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We consider the Korteweg-de Vries (KdV) partial differential equation

4ut − 6uux − uxxx = 0 (1)

The function u = u(x, t) models the height of one-dimensional waves in shallow water.

1 Translation waves solutions and plane cubics

We look for translation waves solutions of the form

u(x, t) = 2 · v(x+ a · t)

for a constant a and a function v = v(z) that we take to be as nice as possible, meaning
analytic. Imposing that this is a solution to the KdV we get

8a · v′ − 24vv′ − 2v′′′ = 0

This is a differential equation for the function v. Integrating this we get

8av − 12v2 − 2v′′ + b = 0

where b is an integration constant. We can multiply this equation by v′ to obtain

8avv′ − 12v2v′ − 2v′′v′ + bv′ = 0

and we can integrate this again to obtain

4av2 − 4v3 − (v′)2 + bv + c = 0

where c is again an integration constant. In conclusion, we proved the following

Lemma 1.1. Let v be an analytic function which satisfies a differential equation of the form

(v′)2 = −4 · v3 + 4a · v2 + b · v + c

for certain constants a, b, c. Then the function u(x, t) = 2v(x+ at) is a solution to the KdV
equation.
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In geometric terms, this leads naturally to the plane cubic curve

E = {(x, y) ∈ C2 | y2 = −4 · x3 + 4a · x2 + b · x+ c}

and we are looking for an analytic function v such that the map

(v, v′) : C −→ E, z 7→ (v(z), v′(z))

ends up into E. A plane cubic curve in the form {y2 = f(x)}, where f(x) is a polynomial of
degree three is said to be in Weierstraß form, and Weierstraß actually found a function that
satisfies the differential equation of Lemma 1.1. This function is known as the Weierstraß
℘-function. However, here we will consider it through the point of view of the theta function.

2 Complex tori and theta functions

Let H = {τ ∈ C | Im τ > 0} be the complex upper-half plane, consisting of complex numbers
with positive imaginary part.

Definition 2.1 (Theta function). The theta function is

θ : C×H → C, θ(z, τ) =
∑
n∈Z

exp
(
πin2τ + 2πinz

)
Remark 2.2. Since we are imposing that Im τ > 0, the series in the definition converges
uniformly on compact subsets, so that the theta function is a well-defined holomorphic
function.

The most important property of the theta function is its quasiperiodicity:

Proposition 2.3 (Quasiperiodicity). Let m,n ∈ Z. Then

θ (z +m+ τn, τ) = exp
(
−πin2τ − 2πinz

)
· θ(z, τ)

Proof. We can compute

θ(z +m+ τn, τ) =
∑
h∈Z

exp
(
πih2τ + 2πih(z +m+ nτ)

)
=
∑
h∈Z

exp
(
πih2τ + 2πihnτ + 2πihz

)
exp(2πimh)

=
∑
h∈Z

exp
(
πi(h+ n)2τ − πin2τ + 2πi(n+ h)z − 2πnz

)
= exp

(
−πin2τ − 2πinz

)
·
∑
h∈Z

exp
(
πi(h+ n)2τ + 2πi(n+ h)z

)
= exp

(
−πin2τ − 2πinz

)
· θ(z, τ)
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This quasiperiodicity is interpreted geometrically through the action of the lattice Λτ =
{m + τn |m,n ∈ Z} on the complex plane C. One can see that the quotient C/Λτ is
topologically equivalent to a real torus. Since it has also a complex structure inherited from C
it is also called a complex torus. Before looking at some consequences of the quasiperiodicity,
let’s see another useful property of the theta function

Lemma 2.4 (Parity). The theta function is even, meaning that

θ(−z, τ) = θ(z, τ)

Proof. We can simply compute

θ(−z, τ) =
∑
n∈Z

exp
(
πin2τ − 2πinz

)
=
∑
n∈Z

exp
(
π(−n)2τ + 2πi(−n)z

)
= θ(z, τ)

One immediate consequence of the quasiperiodicity is on the logarithmic derivatives of
the theta function

Lemma 2.5. For any n,m ∈ Z it holds that

∂ log θ

∂z
(z +m+ τn, τ) = −2πin+

∂ log θ

∂z
(z, τ),

∂k log θ

∂zk
(z +m+ τn, τ) =

∂k log θ

∂zk
(z, τ) for all k ≥ 2

Proof. Just take the logarithm in the quasiperiodicity and then the successive derivatives.

