Exercise Sheet 10

Introduction to Commutative Algebra and Algebraic Geometry

Eberhard-Karls-Universität Tübingen Profesor: Hannah Markwig Wintersemester 2025/2026 Assistant: Parisa Ebrahimian

Exercise 1.

Exercise 1. Let K be an algebraically closed field and let X be an affine variety. Let $f: X \to K$ be a map. Prove that the following statements are equivalent:

- (i) $f \in \mathcal{O}_X(X)$.
- (ii) $f: X \to K$ is a morphism.

Exercise 2.

Let X be an affine variety and \mathcal{F} its sheaf of regular functions. Let $U \subset X$ be an open set. Let $s \in \mathcal{F}(U)$ be an element with $s_x = 0 \in \mathcal{F}_x$ for all $x \in U$. Show: s = 0.

Exercise 3.

Let K be an algebraically closed field with char(K) = 0. Consider the map from the affine line \mathbb{A}^1_K to the curve

$$C = V(y^2 - x^3)$$

given by

$$\phi: \mathbb{A}^1_K \to C, \qquad t \mapsto (t^2, t^3).$$

Prove ϕ is a morphism and a homeomorphism (i.e. bijective, continuous and open).