# Geometrie WS 2025/26



#### Blatt 6

Abgabe im Fach Ihres Tutors oder per Upload of URM. Abgabetermin: 26.11., 16:00. Bitte versehen Sie Ihre Abgabe mit Ihrem Namen und Matrikelnummer aller Gruppenmitglieder. Von diesem Blatt werden **3 Aufgaben korrigiert**.

#### **Aufgabe 1** – Wahr oder falsch?

[10 Punkte]

Entscheiden Sie für folgende Aussagen jeweils, ob sie wahr oder falsch sind. Es sind keine Begründungen abzugeben, sie sollten sich diese aber dennoch gründlich überlegen. Hinweis zur Bewertung: Sie erhalten  $\max\{0,r-f\}$  Punkte, wobei r die Anzahl richtiger Antworten und f die Anzahl falscher Antworten ist.

Falls nicht anders angegeben sei (X, d) ein metrischer Raum und  $\Delta \subseteq X$ .

| Aussage   |                                                                                                                                             | $\mathbf{Wahr}$ | Falsch |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------|
| 1.        | Würfel und Oktaeder haben die gleiche Symmetriegruppe.                                                                                      |                 |        |
| 2.        | Sei $X = \mathbb{R}^n$ . Wenn für $f \in \text{Aff}(n)$ gilt $f(\Delta) = \Delta$ , dann ist schon $f \in \text{Sym}(\Delta) \leq E(n)$ .   |                 |        |
| 3.        | Enthält $\operatorname{Sym}(\Delta)$ ein Element mit unendlicher Ordnung, so ist $\Delta$ unbeschränkt.                                     |                 |        |
| 4.        | Alle Untergruppen von $\operatorname{Sym}(\Delta)$ sind als Symmetriegruppen von geeigneten Färbungen von $\Delta$ realisierbar.            |                 |        |
| <b>5.</b> | Die Gruppen $C_n$ können als Symmetriegruppe einer ungefärbten Figur geschrieben werden.                                                    |                 |        |
| 6.        | Sei $f \in \text{Iso}(X, d)$ so, dass $f _{\Delta}$ die Identität auf $\Delta$ ist. Dann ist $f$ die Identität auf $X$ .                    |                 |        |
| 7.        | $D_{2n} \cong C_n \times C_2$                                                                                                               |                 |        |
| 8.        | Wenn $\Delta' \subseteq \Delta$ dann ist $\operatorname{Sym}(\Delta') \leq \operatorname{Sym}(\Delta)$ .                                    |                 |        |
| 9.        | In $X = \mathbb{R}^n$ : wenn $\Delta$ und $\Delta'$ ähnlich sind, dann ist $\operatorname{Sym}(\Delta) \cong \operatorname{Sym}(\Delta')$ . |                 |        |
| 10        | In $X = \mathbb{R}^n$ : wenn $\operatorname{Sym}(\Delta) \cong \operatorname{Sym}(\Delta')$ dann sind $\Delta$ und $\Delta'$ ähnlich.       |                 |        |

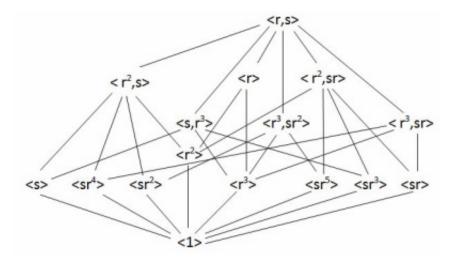
### **Aufgabe 2** – *Diedergruppe*

[10 Punkte]

Für  $n \geq 3$  ist die Diedergruppe  $D_{2n}$  die Symmetriegruppe eines regelmäßigen n-Ecks. Als Gruppe ist sie erzeugt von einem Element r der Ordnung n ("Drehung um  $2\pi/n$ ") und einem Element s der Ordnung 2 ("Spiegelung").

- (i) Schreiben Sie  $D_{2.5}$  als Untergruppe der symmetrischen Gruppe  $S_5$ . Geben Sie eine Wahl von r und s in  $S_5$  an, welche  $D_{2.5}$  erzeugen.
- (ii) Zeigen Sie, dass  $C_n = \langle r \rangle \leq D_{2n}$  ein Normalteiler ist.
- (iii) Zeigen Sie, dass  $D_{2n}$  nicht abelsch ist für  $n \geq 3$ . Geben Sie eine Untergruppe von  $D_{2n}$  an, welche kein Normalteiler ist.

(iv) Unten finden Sie das Diagramm aller Untergruppen der  $D_{2\cdot 6} = \langle r, s \rangle$ . Welche davon sind konjugiert? Begründen Sie Ihre Aussage.



## Aufgabe 3 – Symmetrie des Würfels

[9 Punkte]

Sei  $W = [-1, 1]^3 \subseteq \mathbb{R}^3$  ein Würfel. Aus der Vorlesung ist bekannt, dass  $\mathrm{Sym}(W) \cong S_4 \times C_2$ . Beschreiben Sie für jede der folgenden Gruppen H eine Färbung g des Würfels, sodass  $\operatorname{Sym}(g) \cong H$ .

$$(i)$$
  $H = S_A$ 

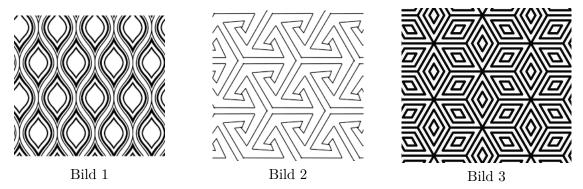
(i) 
$$H = S_4$$
 (ii)  $H = K_4$  (iii)  $H = C_4$ 

$$(iii)$$
  $H = C_{4}$ 

## Aufgabe 4 – Ornamentgruppen

[10 Punkte]

Betrachten Sie die folgenden Muster. Sei jeweils G die Symmetriegruppe des Musters – es handelt sich in jedem Fall um eine Ornamentgruppe.



- (i) Zeichnen Sie in jedes Muster das Gitter  $G_T$  ein und kennzeichnen Sie eine primitive Zelle. Geben Sie weiter für jedes Muster den Gittertyp und die Punktgruppe  $G_0$  an. Sind die Symmetriegruppen von Bild 2 und 3 isomorph?
- (ii) Entwickeln Sie drei Muster, welches jeweils auf einem quadratischen Gitter basiert, aber welche drei verschiedene Punktgruppen haben. Geben Sie jeweils die Punktgruppe an.