Exercise Sheet 2

Introduction to Commutative Algebra and Algebraic Geometry

Eberhard-Karls-Universität Tübingen Profesor: Hannah Markwig Wintersemester 2025/2026 Assistant: Parisa Ebrahimian and Veronika Körber

Exercise 1

Let K be a field. Consider $R := K[T^2, T^3] \subset K[T]$ and prove the following statements:

- 1. R is Noetherian.
- 2. $\sqrt{\langle T^2 \rangle} = \langle T^2, T^3 \rangle$.

Exercise 2

Let (X,Ω) be a topological space. The closure of a subset $A\subset X$ is the intersection \overline{A} of all closed subsets $B\subset X$ with $A\subset B$. Show:

- 1. A subset $A \subset X$ is closed in X if and only if $A = \overline{A}$.
- 2. For every finite union $A := A_1 \cup \cdots \cup A_n$ of subsets $A_1, \ldots, A_n \subset X$ the following applies:

$$\overline{A} = \overline{A_1} \cup \cdots \cup \overline{A_n}.$$

3. Let $A \subset B \subset X$ be subsets. The closure of A in B with respect to the subspace topology is given by $\overline{A} \cap B$.

The subspace topology of $B \subset X$ is given by the following system of open sets:

$$\Omega_B = \{ Y \cap B \mid Y \subset X \text{ open} \}.$$

Exercise 3

- 1. Let $V_1 = \{1, 3, 5\} \subset \mathbb{R}$ and $V_2 = \{1, 2, 3, 4, 5\} \subset \mathbb{R}$. Compute $I(V_1) \subset \mathbb{R}[x]$ and $I(V_2) \subset \mathbb{R}[x]$. Prove $I(V_2) \subset I(V_1)$.
- 2. Let $V_3 = \{(0,0), (0,2), (1,0), (1,1)\}, V_4 = \{(1,-1), (1,0), (0,0), (3,1), (0,2)\} \subset \mathbb{R}^2$. Compute $I(V_3), I(V_4) \subset \mathbb{R}[x,y]$ and $I(V_3 \cap V_4)$.
- 3. Let $M \neq \emptyset$ be an arbitrary finite subset of \mathbb{R}^2 . Find a polynomial $f \in \mathbb{R}[x, y]$ such that M = V(f).
- 4. Consider $\mathbb{Z} \subset \mathbb{R}$. Compute $I(\mathbb{Z}) \subset \mathbb{R}[x]$.

Exercise 4

Let A, B, C be finite groups and let

$$0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0$$

be a short exact sequence of group homomorphisms, i.e., α is injective, β is surjective, and $\ker(\beta) = \operatorname{im}(\alpha)$. Prove:

$$|B| = |A| \cdot |C|.$$