Exercise Sheet 6

Introduction to Commutative Algebra and Algebraic Geometry

Eberhard-Karls-Universität Tübingen Profesor: Hannah Markwig Wintersemester 2025/2026 Assistants: Parisa Ebrahimian and Veronika Körber

Exercise 1 (Product criterion).

Let K be a field, > be a monomial order, $f, g \in K[\underline{x}]$, gcd(LM(f), LM(g)) = 1. Show that there is a polynomial division with remainder of spoly(f, g) by (f, g) with remainder 0. *Hint:* Show first that

$$\operatorname{spoly}(f,q) = a_0 f + b_0 q$$

for $a_0 = -\text{tail}(g)$ and $b_0 = \text{tail}(f)$, and then define recursively $a_i = \text{tail}(a_{i-1})$ and $b_i = \text{tail}(b_{i-1})$. Consider the maximal value N such that

$$u \cdot \operatorname{spoly}(f, g) = a_N f + b_N g$$

for some element $u \in K[\underline{x}]^*$, and distinguish the two cases that $LT(a_N f) + LT(b_N g)$ vanishes or does not vanish.

Exercise 2.

The degree lexicographical ordering $>_{Dp}$ on Mon_n is defined by

$$x^{\alpha} >_{Dp} x^{\beta} : \Leftrightarrow |\alpha| > |\beta| \text{ or } (|\alpha| = |\beta| \text{ and } \exists k : \alpha_1 = \beta_1, \dots, \alpha_{k-1} = \beta_{k-1}, \alpha_k > \beta_k).$$

A polynomial

$$f = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha} \underline{x}^{\alpha} \in K[x_1, \dots, x_n]$$

is called homogeneous if for all α with $a_{\alpha} \neq 0$ the absolute value $|\alpha|$ is constant.

Show that a monomial ordering > on Mon_n equals $>_{Dp}$ if and only if > is a degree ordering and for any homogeneous $f \in K[\underline{x}]$ with $\mathrm{LM}(f) \in K[x_k, \ldots, x_n]$, we have $f \in K[x_k, \ldots, x_n]$, $k = 1, \ldots, n$.

Submission: Work in groups of up to three students. Submit your solutions either by uploading them to URM or by placing them in the mailbox of Parisa Ebrahimian or Veronika Körber (Room A16, C-Building) by Tuesday, 25 Nov 2025

Exercise 3.

Apply IDBuchberger to the following triple (g, G, >):

$$g = x^4 + y^4 + z^4 + xyz, \quad G = \left\{ \frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z} \right\}, >_{dp}.$$