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Introduction

The lecture notes provided by Hannah Markwig have been set in IXTEXby Monica Janders.
If you find any mistakes, please contact me at monica.janders@student.uni-tuebingen.de.

Convex geometry deals with polytopes, cones, polyhedra,..

Abbildung 1: Polytopes, cones, polyhedra,...!

It combines geometry, combinatorics (and (linear) algebra).
It trains your visual thinking (in particular spatial imagination an beyond).

We will start with Pick’s Formula. We look at a lattice, like on a piece of squared paper.
Each intersection represents a point. We aim to find a correlation between the area A of a
convex shape on this grid (with vertices on the intersections), the number of grid points on
the edges/ boundaries of the shape, b, and the number of grid points inside the shape, i.
Based on some observations, it can be concluded that the correlation could be as follows:

b
A=i+—-—1
z+2

The idea of the proof is as follows: First, we construct a rectangle around our shape that
completely encloses it and prove the formula for rectangles on the lattice. Then we want
to show the formula for right-angled triangles. These two statements allow us to prove the
formula for triangles in general. In the end we partition arbitrary convex shapes inductively
into triangles and Pick’s Formula is proven.

Beweis. For rectangles R we have:
Ar=mxn, br=2x(m+mn), ig=(m-—1)x(n—1)

One can easily check that Pick’s Formula holds for those properties:

b 2
iR+2R—1:(m—1)*(n—1)+*(”;+n>—1
=m*sn—m-n+1l+mt+n-—1
=m=x*n
:AR
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Now we consider a right-angled triangle T'. We can construct a rectangle around it as in
picture TODO. Now we have the following properties for that:

Arp  m=xn

iR—a:(m—l)*(n—l)—

b
5 =g bT:?RﬁLa—Fl:m—l—n—i-a—l—l?iT: 5 2

Where define a as the number of inner points of the rectangle which are boundary points
of the triangle. For right-angled triangles we also have:

Ar

. bT iR—a
I,
ZT-I—2 5
m—1)x(n—1)—a m+n+a+1
= + —1
2 2

_m*n—m—n+1—a+m+n+a—|—1—2
- 2
mkn
2
:AT

For any triangle A4, we need do distinguish between two cases (figure TODO).
For case 1 we have:

Ay =Ar— Ap — Ar, — Ar,
mx(n—j) jxk nx(m—k)

SmEnT T 2 2
_2*m*n—m*n+m*j—j*k—m*n—i—n*k
B 2
- mxj—jxk+nxk
B 2
and
ba = by, +bp, + b, — bg
=m+n—j+a+1+j+k+a+1l+n+m—~k+a3+1—2n—2m
=a;+azy+az+3
and

iA:iR—al—GQ—a,g—iTl—iTQ—iT3
—a1—as —az+m*xj—jJxk+nxk—1
2

In the case of two points of the triangle lying on the same side of the rectangle we only
have T7 and T3, so we leave out the terms for T5. We check Pick’s Formula:

iA+bi_1:—al—ag—a3+m*j—j*k+n*k—1+a1+a2+a3+3_1
2 2 2
m*xj—jgxk+nxk

2

For case two it is similar (TODO)

TODO:BILD
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1 Affine geometry

In linear algebra, we studied vector spaces and linear maps. For the purpose of geometry,
we sometimes also need to consider other maps, e.g. translations.

1.1 Example. Let K C R? K = {(z,y) € R¥z? +4*> —2(x +y) + 1 =0}
How can we describe K?

O=2+y*—2x+y) +1
=224+ 1+9y*—2y+1—-1
=(@-1)"+(@y-1)7-1

Set Z:=x—1,7:=y— 1, then
K ={(@9*+7 - 1=0}

is a circle around 0 with radius 1.
= K is a circle around (1,1) with radius 1, as we can see in image 2. Our change of
coordinates was just a translation.

b N/

AR
N

Abbildung 2: Circles K and K with radius 1 around (1,1) and (0,0).?

" X

To describe such transormations, we need affine spaces, roughly: linear spaces (i.e. vector
spaces) without a specified 0-point. To introduce those, we need group actions:

1.2 Definition. Let (G, %) be a group and M a set. A group action of G on M is a map

- GE@xM— M:

satisfying the following properties:

(1) eem=m,YmeM
(2) (axb)-m=a-(b-m),Ya,be G,me M
1.3 Remark. One can view a group action as a group homomorphism:

0:G—S(M)={f: M — M, fbijective}
g—=plg) M —- M mw—g-m

’Image from Hannah Markwig.



