 1 points in general position in the
plane.

Questions/Activities 5.3.

(1) Spend a little time becoming comfortable with Definition 5.5. Why
did we make this definition?

(2) Consider the tropical stable map (�,') ∈ M trop
0,5 (R2

,�) depicted
below. Compute

mult(�,')(Ev). (61)

24

3

1

2

(3) Compute deg(Ev) for the moduli space M
trop
0,2 (P2

,1). What is the
geometric statement you just made?

Further exercises

Exercise 5.1. Prove Lemma 5.1. In particular, using the natural coor-
dinates zij for R�n2�, show that

ev1({zij}, x, y) = � x

y
� , (62)
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and, for i �= 1 Prove Lemma 5.1. In particular, using the natural coordinates
zij for R�n2�, show that

ev1({zij}, x, y) = � x

y
� + 1

2

n+����
k = 2
k �= i

(z1k − zik)vk, (63)

where vk is the direction vector assigned to the end marked by k by the
direction vector �.

Exercise 5.2. Consider the tropical stable map (�,') ∈ M trop
0,5 (P2

,2)
depicted below. Compute

mult(�,')(Ev). (64)

1

3

2

4
5

Exercise 5.3. Repeat the computation from Exercise 5.2, but pick a
different bijection M

trop
0,5 (P2

,2) → M
trop
0,11 × R2. Instead of using ev1 in the

bijection from Theorem 5.1, use ev3. Observe that the matrix you use to
compute the multiplicity mult(�,')(Ev) now is obtained from the one you
computed in Exercise 5.2 by column operations, and therefore the two ma-
trices have the same determinant. Convince yourself that this is always the
case, i.e. the multiplicity of Ev at a point is independent of which evaluation
function we use to fix the bijection s × evi ∶M trop

0,n (R2
,�)→M

trop
0,n+��� × R2.





DAY 6

Kontsevich/Mikhalkin’s theorem

Theorem 6.1 (Mikhalkin). The numbers N trop
d of rational tropical plane

curves of degree d through 3d − 1 points satisfy the recursion:

N
trop
d = �

d1 + d2 = d
d1 ≥ 1, d2 ≥ 1

�� 3d − 4
3d1 − 2�d21d22 − �

3d − 4
3d1 − 1�d31d2�N trop

d1
N

trop
d2

. (65)

3d − 1
N1 = N

trop
1 = 1

Corollary 6.1.1. For any d ≥ 1,
Nd = N trop

d . (66)

⇧ ∶ M trop
0,3d (P2

, d) → R6d−2 ×M trop
0,4

R6d−2 �1,�2

M
trop
0,4

⇧ (65)

Step I: construction of ⇧.

Let d ≥ 2 and n = 3d, and consider the morphism:
⇧ ∶M trop

0,n (P2
, d)→ R × R × R2 × . . . × R2�����������������������������������������������������������(n−2) copies

×M trop
0,4 (67)

defined as:
⇧ = ev1,x × ev2,y × ev3 × . . . × evn × f4, (68)

where:
● ev1,x is the function that evaluates only the first coordinate of the

first mark.
39
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1

2

3

4

�1
1

3

2

4

�2

Figure 6.1. The curves �1,�2 ∈M trop
0,4 .

● ev2,y is the function that evaluates only the second coordinate of
the second mark.● for 3 ≤ i ≤ n, evi is the ordinary evaluation function, evaluating
both coordinates of the i-th mark.● f4 is the forgetful morphism that forgets all marks i ≥ 5, as well as
the map '.

Questions/Activities 6.1.

(1) Compute ⇧(�, f) for the tropical stable map in Exercise 5.2.
(2) Show that the dimension of both domain and codomain of ⇧ is

6d − 1.
(3) Prove that the degree of ⇧ is constant.
(4) Fix � ∈ M trop

0,4 , x0, y0 ∈ R, points P3, . . . , Pn ∈ R2 and consider the
inverse image

⇧−1({x0} × {y0} × {P3} × . . . × {Pn} × �). (69)

Give a geometric description of the points in this inverse image.

Step II: the degree of ⇧.

The degree of ⇧ is computed by fixing a (general) point in the codomain
and counting the inverse images with appropriate multiplicities (as in Defi-
nition 3.7).

Step II.a: two points on M
trop
0,4 .

Let �1 ∈ M trop
0,4 be a four pointed tropical rational curve where the first

and second mark are on one vertex, the third and fourth on the other vertex,
and the compact edge is very long. Let �2 ∈M trop

0,4 be a four pointed tropical
rational curve where the first and third mark are on one vertex, the second
and fourth on the other vertex, and the compact edge is very long. See
Figure 6.1.
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1

2

e

� �

�

Figure 6.2. A part of the source curve � for a tropical sta-
ble map (�,') ∈ ⇧−1(x0, y0, P3, . . . Pn,�1), where the edge e

which is contracted by ' is adjacent to the first two marks.
The dots signify that the curve � continues.

