The Korteweg-de Vries equation and theta functions

Daniele Agostini

November 21, 2023

We consider the Korteweg-de Vries (KdV) partial differential equation

$$4u_t - 6uu_x - u_{xxx} = 0 (1)$$

The function u = u(x, t) models the height of one-dimensional waves in shallow water.

1 Translation waves solutions and plane cubics

We look for translation waves solutions of the form

$$u(x,t) = 2 \cdot v(x+a \cdot t)$$

for a constant a and a function v = v(z) that we take to be as nice as possible, meaning analytic. Imposing that this is a solution to the KdV we get

$$8a \cdot v' - 24vv' - 2v''' = 0$$

This is a differential equation for the function v. Integrating this we get

$$8av - 12v^2 - 2v'' + b = 0$$

where b is an integration constant. We can multiply this equation by v' to obtain

$$8avv' - 12v^2v' - 2v''v' + bv' = 0$$

and we can integrate this again to obtain

$$4av^2 - 4v^3 - (v')^2 + bv + c = 0$$

where c is again an integration constant. In conclusion, we proved the following

Lemma 1.1. Let v be an analytic function which satisfies a differential equation of the form

$$(v')^{2} = -4 \cdot v^{3} + 4a \cdot v^{2} + b \cdot v + c$$

for certain constants a, b, c. Then the function u(x, t) = 2v(x + at) is a solution to the KdV equation.

In geometric terms, this leads naturally to the plane cubic curve

$$E = \{(x, y) \in \mathbb{C}^2 \mid y^2 = -4 \cdot x^3 + 4a \cdot x^2 + b \cdot x + c\}$$

and we are looking for an analytic function v such that the map

$$(v, v') \colon \mathbb{C} \longrightarrow E, \qquad z \mapsto (v(z), v'(z))$$

ends up into E. A plane cubic curve in the form $\{y^2 = f(x)\}$, where f(x) is a polynomial of degree three is said to be in Weierstraß form, and Weierstraß actually found a function that satisfies the differential equation of Lemma 1.1. This function is known as the Weierstraß \wp -function. However, here we will consider it through the point of view of the theta function.

2 Complex tori and theta functions

Let $\mathcal{H} = \{\tau \in \mathbb{C} \mid \text{Im } \tau > 0\}$ be the complex upper-half plane, consisting of complex numbers with positive imaginary part.

Definition 2.1 (Theta function). The theta function is

$$\theta \colon \mathbb{C} \times \mathcal{H} \to \mathbb{C}, \qquad \theta(z,\tau) = \sum_{n \in \mathbb{Z}} \exp\left(\pi i n^2 \tau + 2\pi i n z\right)$$

Remark 2.2. Since we are imposing that $\text{Im } \tau > 0$, the series in the definition converges uniformly on compact subsets, so that the theta function is a well-defined holomorphic function.

The most important property of the theta function is its quasiperiodicity:

Proposition 2.3 (Quasiperiodicity). Let $m, n \in \mathbb{Z}$. Then

$$\theta(z+m+\tau n,\tau) = \exp\left(-\pi i n^2 \tau - 2\pi i n z\right) \cdot \theta(z,\tau)$$

Proof. We can compute

$$\begin{aligned} \theta(z+m+\tau n,\tau) &= \sum_{h\in\mathbb{Z}} \exp\left(\pi i h^2 \tau + 2\pi i h(z+m+n\tau)\right) \\ &= \sum_{h\in\mathbb{Z}} \exp\left(\pi i h^2 \tau + 2\pi i h n \tau + 2\pi i h z\right) \exp(2\pi i m h) \\ &= \sum_{h\in\mathbb{Z}} \exp\left(\pi i (h+n)^2 \tau - \pi i n^2 \tau + 2\pi i (n+h) z - 2\pi n z\right) \\ &= \exp\left(-\pi i n^2 \tau - 2\pi i n z\right) \cdot \sum_{h\in\mathbb{Z}} \exp\left(\pi i (h+n)^2 \tau + 2\pi i (n+h) z\right) \\ &= \exp\left(-\pi i n^2 \tau - 2\pi i n z\right) \cdot \theta(z,\tau) \end{aligned}$$