With this we can identify the zeroes of the theta function

Proposition 2.6. For each fixed τ ∈ H the zeroes of the corresponding theta function are

{z | θ(z, τ) = 0} =

{
1

2
+

1

2
τ

}
+ Λτ

furthermore, these are all simple zeroes.

Proof. The quasiperiodicity shows that all the zeroes are Λτ invariant. We are now going to
show that, up to translation by Λτ , the theta function has an unique zero, which is moreover
a simple zero. To do so, draw a fundamental parallelogram P for Λτ whose sides do not
contain any zero. Then we want to show that there is a unique zero inside this fundamental
parallelogram. The Residue Theorem applied to the logarithmic derivative shows that

#{ zeroes of θ inside P} =
1

2πi

∫
∂P

∂ log θ

∂z
dz

however, the first relation of Lemma 2.5 shows that the integral on the right is exactly 2πi.
Hence, θ has only one zero inside P , counted with multiplicity. To conclude, we need to
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prove that z0 = 1
2

+ 1
2
τ is a zero of theta. We use a trick following Jacobi: consider the

function

θ11(z, τ) = exp

(
1

4
πiτ + πi

(
z +

1

2

))
· θ
(
z +

1

2
+

1

2
τ, τ

)
We claim that θ11(z, τ) is odd, meaning that θ11(−z, τ) = −θ11(z, τ). If this is true, then
θ11(0, τ) = 0, meaning that θ

(
1
2

+ 1
2
τ, τ
)

= 0. To prove that θ11 is odd we compute

θ11(−z, τ) = exp

(
1

4
πiτ + πi

(
−z +

1

2

))
· θ
(
−z +

1

2
+

1

2
τ, τ

)
[θ is even ] = exp

(
1

4
πiτ + πi

(
−z +

1

2

))
· θ
(
z − 1

2
− 1

2
τ, τ

)
= exp

(
1

4
πiτ + πi

(
−z +

1

2

))
· θ
(
z +

1

2
+

1

2
τ − 1− τ, τ

)
[quasiperiodicity ] = exp

(
1

4
πiτ + πi

(
−z +

1

2

))
· exp

(
−πiτ + 2πi

(
z +

1

2
+

1

2
τ

))
· θ
(
z +

1

2
+

1

2
τ, τ

)
= exp(πi) · exp

(
1

4
πiτ + πi

(
z +

1

2

))
· θ
(
z +

1

2
+

1

2
τ, τ

)
= −θ11(z, τ).

Remark: in the previous reasoning we did not need the factor exp
(
1
4
πiτ
)
, but it is there for

another reason (that we do not care about today) and we kept it for notational consistence.

As an immediate consequence of this, we get

Corollary 2.7. The meromorphic functions ∂2 log θ
∂z2

, ∂
3θ
∂z3
,
(
∂2 log θ
∂z2

)2
are Λτ periodic, and, up

to translations by Λτ they have a unique pole at z0 = 1
2

+ 1
2
τ . Furthermore, this point is a

pole of order 2, 3, 4 respectively.

Proof. If θ has a simple zero at z0, the first logarithmic derivative has a simple pole at z0,
and then the rest follows by taking higher derivatives.

We also need some more complex analysis

Lemma 2.8. Any Λτ -periodic meromorphic function that, up to Λτ -translations, has at most
a simple pole is constant.

Proof. Suppose that f is a meromorphic function such that f(z + m + τn) = f(z) for all
m,n ∈ Z. Assume that, up to translation, f has at most one simple pole x. We can put x
into a fundamental parallelogram P and then the Residue Theorem tells us that

Res(f, x) =
1

2πi

∫
∂P

f(z)dz
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Since f is Λτ -periodic, the integral on the right is zero, so that the function has no residues
at f . But this means that x is not a pole of f . Thus, f must actually be holomorphic. Since
f : C→ C is Λτ -invariant, it factors through a holomorphic function f : C/Λτ → C but since
the space C/Λτ is a complex torus, it is compact, and its image is bounded. Then f is a
holomorphic bounded function, hence it is constant.

