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Exercise 1 (Product criterion).

Let K be a field, > be a monomial order, f, g ∈ K[x], gcd(LM(f),LM(g)) = 1.
Show that there is a polynomial division with remainder of spoly(f, g) by (f, g) with
remainder 0. Hint: Show first that

spoly(f, g) = a0f + b0g

for a0 = −tail(g) and b0 = tail(f), and then define recursively ai = tail(ai−1) and
bi = tail(bi−1). Consider the maximal value N such that

u · spoly(f, g) = aNf + bNg

for some element u ∈ K[x]∗, and distinguish the two cases that LT(aNf) + LT(bNg)
vanishes or does not vanish.

Exercise 2.

The degree lexicographical ordering >Dp on Monn is defined by

xα >Dp x
β :⇔ |α| > |β| or (|α| = |β| and ∃k : α1 = β1, . . . , αk−1 = βk−1, αk > βk).

A polynomial

f =
∑
α∈Nn

aαx
α ∈ K[x1, . . . , xn]

is called homogeneous if for all α with aα ̸= 0 the absolute value |α| is constant.
Show that a monomial ordering > on Monn equals >Dp if and only if > is a degree

ordering and for any homogeneous f ∈ K[x] with LM(f) ∈ K[xk, . . . , xn], we have
f ∈ K[xk, . . . , xn], k = 1, . . . , n.
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Exercise 3.

Apply IDBuchberger to the following triple (g,G,>):

g = x4 + y4 + z4 + xyz, G =

{
∂g

∂x
,
∂g

∂y
,
∂g

∂z

}
, >dp .
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