This quasiperiodicity is interpreted geometrically through the action of the lattice $\Lambda_{\tau} = \{m + \tau n \mid m, n \in \mathbb{Z}\}$ on the complex plane \mathbb{C} . One can see that the quotient $\mathbb{C}/\Lambda_{\tau}$ is topologically equivalent to a real torus. Since it has also a complex structure inherited from \mathbb{C} it is also called a complex torus. Before looking at some consequences of the quasiperiodicity, let's see another useful property of the theta function

Lemma 2.4 (Parity). The theta function is even, meaning that

$$\theta(-z,\tau) = \theta(z,\tau)$$

Proof. We can simply compute

$$\theta(-z,\tau) = \sum_{n \in \mathbb{Z}} \exp\left(\pi i n^2 \tau - 2\pi i n z\right) = \sum_{n \in \mathbb{Z}} \exp\left(\pi (-n)^2 \tau + 2\pi i (-n) z\right) = \theta(z,\tau)$$

One immediate consequence of the quasiperiodicity is on the logarithmic derivatives of the theta function

Lemma 2.5. For any $n, m \in \mathbb{Z}$ it holds that

$$\frac{\partial \log \theta}{\partial z}(z+m+\tau n,\tau) = -2\pi i n + \frac{\partial \log \theta}{\partial z}(z,\tau),$$
$$\frac{\partial^k \log \theta}{\partial z^k}(z+m+\tau n,\tau) = \frac{\partial^k \log \theta}{\partial z^k}(z,\tau) \qquad \qquad \text{for all } k \ge 2$$

Proof. Just take the logarithm in the quasiperiodicity and then the successive derivatives. \Box

With this we can identify the zeroes of the theta function

Proposition 2.6. For each fixed $\tau \in \mathcal{H}$ the zeroes of the corresponding theta function are

$$\{z \mid \theta(z,\tau) = 0\} = \left\{\frac{1}{2} + \frac{1}{2}\tau\right\} + \Lambda_{\tau}$$

furthermore, these are all simple zeroes.

Proof. The quasiperiodicity shows that all the zeroes are Λ_{τ} invariant. We are now going to show that, up to translation by Λ_{τ} , the theta function has an unique zero, which is moreover a simple zero. To do so, draw a fundamental parallelogram P for Λ_{τ} whose sides do not contain any zero. Then we want to show that there is a unique zero inside this fundamental parallelogram. The Residue Theorem applied to the logarithmic derivative shows that

#{ zeroes of
$$\theta$$
 inside P } = $\frac{1}{2\pi i} \int_{\partial P} \frac{\partial \log \theta}{\partial z} dz$

however, the first relation of Lemma 2.5 shows that the integral on the right is exactly $2\pi i$. Hence, θ has only one zero inside P, counted with multiplicity. To conclude, we need to prove that $z_0 = \frac{1}{2} + \frac{1}{2}\tau$ is a zero of theta. We use a trick following Jacobi: consider the function

$$\theta_{11}(z,\tau) = \exp\left(\frac{1}{4}\pi i\tau + \pi i\left(z+\frac{1}{2}\right)\right) \cdot \theta\left(z+\frac{1}{2}+\frac{1}{2}\tau,\tau\right)$$

We claim that $\theta_{11}(z,\tau)$ is odd, meaning that $\theta_{11}(-z,\tau) = -\theta_{11}(z,\tau)$. If this is true, then $\theta_{11}(0,\tau) = 0$, meaning that $\theta\left(\frac{1}{2} + \frac{1}{2}\tau,\tau\right) = 0$. To prove that θ_{11} is odd we compute

$$\begin{aligned} \theta_{11}(-z,\tau) &= \exp\left(\frac{1}{4}\pi i\tau + \pi i\left(-z + \frac{1}{2}\right)\right) \cdot \theta\left(-z + \frac{1}{2} + \frac{1}{2}\tau,\tau\right) \\ &[\theta \text{ is even }] = \exp\left(\frac{1}{4}\pi i\tau + \pi i\left(-z + \frac{1}{2}\right)\right) \cdot \theta\left(z - \frac{1}{2} - \frac{1}{2}\tau,\tau\right) \\ &= \exp\left(\frac{1}{4}\pi i\tau + \pi i\left(-z + \frac{1}{2}\right)\right) \cdot \theta\left(z + \frac{1}{2} + \frac{1}{2}\tau - 1 - \tau,\tau\right) \end{aligned}$$
equasiperiodicity $] = \exp\left(\frac{1}{4}\pi i\tau + \pi i\left(-z + \frac{1}{2}\right)\right) \cdot \exp\left(-\pi i\tau + 2\pi i\left(z + \frac{1}{2} + \frac{1}{2}\tau\right)\right) \\ &\cdot \theta\left(z + \frac{1}{2} + \frac{1}{2}\tau,\tau\right) \\ &= \exp(\pi i) \cdot \exp\left(\frac{1}{4}\pi i\tau + \pi i\left(z + \frac{1}{2}\right)\right) \cdot \theta\left(z + \frac{1}{2} + \frac{1}{2}\tau,\tau\right) \\ &= -\theta_{11}(z,\tau). \end{aligned}$