Questions/Activities 6.2.

(1) Remember we have fixed x0, y0 ∈ R, and points P3, . . . , Pn ∈ R2.
Argue that there exist a uniform bound for the length of the com-
pact egde of any curve F (�,'),� ∈ C unless the map ' ∶ � → R2

contracts some edge.
(2) Argue that if one chooses the length of the compact edges of �1,�2

large enough, then all maps in the inverse images of �1,�2 must
contract (at least) one edge.

Step II.b: the multiplicity of (�,') ∈ ⇧−1(x0, y0, P3, . . . Pn,�1).
Let (�,') be a tropical map in the inverse image ⇧−1(�1). We want to

compute mult⇧(�,'). We know that � must have an edge contracted by ',
and such edge separates the marks 1,2 from the marks 3,4.

We study separately two cases. First, when the contracted edge is adja-
cent to the marks 1 and 2.

Questions/Activities 6.3. Let (�,') ∈ ⇧−1(x0, y0, P3, . . . Pn,�1) be
such that the contracted edge e is adjacent to the marks 1,2, as in Figure
6.2.

(1) Where does the edge e map in the plane?
(2) Replace the tripod consisting of the marks 1,2 and the edge e

with a unique end marked by the symbol 0, that contracts to
the image point of e. This construction gives a point (�̃, '̃) ∈
M

trop
0,3d−1(P2,trop

, d).
(3) Denote by P0 the point (x0, y0). Then note that (�̃, '̃) is a curve

contributing to the count of rational curves of degree d through
3d − 1 points.

(4) Viceversa, for any (�̃, '̃) contributing to the count of rational curves
of degree d through 3d−1 points, show that by replacing the mark 0
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with a tripod, one obtains a point (�,') ∈ ⇧−1(x0, y0, P3, . . . Pn,�1)
such that the contracted edge e is adjacent to the marks 1,2.

(5) Show (writing as little as possible) that the matrix that computes
mult⇧(�,') and the matrix that computes the contribution of (�̃, '̃)
to the count N

trop
d have the same determinant.

(6) Conclude that that the contribution to the weighted count of points
in ⇧−1(x0, y0, P3, . . . Pn,�1) by curves where the contracted edge is
adjacent to the marks 1,2 equals Nd.

The next case is when the contracted edge e is not adjacent to the marks
1,2 in �, but somewhere in the middle of the curve �.

Lemma 6.1. Let (�,') ∈ ⇧−1(x0, y0, P3, . . . Pn,�1) with non-zero contri-
bution to deg(⇧) be such that the contracted edge e is not adjacent to the
marks 1,2.

(1) By cutting the edge e one obtains two maps (�1,'1), (�2,'2) of
degree d1, d2 with d1 + d2 = d.

(2) The curve �1 contains the marks 1,2 and 3d1 − 1 further markings.
(3) The curve �2 contains the marks 3,4 and 3d2 − 3 further markings.
(4) Denote by L1 the line x = x0 and by L2 the line y = y0. Also, to

avoid excessive notation, denote by �i both the source of the map
and the image plane tropical curve. We have:

mult(�,')(⇧) =mult(�1,'1)(Ev) ⋅mult(�2,'2)(Ev) ⋅mult'(e)(�1,�2)⋅
mult'(1)(�1, L1) ⋅mult'(2)(�2, L2). (70)

Proof. The first statement follows from the balancing condition: when
cutting the edge e, � breaks into two connected components, and the sum
of the direction vectors of the ends for each of the components must be
zero. Therefore each component must contain the same number of down,
left and diagonal ends, showing that the restriction of ' to each component
is a tropical map to the tropical projective plane.

For the second and third statements, since the edge e separates the marks
1,2 and 3,4 we are just choosing to call �1 the connected component con-
taining the first two marks and �2 the connected component containing the
third and fourth. For the second part of these statements, notice that since
the first two marked points are required to map to lines, this does not put
any restriction on the map (�1,'1). Therefore we may impose that a map
of degree d1 passes through at most 3d1 − 1 marks. On the other hand, the
third and fourth marked points are required to map to fixed points P3, P4,
and therefore we may impose that a map of degree d2 passes through at most
3d2 − 3 further points. But since the total of marked points of � is 3d, the
maximum constraint must be attained by each component.

Now we come to the tricky part, where we must carefully analyze the
multiplicities.

