Geometrie WS 2025/26

Blatt 5

Abgabe im Fach Ihres Tutors oder per Upload of URM. Abgabetermin: 29.10, 16:00. Bitte versehen Sie Ihre Abgabe mit Ihrem Namen und Matrikelnummer aller Gruppenmitglieder. Von diesem Blatt werden **3 Aufgaben korrigiert**.

Aufgabe 1 – Wahr oder falsch?

[10 Punkte]

Entscheiden Sie für folgende Aussagen jeweils, ob sie wahr oder falsch sind. Es sind keine Begründungen abzugeben, sie sollten sich diese aber dennoch gründlich überlegen. Hinweis zur Bewertung: Sie erhalten $\max\{0,r-f\}$ Punkte, wobei r die Anzahl richtiger Antworten und f die Anzahl falscher Antworten ist.

Aussage		Wahr	Falsch
1.	Gegeben sei eine endliche Inzidenzgeometrie mit n Punkten. Wenn $n \geq 4$, dann gibt es eine Gerade, welche zu mindestens 3 Punkten inzident ist.		
2.	Die Inzidenzgeometrie beschrieben durch folgendes Diagramm ist realisierbar in \mathbb{R}^2 für alle $n\geq 3$:		
	• • • • • •		
	n Punkte		
3.	In einer Inzidenzgeometrie muss jede Gerade zu mindestens zwei Punkten inzident sein.		
4.	Zwei Inzidenzgeometrien mit jeweils genau drei Punkten sind bereits isomorph.		
5.	Folgendes Diagramm definiert eine Inzidenzgeometrie:		
6.	Sei $d_2: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ der euklidische Abstand und sei $d_{\infty}: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ der Abstand, welcher von der sup-Norm induziert ist. Dann sind (\mathbb{R}^2, d_2) und $(\mathbb{R}^2, d_{\infty})$ isometrisch isomorph.		
7.	Jede Metrik auf einem Vektorraum ist von einer Norm erzeugt.		
8.	Sei V ein Vektorraum mit Metrik d . Seien $a, b \in V$ mit $d(0, a) \neq 0$. Dann gibt es ein $n \in \mathbb{N}$ sodass $d(0, na) > d(0, b)$.		
9.	Seien $f \in E(n)$. Wenn f zwei Fixpunkte $A \neq B$ besitzt, dann fixiert f bereits $G(A, B)$.		
10	Jede euklidische Bewegung im \mathbb{R}^2 kann durch Verkettung von Spiegelungen an geeigneten Geraden dargestellt werden.		

Aufgabe 2 – Inzidenzgeometrie

[10 Punkte]

Sei \mathbb{F}_3 der Körper mit drei Elementen.

- (i) Zeichnen Sie das Diagramm, welches die Inzidenzgeometrie der Ebene über \mathbb{F}_3 darstellt
- (ii) Wie ist in dieser Geometrie die Situation mit Existenz und Eindeutigkeit von Parallelen?
- (iii) Erweitern Sie die Geometrie aus Teil (i) durch Hinzufügen von 4 Punkten und verlängern bzw. hinzufügen von Geraden so, dass es keine parallelen Geraden mehr gibt.
- (iv) Argumentieren Sie, dass das Ergebnis von Teil (iii) nicht durch weniger als 4 neue Punkte erreicht werden kann.
- (v) Ohne Beweis: Gelten in den Geometrien aus Teil (i) und (iii) jeweils die Sätze von Desargues, Pappus, und Pascal?

Aufgabe 3 – Kein Kreuzprodukt im \mathbb{R}^4

[6 Punkte]

Eine Abbildung

$$\times : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$$

heißt Kreuzprodukt, falls gilt

- (i) × ist bilinear,
- (ii) $\langle x, x \times y \rangle = \langle y, x \times y \rangle = 0$ für all $x, y \in \mathbb{R}^n$, und
- (iii) $||x \times y||^2 = ||x||^2 ||y||^2 \langle x, y \rangle^2$ für alle $x, y \in \mathbb{R}^n$.

Offenbar ist das bekannte Kreuzprodukt im \mathbb{R}^3 ein Beispiel hierfür. Beweisen Sie, dass es kein Kreuzprodukt im \mathbb{R}^4 gibt.

Anmerkung: Tatsächlich ist das Kreuzprodukt ein echtes Kuriosum. Ein Kreuzprodukt im Sinne dieser Aufgabe gibt es genau im \mathbb{R}^3 und im \mathbb{R}^7 und sonst keiner anderen Dimension.

Aufgabe 4 – Hamming-Abstand

[10 Punkte]

Es seien $x, y \in \{0, 1\}^n$ zwei Binärcodes bestehend aus n Bits. Der *Hamming-Abstand* ist die Anzahl der Positionen an denen sich die Codes unterscheiden, also

$$d_H(x,y) = |\{1 \le i \le n \mid x_i \ne y_i\}|.$$

- (i) Zeigen Sie, dass der Hamming-Abstand eine Metrik auf $\{0,1\}^n$ definiert.
- (ii) Sei $x \in \{0,1\}^n$ ein Code und $r \in \mathbb{N}_{\geq 0}$. Bestimmen Sie die Kardinalität der Abstandssphäre mit Radius r um x, also

$$|\{y \in \{0,1\}^n \mid d_H(x,y) = r\}|.$$

Sei $\mathcal{C} \subseteq \{0,1\}^n$ eine Menge von Codes der Länge n. Der minimale Abstand zwischen zwei Codes in der Menge ist

$$d_{\mathcal{C}} = \min_{\substack{x,y \in \mathcal{C}, \\ x \neq y}} d_H(x,y).$$

(iii) Beweisen Sie die Singleton-Schranke: wenn $d_{\mathcal{C}} \geq k$, dann ist $|\mathcal{C}| \leq 2^{n-k+1}$.