- s well-defined:
o(g) is injective, since @ (g)(m1) = g - m1 = g ma = (g)(my) implies

gt (g-m)=g"(g-ma)
= (g7 xg) - mi= (9" xg) ma
= €M1 = €My

= ml = m2
©(g) is surjective, since for m € M we have g=' - m € M,

(g m)=g- (g7 m)=(gxg ) m=e-m

= ¢(g) € S(M).
- is a group homomorphism:

o(gxh): M —M:mw— (gxh)-m=g-(h-m)

p(g) o p(h) : M — M :m — (g)(e(h)(m)) =g - (h-m)
Vice versa, a group homomorphism ¢ : G — S(M) defines a group action via
g-m = ¢(g)(m), since

e-m=p(e)(m) =1id(m) =m
and (g h) -m = @(g*h)(m) = ¢(g) o p(h)(m) = g - (h-m)
1.4 Example. (1) GL,(K) (= invertible n x n-matrices over a field K) acts in K" via
Axx:=A -z

(with the group action on the left side and the matrix multiplication on the right),
since 1,,-x =xand (A-B)-x=A-(B-x).

(2) S, (=S({1,...,n})) acts on {1,...,n} via
o-i:=0(1),
since id - ¢ = id(i) =i and (0 0 0’) - i = 0(0'(i)) =0 - (¢’ - 7).

(3) S, acts on R” via the linear map for o € S,, which linearly extends the permutation
e; — eq(;) of the unit vectors. This yields a permutation matrix A, i.e. in every row
and column there is precisely one 1 and only 0 else.

010
Example: n =3, 0 = (12), A, = A1) = 0 0 |.
0 1

For x € R™ we have

(cdod)-x=(A,-Ay) - x=A,  (Ay -x)=0- (0" ).
Example: n = 2, Sy = {id, (12)}



1.5 Definition. The orbit of a point m € M is
G-m:={g-me Mg € G}
The stabilizer of m is
Stab(m) :={g € G|g-m =m}
1.6 Example. The symmetry group of an equilateral triangle A C R? is
Ss = {id, (123), (132), (12), (13), (23)}

and acts on A. It consists of rotations:

2
AN
id: 1 , 3 1 3 (around 0°).
AN
(123): 1 , 3 5 3 2 (around 120°).
AN
(132): 1 3 2 L (around 240°).

And reflections:

S

—~
—_
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~—
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w
—
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And is a group action.
We consider orbits of several points (i.e. apply all group actions and see where the point

lands):
3 3 3
1 2 1 2 1 2
and stabilizers:
3 3 3
1 2 1 2 1 2

Stab(1) = {id, (23)},  Stab =S, Stab = {id}

1.7 Lemma. Let G X M — M be a group action, m € M. Stab(m) is a subgroup of G.

Beweis. Stab(m) # (), since e = id € Stab(m). Let a,b € Stab(m) = am = m,
bm =m = (ab)m = a(bm) = am = m = ab € Stab(m) and
a”'m=a"t(am) = (a"ra)m = em =m = a~' € Stab(m). O

1.8 Lemma. Orbits are either equal or disjoint:

Gmi=Gmy or GmiNGmy=10

Beweis. Assume Gmy N Gmy # 0, then Imz € Gmy N Gmy = I g1, 92 € G such that
M3 = g1y = goMay = My = g5 " g1my € Gmy = Gmy C Gmy
and analogously Gm; C Gms, hence equality. O]

1.9 Definition. Let V' be a vector space /K (over a field K), A a non-empty set and
T:(V,H)x A= A

an action of the additive group of V on A. (A,V,7) is called an affine space, with
translation vector space V', if

Vp,qe ANveV:7(v,p) =q

The conditions for the group actions are

(1) Vpe A:7(0,p)=p
(2) vp c A7vl702 € V,T(U17T(U2,p)) = T(Ul +027p)

1.10 Example. Let V be a vector space , A =V and 7 = + : (V,4+) x V — V the
addition. Then (V,V,+) is an affine space.
Remark: Every other example can be interpreted as this.

1.11 Remark. (1) The unique v such that 7(v, p) = ¢ is written as 4.
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(2) Choose p € A, define
F,:V—>A:v—1(v,p).

Then F, is bijective, since V ¢ 3!v such that 7(v,p) = q.