First, we observe (See Exercise 5.3) that the choice of using the first
vertex for fixing the translation factor in the bijection M

trop
0,3d (P2

, d)→M
trop
0,6d ×

R2 is irrelevant: choosing any other vertex does not alter the determinant of
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�1
l1

l2

l3
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′

�2 �

�

�

�
Figure 6.3. A part of the source curve � for a tropical sta-
ble map (�,') ∈ ⇧−1(x0, y0, P3, . . . Pn,�1), where the edge
e which is contracted by ' is not adjacent to the first two
marks. The edges of lengths l1 and l2, oriented outwards
from V , are mapped via ' with direction vectors ±v. The
edges of lengths l3, l4, are mapped via ' with direction vectors±w.

the matrix M . We therefore choose to evaluate the vertex V adjacent to the
edge e and belonging to �1.

Figure 6.3 is a local picture of � around the contracted edge e. We
rearrange rows and columns of M so as to obtain a block decomposed matrix
that looks as follows:

l lengths in �1 l1 l2 l3 l4 lengths in �2 '(V )
ev1,x 0 ∗ vx 0 0 0 0 1 0
ev2,y 0 ∗ vy 0 0 0 0 0 1

evaluations of
coordinates of

points behind l1

0 ∗ v 0 0 0 0
1 0
0 1

evaluations of
coordinates of

points behind l2

0 ∗ 0 −v 0 0 0
1 0
0 1

evaluations of
coordinates of

points behind l3

0 0 0 0 w 0 ∗ 1 0
0 1

evaluations of
coordinates of

points behind l4

0 0 0 0 0 −w ∗ 1 0
0 1

f4 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
Here is how to interpret this matrix: we have no control of the blocks

filled with ∗’s. For each marked point, the corresponding evi gives two rows
of the matrix, to be chosen among the four depicted in the matrix based on
whether the i-th mark lives in �1 or �2, and whether it preceeds or follows
the edge e. We are assuming here that the marks 1 and 2 are both behind
l1. If one follows l1 and the other l2, the matrix needs to be slightly changed
but the proof will follow the same way.
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e

l

l3

l4

V
′�2 �

�
l̃ = l3 + l4
⋮

⋮

�2V
′

Figure 6.4. The tropical curve �2 does not have the edge
e. Therefore the two adjacent edges are replaced by a unique
edge of length l̃ = l3 + l4.

This is a 6d − 1 × 6d − 1 matrix. For the purposes of calculating the
determinant we can remove the first column and the last row. Now we
perform the following column operations that do not change the absolute
value of the determinant:

● Move the last two columns to the front;● Multiply the first column of '(V ) by vx, the second column by vy

and add them to the column l2; subtract the column l1;● Subtract l4 from l3;● Since v,w are linearly independent, there exists a linear combina-
tion c1(v,w) that equals the first standard basis vector e1, and an-
other linear combination c2(v,w) that equals e2. Subtract c1(l̃2, l4−
l3) from the first column and c2(l̃2, l4 − l3) from the second.

The resulting matrix looks like this:

'(V ) −C(l̃2, l4 − l3)) lengths in �1 l1 l̃2 = l2 − l1 +'(V )v l3 − l4 l4 lengths in �2

ev1,x 1 0 ∗ vx 0 0 0 0
ev2,y 0 1 ∗ vy 0 0 0 0

evaluations of
coordinates of

points behind l1

1 0
0 1

∗ v 0 0 0 0

evaluations of
coordinates of

points behind l2

1 0
0 1

∗ 0 0 0 0 0

evaluations of
coordinates of

points behind l3

0 0 0 v w 0 ∗
evaluations of
coordinates of

points behind l4

0 0 0 v w −w ∗

We now have a block decomposition of the matrix. Let us first focus on
the lower block MSE , and observe that it is very similar to the matrix A2

computing the multiplicity of Ev for the curve �2.
Referring to Figure 6.4 for notation:
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1

`
+
1

`
−
1

�1 �

�
Figure 6.5. The portion of tropical curve �1 near the first mark.

A2 =

'(V ′) l̃ lengths in �2

evaluations of
coordinates of

points before V
′

1 0
0 1

0 ∗
evaluations of
coordinates of
points after V

′
1 0
0 1

−w ∗
Precisely, let Mv,w be a block matrix consisting of a 2 × 2 upper block con-
taining the coordinates of the vectors v,w and a lower identity block. Then
we have:

M = A2 ⋅Mv,w (71)

and therefore

det(M) = det(A2)det(Mv,w) =mult(�2,'2)(Ev) ⋅mult'(e)(�1,�2). (72)