With this we can give the result that we were looking for:

Theorem 2.9. There exist a, b, c ∈ C such that(
∂3 log θ

∂z3

)2

= −4

(
∂2 log θ

∂z2

)3

+ 4a ·
(
∂2 log θ

∂z2

)2

+ b ·
(
∂2 log θ

∂z2

)
+ c

Proof. A computation, for example on a computer, shows that for an arbitrary function f(z)
it holds that(

∂3 log f

∂z3

)2

+ 4

(
∂2 log f

∂z2

)3

=
4f ′′′(z)f ′(z)3

f(z)4
− 3f ′(z)2f ′′(z)2)

f(z)4

+
4f ′′(z)3

f(z)3
− 6f (3)(z)f ′(z)f ′′(z))

f(z)3
+
f ′′′(z)2

f(z)2

The precise form is not important, but what is important is the highest power of f(z)
appearing in a denominator is 4. Hence, if we apply this to the theta function, we see that
the expression (

∂3 log θ

∂z3

)2

+ 4

(
∂2 log θ

∂z2

)3

can be written as the quotient of an holomorphic function by θ(z, τ)4. Hence, the full
expression has a pole of order at most 4 at z0 = 1

2
+ 1

2
τ . We can subtract an appropriate

multiple of
(
∂2 log θ
log z2

)2
and obtain a function with a pole at z0 of order at most 3, we can then

subtract an appropriate multiple of ∂3 log θ
log z3

to obtain a function with a pole of order at most 2

and then we can subtract an appropriate multiple of ∂2 log θ
log z2

to obtain a function with a pole
of order at most 1. To, summarize, there are a, b, d ∈ C such that the Λτ -periodic function(

∂3 log θ

∂z3

)2

+ 4

(
∂2 log θ

∂z2

)3

− 4a ·
(
∂2 log θ

∂z2

)2

− d ·
(
∂3 log θ

∂z3

)
− b ·

(
∂2 log θ

∂z2

)
has a pole of order at most 1 at z0 and, up to Λτ -translation, nowhere else. Then Lemma
2.8 shows that the function must be constant. Hence there is c ∈ C such that(

∂3 log θ

∂z3

)2

= −4

(
∂2 log θ

∂z2

)3

+ 4a ·
(
∂2 log θ

∂z2

)2

− d ·
(
∂3 log θ

∂z3

)
+ b ·

(
∂2 log θ

∂z2

)
+ c

To conclude, we just need to show that d = 0. But this is true because the function ∂3 log θ
∂z3

is odd, while all other functions appearing are even.
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This way, we get a solution to the KdV equation

Corollary 2.10. With the same notation as in Theorem 2.9, the function

u(x, t) = 2 · ∂
2 log θ

∂z2
(x+ a · t)

is a solution to the KdV equation

These solutions are usually called quasiperiodic.

3 Degenerations and soliton solutions

We can get other solutions to the KdV by degenerating the theta function:

Lemma 3.1. Let t ∈ R be a positive real number. Then

lim
t→+∞

θ

(
z − 1

2
it, it

)
= 1 + exp(2πiz)

Proof. We just write everything explicitly:

θ

(
z − 1

2
it, it

)
=
∑
n∈Z

exp

(
πin2 · it+ 2πin

(
z − 1

2
it

))
=
∑
n∈Z

exp
(
−π(n2 − n)t

)
· exp(2πinz).

We see that n2 − n ≥ 0 for all n ∈ Z and when n2 − n > 0 the term exp (−π(n2 − n)t) ·
exp(2πinz) goes to zero as t→ +∞. The only terms surviving are those for which n2−n = 0:
this means precisely n = 0, 1 so that the limit is exactly what we want.

This way we have obtained a sort of degenerate theta function

θ̂(z) = 1 + exp(2πiz)

Do we still get a solution of the KdV equation out of this? One can compute that(
∂3 log θ̂

∂z3

)2

+ 4

(
∂2 log θ̂

∂z2

)3

= (2πi)2 ·

(
∂2 log θ̂

∂z2

)2

so that the function

u(x, t) = 2
∂2 log

∂z2
θ̂(x+ π2t)

is a solution to the KdV equation thanks to Lemma 1.1. This is what one could call a
soliton solution to the KdV equation. Geometrically, what is happening is that the curve
y2 = −4x3−4π2 ·x2 is now a singular cubic curve, with a nodal singularity at (x, y) = (0, 0).
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