UNIVERSITÄT TÜBINGEN FACHBEREICH MATHEMATIK

Hannah Markwig Lou-Jean Cobigo

Übungen zur Vorlesung lineare Algebra 1

Wintersemester 2023/24

Blatt 11

Abgabetermin: Dienstag, 23.01.2024, 10:00 Uhr

Aufgabe 1 (6 Punkte)

Sei $A := J(\lambda, n) \in \text{Mat}(n \times n, \mathbb{K})$ ein Jordanblock zum Eigenwert $\lambda \in K$. Bestimmen Sie alle invertierbaren Matrizen $S \in \text{GL}(n, \mathbb{K})$, die mit A kommutieren, d.h. für die gilt:

$$A \cdot S = S \cdot A.$$

Aufgabe 2 (6 Punkte)

Die Matrizen

$$N_1 := \begin{pmatrix} 1 & 3 & -2 & 0 \\ 1 & -1 & -2 & 2 \\ 2 & 0 & -4 & 3 \\ 2 & -2 & -4 & 4 \end{pmatrix} \in \operatorname{Mat}(4, \mathbb{R}) \text{ und } N_2 := \begin{pmatrix} 3 & 2 & -6 & 3 \\ 1 & 0 & -2 & 1 \\ 2 & 1 & -4 & 2 \\ 1 & 0 & -2 & 1 \end{pmatrix} \in \operatorname{Mat}(4, \mathbb{R})$$

sind nilpotent. Bestimmen Sie für i=1,2

- (a) die Jordannormalform J_i von N_i .
- (b) die Basiswechselmatrix $S_i \in \mathrm{GL}(4,\mathbb{Q})$ die N_i in die Jordansche Normalform J_i bringt, d.h. die $S_i N_i S_i^{-1} = J_i$ erfüllt.

Aufgabe 3 (6 Punkte)

- (a) Sei $p \in \mathbb{K}[t]$ ein Polynom, $A \in \operatorname{Mat}(n, \mathbb{K})$ eine quadratische Matrix und λ ein Eigenwert von A. Zeigen Sie: $p(\lambda)$ ist ein Eigenwert der Matrix $p(A) \in \operatorname{Mat}(n, \mathbb{K})$.
- (b) Sei $A \in GL(n, \mathbb{K})$. Zeigen Sie, dass es ein Polynom p vom Grad $\leq n-1$ gibt mit $p(A)=A^{-1}$.
- (c) Bestimmen Sie dieses Polynom für

$$A := \left(\begin{array}{rrr} -1 & 1 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{array}\right)$$

und berechnen Sie damit die Inverse von A.

Aufgabe 4 (6 Punkte)

Sei $A \in \operatorname{Mat}(3,\mathbb{C})$. Zeigen Sie, dass die Jordansche Normalform von A durch das charakteristische Polynom χ_A und das Minimalpolynom p_A von A eindeutig bestimmt ist. Gilt diese Aussage auch für $A \in \operatorname{Mat}(4,\mathbb{C})$?

Die zusammengetackerten Übungsblätter können im Postfachzimmer A16 des C-Gebäudes im 3. Stock im Briefkasten des jeweiligen Übungsleiters abgegeben werden.

Das Repetitorium findet freitags von 10-12 Uhr im Hörsaal N09 statt.