We can think of p as a choice of 0-point, the inverse Fp_1 produces V from A after the
choice of a 0-point. In this sense, an affine space is like a vector space without a choice
of a 0-point.

(3) One can show that every affine space is of the form (V,V,+) for some vector space.
We focus on affine spaces of this form and we use the notation A = A(V') = (V,V, +)

1.12 Definition. Let A(V') be the affine space of the vector space V. A subset W C V is
called an affine subspace if there exists w € W and a linear subspace U C V s.t.

W=w+U={w+uju e U}.

The linear subspace U is the subspace of translations/directions of . The dimension
of W is defined to be the dimension of its subspace of translations, U,

i.e. dim(W) = dim(U).

A 0O-dimensional affine subspace is called a point. Points are sets x + {0} = {z + 0} = {z},
x € V. A 1-dimensional subspace is called line, a 2-dimensional plane. If

dimA (V) = dimV = n, an (n — 1)-dimensional affine subspace is called hyperplane.
For W = w + U, w is not unique, one can pick any other element of the form w' = w + u
for u € U and write W = w’ + U. The subspace of translations is unique.

1.13 Example. (1) In A(R™), a shift of a linear subspace is an affine space:

w -t U

>

Ve

Abbildung 3: An affine space *

L

(2) Let f:R™ — R™ be a linear map, y € R™. Then:

fHy) ={z e R f(x) =y} = 2’ + ker f,

for some 2/ with f(2’) =y, is an affine subspace of R".

3Image from Hannah Markwig.



(3) Solution sets of inhomogeneous systems of linear equations Az = b, b # 0, are affine
spaces, they are of the form x¢ + {x|Ax = 0} = x¢+ solution set of the corresponding
homogeneous system = zy + ker f, where z( satisfies Az = 0.

(4) Sometimes it is useful to consider A(R") as an affine subspace of A(R"™1):

T
A(R”):{ x |xiE]R}
1
0 T

—| +{ : |xieR}cR”+1
0 T

1.14 Lemma. Let Wy, ..., W) C A(R™) be affine subspaces. Then either WiN...NW;, =0
or WinN...N Wy is an affine subspace whose space of translations is Uy N ... N Uy (for
W; = w; + U;, U; space of translations of W;).

Beweis. Let WiN...NW # 0. Then 3z € WiN...NW;. We can write W; = x + U; then

Win..nWy=@+U)N...N0(x+Uy)
k
=1

is an affine space with space of transitions U; N ... N Ug. The intersection U; N ... N Uy is
a linear subspace, hence W7 N ... N Wy is an affine subspace. O

1.15 Example. (1) An empty intersection is possible , e.g. two parallel lines in R?,

Abbildung 4: Parallel lines and planes®

(Parallel: the space of translations is equal (or more generally: contained in each other))

4Image from Hannah Markwig.



(2) In A(RY), let

2 1\ [0\ [0 3 “1\ (0
0 1l [1] [o 1 1 1
Mi=1y +< o || 1] > 2= +< 2 || o >
1 o) \o) \1 0 0 0

We compute W7 N Ws.
deeWiNWy, & 30[1,&2,0&3,517B2 € R:

2 1 0 0
0 n 1 + 1 n ol
0 aq 0 (65 1 3 1 =T =
1 0 0 1
3 -1 0
1 1 1
o | ™ B o | T P2 0
0 0 0
This is an inhomogeneous system of linear equations:
100 1 0711 100 1 0|1
110 -1 —-1|1 R 010 -2 —1/0
011 -2 010 001 0 110
001 0 0]-1 000 0 1|1

Transformed with the Gaussian elimination. The columns are the vectors after
ai,ag, a3, 31, B and (310 0)T — (200 1)T. We can conclude 3, = 1, therefore 3; is
a free parameter. With that we get a3 = —1, ap =26, + 1 and oy = —; + 1.