We now turn to the north-west block of M , which we denote MNW . This
is a 6d1 × 6d1 matrix and it is quite similar to the matrix A1 computing the
multiplicity of Ev for �1: the problem is that A1 is a square matrix of size
6d1 − 2. The issue arises with the fact that the marks 1 and 2, which are
mapping to L1 and L2, are subdividing two edges of �, and A1 does not see
this subdivision. Refer to Figure 6.5 Denote by s the direction vector of the
edge of �1 containing the first mark, and denote `

+
1 , `
−
1 the lengths of the two

adjacent edges. Then we have:

MNW =

'(V ) `
−
1 `

+
1 other lengths in �1 l1

ev1,x 1 0 sx 0 ∗ vx

ev2,y 0 1 � � ∗ vy

evaluations of
coordinates of
points before 1

1 0
0 1

0 0 ∗ v

evaluations of
coordinates of
points after 1

1 0
0 1

s s ∗ v



46 6. KONTSEVICH/MIKHALKIN’S THEOREM

Subtracting `
+
1 from `

−
1 we get:

'(V ) `
−
1 − `+1 `

+
1 other lengths in �1 l1

ev1,x 1 0 sx 0 ∗ vx

ev2,y 0 1 0 � ∗ vy

evaluations of
coordinates of
points before 1

1 0
0 1

0 0 ∗ v

evaluations of
coordinates of
points after 1

1 0
0 1

0 s ∗ v

,

which tells us that the absolute value of the determinant of MNW equals�sx� times the determinant of the matrix obtained by removing the row corre-
sponding to ev1,x and the column `

−
1−`+1 . We note that �sx� =mult'(1)(�1, L1).

A similar argument applies for the the row ev2,y, and the remaining matrix
is precisely A1. Therefore we have:

det(MNW ) =mult(�2,'2)(Ev) ⋅mult'(1)(�1, L1) ⋅mult'(2)(�1, L2). (73)

The lemma is now proven by combining (72) and (73). ⇤

Step II.c: Adding all the multiplicities in ⇧−1(x0, y0, P3, . . . Pn,�1)

Choose 3d1−1 points among P3, . . . , Pn and call them Q1, . . .Q3d1−1 (call
R1, . . .R3d2−3 the complementary points); consider the two following sets:

● X1 = {(�1,'1) ∈M trop
0,3d1+1(P2

, d1)�'1(i) = Qi,'1(3d1) = L1,'(3d1 +
1) = L2};● X2 = {(�2,'2) ∈M trop

0,3d2−1(P2
, d1)�'1(i) = Ri,'1(3d2−2) = P1,'(3d2−

1) = P2}.
We compute the weighted sums:

�
X2

mult(�2,'2)(Ev) = Nd2 , (74)

and

�
X1

mult(�1,'1)(Ev) ⋅mult'1(3d1)(�1, L1) ⋅mult'1(3d1+1)(�1, L2) = d21Nd1 ,

(75)
where the factor d

2
1 comes from Bézout’s theorem. Note that we can con-

struct a correspondence:

◆ ∶X1 ×X2 → ⇧−1(x0, y0, P3, . . . Pn,�1) (76)

by associating to a pair (�1,'1), (�2,'2) all the curves in ⇧−1(x0, y0, P3, . . . Pn,�1)
obtained by inserting a contracting edge of appropriate length at any of the
points x of intersection of �1 and �2. and that the contribution to the degree
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of ⇧ by elements in the image of ◆ is:

�
Im(◆)

mult(�1,'1)(Ev) ⋅mult(�2,'2)(Ev) ⋅mult'1(3d1)(�1, L1)⋅
mult'1(3d1+1)(�1, L2) ⋅multx(�1,�2) = d31d2Nd1Nd2 , (77)

We finally note that there are � 3d−43d1−1� ways to choose 3d1 − 1 points
among P3, . . . , Pn. The images of the correspondences ◆ for any two of these
choices are disjoint, and the union of such images exausts all elements in
⇧−1(x0, y0, P3, . . . Pn,�1) such that, after cutting the contracted edge, one is
left with a pair of maps of degrees d1 and d2.

Adding over all pairs of degrees d1 +d2 = d, and remembering the contri-
bution from when the contracted edge was adjacent to both marks 1,2, we
obtain

deg(⇧) = Nd + �
d1 + d2 = d

d1 ≥ 1, d2 ≥ 1

�� 3d − 4
3d1 − 1�d31d2�N trop

d1
N

trop
d2

. (78)

Questions/Activities 6.4.

(1) Compute deg(⇧) using ⇧−1(x0, y0, P3, . . . Pn,�2).
(2) Obtain a proof of Theorem 6.1 by setting the two computations of

deg(⇧) equal to each other.
(3) Pat yourself on the back and highfive your neighbor for making it

through these intense 12 hours of math! Hopefully you learned a
lot and had fun in the process!