Remark: in the previous reasoning we did not need the factor $\exp\left(\frac{1}{4}\pi i\tau\right)$, but it is there for another reason (that we do not care about today) and we kept it for notational consistence.

As an immediate consequence of this, we get

Corollary 2.7. The meromorphic functions $\frac{\partial^2 \log \theta}{\partial z^2}$, $\frac{\partial^3 \theta}{\partial z^3}$, $\left(\frac{\partial^2 \log \theta}{\partial z^2}\right)^2$ are Λ_{τ} periodic, and, up to translations by Λ_{τ} they have a unique pole at $z_0 = \frac{1}{2} + \frac{1}{2}\tau$. Furthermore, this point is a pole of order 2, 3, 4 respectively.

Proof. If θ has a simple zero at z_0 , the first logarithmic derivative has a simple pole at z_0 , and then the rest follows by taking higher derivatives.

We also need some more complex analysis

Lemma 2.8. Any Λ_{τ} -periodic meromorphic function that, up to Λ_{τ} -translations, has at most a simple pole is constant.

Proof. Suppose that f is a meromorphic function such that $f(z + m + \tau n) = f(z)$ for all $m, n \in \mathbb{Z}$. Assume that, up to translation, f has at most one simple pole x. We can put x into a fundamental parallelogram P and then the Residue Theorem tells us that

$$\operatorname{Res}(f, x) = \frac{1}{2\pi i} \int_{\partial P} f(z) dz$$

Since f is Λ_{τ} -periodic, the integral on the right is zero, so that the function has no residues at f. But this means that x is not a pole of f. Thus, f must actually be holomorphic. Since $f: \mathbb{C} \to \mathbb{C}$ is Λ_{τ} -invariant, it factors through a holomorphic function $\overline{f}: \mathbb{C}/\Lambda_{\tau} \to \mathbb{C}$ but since the space $\mathbb{C}/\Lambda_{\tau}$ is a complex torus, it is compact, and its image is bounded. Then f is a holomorphic bounded function, hence it is constant.

With this we can give the result that we were looking for:

Theorem 2.9. There exist $a, b, c \in \mathbb{C}$ such that

$$\left(\frac{\partial^3 \log \theta}{\partial z^3}\right)^2 = -4\left(\frac{\partial^2 \log \theta}{\partial z^2}\right)^3 + 4a \cdot \left(\frac{\partial^2 \log \theta}{\partial z^2}\right)^2 + b \cdot \left(\frac{\partial^2 \log \theta}{\partial z^2}\right) + c$$

Proof. A computation, for example on a computer, shows that for an arbitrary function f(z) it holds that

$$\left(\frac{\partial^3 \log f}{\partial z^3}\right)^2 + 4 \left(\frac{\partial^2 \log f}{\partial z^2}\right)^3 = \frac{4f'''(z)f'(z)^3}{f(z)^4} - \frac{3f'(z)^2f''(z)^2}{f(z)^4} + \frac{4f''(z)^3}{f(z)^3} - \frac{6f'(z)f''(z)f''(z)}{f(z)^3} + \frac{f'''(z)^2}{f(z)^2} \right)^{-1}$$

The precise form is not important, but what is important is the highest power of f(z) appearing in a denominator is 4. Hence, if we apply this to the theta function, we see that the expression

$$\left(\frac{\partial^3 \log \theta}{\partial z^3}\right)^2 + 4 \left(\frac{\partial^2 \log \theta}{\partial z^2}\right)^3$$

can be written as the quotient of an holomorphic function by $\theta(z,\tau)^4$. Hence, the full expression has a pole of order at most 4 at $z_0 = \frac{1}{2} + \frac{1}{2}\tau$. We can subtract an appropriate multiple of $\left(\frac{\partial^2 \log \theta}{\log z^2}\right)^2$ and obtain a function with a pole at z_0 of order at most 3, we can then subtract an appropriate multiple of $\frac{\partial^3 \log \theta}{\log z^3}$ to obtain a function with a pole of order at most 2 and then we can subtract an appropriate multiple of $\frac{\partial^2 \log \theta}{\log z^3}$ to obtain a function with a pole of order at most 2 of order at most 1. To, summarize, there are $a, b, d \in \mathbb{C}$ such that the Λ_{τ} -periodic function

$$\left(\frac{\partial^3 \log \theta}{\partial z^3}\right)^2 + 4\left(\frac{\partial^2 \log \theta}{\partial z^2}\right)^3 - 4a \cdot \left(\frac{\partial^2 \log \theta}{\partial z^2}\right)^2 - d \cdot \left(\frac{\partial^3 \log \theta}{\partial z^3}\right) - b \cdot \left(\frac{\partial^2 \log \theta}{\partial z^2}\right)$$

has a pole of order at most 1 at z_0 and, up to Λ_{τ} -translation, nowhere else. Then Lemma 2.8 shows that the function must be constant. Hence there is $c \in \mathbb{C}$ such that

$$\left(\frac{\partial^3 \log \theta}{\partial z^3}\right)^2 = -4\left(\frac{\partial^2 \log \theta}{\partial z^2}\right)^3 + 4a \cdot \left(\frac{\partial^2 \log \theta}{\partial z^2}\right)^2 - d \cdot \left(\frac{\partial^3 \log \theta}{\partial z^3}\right) + b \cdot \left(\frac{\partial^2 \log \theta}{\partial z^2}\right) + c$$

To conclude, we just need to show that d = 0. But this is true because the function $\frac{\partial^3 \log \theta}{\partial z^3}$ is odd, while all other functions appearing are even.

This way, we get a solution to the KdV equation

Corollary 2.10. With the same notation as in Theorem 2.9, the function

$$u(x,t) = 2 \cdot \frac{\partial^2 \log \theta}{\partial z^2} (x + a \cdot t)$$

is a solution to the KdV equation

These solutions are usually called *quasiperiodic*.

3 Degenerations and soliton solutions

We can get other solutions to the KdV by degenerating the theta function:

Lemma 3.1. Let $t \in \mathbb{R}$ be a positive real number. Then

$$\lim_{t \to +\infty} \theta\left(z - \frac{1}{2}it, it\right) = 1 + \exp(2\pi iz)$$

Proof. We just write everything explicitly:

$$\theta\left(z - \frac{1}{2}it, it\right) = \sum_{n \in \mathbb{Z}} \exp\left(\pi in^2 \cdot it + 2\pi in\left(z - \frac{1}{2}it\right)\right)$$
$$= \sum_{n \in \mathbb{Z}} \exp\left(-\pi (n^2 - n)t\right) \cdot \exp(2\pi inz).$$

We see that $n^2 - n \ge 0$ for all $n \in \mathbb{Z}$ and when $n^2 - n > 0$ the term $\exp(-\pi(n^2 - n)t) \cdot \exp(2\pi i n z)$ goes to zero as $t \to +\infty$. The only terms surviving are those for which $n^2 - n = 0$: this means precisely n = 0, 1 so that the limit is exactly what we want. \Box

This way we have obtained a sort of degenerate theta function

$$\hat{\theta}(z) = 1 + \exp(2\pi i z)$$

Do we still get a solution of the KdV equation out of this? One can compute that

$$\left(\frac{\partial^3 \log \hat{\theta}}{\partial z^3}\right)^2 + 4\left(\frac{\partial^2 \log \hat{\theta}}{\partial z^2}\right)^3 = (2\pi i)^2 \cdot \left(\frac{\partial^2 \log \hat{\theta}}{\partial z^2}\right)^2$$

so that the function

$$u(x,t) = 2 \frac{\partial^2 \log}{\partial z^2} \hat{\theta}(x + \pi^2 t)$$

is a solution to the KdV equation thanks to Lemma 1.1. This is what one could call a soliton solution to the KdV equation. Geometrically, what is happening is that the curve $y^2 = -4x^3 - 4\pi^2 \cdot x^2$ is now a singular cubic curve, with a nodal singularity at (x, y) = (0, 0).