-1
1
0

SN W

= WlmWQZ{I:

o

1.16 Lemma. Let A = A(V) = (V,V,+) = K" be the affine space of the vector space V.
W c A(V) is an affine subspace.

k k
<~ ‘v’kZl,al,...,akGW, >\17~--7)\k€K:Z>\i:1:>Z/\iaiGW

=1 i=1

Beweis. 7 =7 Let W = w + U be an affine subspace. Let k > 1,
aty...,a € W, Ai,..., A\ € K with Zfﬂ)\izl. Then a; = w + u; for u; € U, and

k k k k k
=1

=1 =1 i=1 =1
—_————  —
w eU

"<? LetweW,set U:=W —w={w —wlw € W}. Then W =w+U.
We show: U is a linear subspace of V. Let w; — w,wy —w € U, A € K. Then

Awy —w) € U, since w + (A(w; —w)) = (1 = Nw + Awy, w,wy € W



and by our condition, (1 — A\)w + Aw; € W. Also,
wy — w4 wy —w € U since w + wy; —w + wy —w = wy + wy — w,
but wy, ws,w € W and since 1 + 1 — 1 =1 also by our condition wy +ws —w € W. [J

1.17 Remark. (1) We call ©% ; \;a; with 3% | \; = 1 an affine combination of the a;.
Lemma 1.16 then reads:
W is an affine subspace < W is closed under taking affine combinations.

(2) Lemma 1.16 gives insights why it is useful to identify A(R™) with the affine hyperplane
€n+1 + <€1, . ,€n> c Rt

Xm:}-ﬂ
™

/%“ -

R

e

Abbildung 5: With plane H = {z, ., =1} °

Di

1 € R*1 A linear combination of such

Points p; in A(R") come from points

1 2N
of A(R"), we can understand affine combinations as linear combinations which stay
within H.

points, >\ ( Pi ) = ( 2 Api ) isin H = A(R") <& > \; = 1. For this model

1.18 Definition. Let A = A(V') be an affine space, ) # X C V subset, the affine hull
Aff(X) is the smallest affine subspace of A containing X, i.e.

AFF(X) = N W
W CA affine subspace
XCcW

1.19 Lemma.

AfF(X) = {D_Apilpi € X, D N =1}

(Affine combinations are finite by definition, therefore the sum is finite.)

5Image from Hannah Markwig.



Beweis. {3 \ipilpi € X,> A\; = 1} :=RHS (right hand side) satisfies the condition from
lemma 1.16 (it is closed under taking affine combinations, = RHS is an affine subspace,
X C RHS) and is thus an affine space, also it contains X. Hence Aff(X) C RHS.
Furthermore, by lemma 1.16, every affine subspace W containing X also contains RHS

= {d Apilpe X)) N=1}C N = Aff(X)
w afﬁ)rée s&[l/bspace
C

]
1.20 Definition. Let A = A(V') be an affine space. py, ..., p, are affinely independent,
iff (<)
i=0 i=0

1.21 Lemma. {po,...,p.} are affinely independent < {p; — po,...,pr — Do} are linearly
independent.

Beweis. 7 =" Let {po,...,p,} be affinely independent. Consider

M(p1—po)+ .-+ X(pr—po) =0

=(=M—...=A)po+ Mpr+ ...+ Ap, =0
=:)\o
Then
Z/\ipizo and Z/\i:—/\1—...—/\T+)\1+...—|—/\T:0
i=0 i=0
so N =...= X\ =0and {p; — po,...,pr —po} are linearly independent.

7«7 Let {p1—po,...,p-—po} be linearly independent. Let 3>-7_, \;p; = 0and 37_; \; = 0.
We can write \g = —A\1 — ... — A, s0

OZZAiPi:)\opo+)\1p1—i—...+)\rpr

i=0
=(=M—...=N)po+Mp1+ ...+ N\ps
= Ai(p1 —po) + .- + A(pr — po)
:>)\1::>\T:O:>)\0:0 ]
1.22 Definition. Let A = A(V) be an affine space, W C A an affine subspace of dimension
k, po,...,pr € W affinely independent. Then py,,...,px is an affine basis of W.
Every point w € W can uniquely be written as w = pg+ > pi(pi — o), i € K. (1, .- fin)
are the affine coordinates of w w.r.t. the basis py, ..., p.

1.23 Example. A chair with 3 legs never wobbels: 3 distinct points pg, p1, p2 which do
not span a line are affinely independent and thus span an affine plane. (see exercises)

1.24 Remark. We can also define affine coordinates of W C A by using W = py+ U, and
a basis py, ..., pg of the linear subspace U. Then p; := p,+pg € W. We now consider maps
that preserve the structure. For example, affine hulls should be mapped to affine hulls.

9



1.25 Definition. Let VW be K-vectorspaces, A(V), A(W) the corresponding affine
spaces. f: A(V) — A(W) is an affine map, if Va,y € A(V), \,u € K:

Atp=1: fAz+py)=A(2)+pf(y)

Inductively we have

f(Z Aipi) = Z Nif(p;) for Z)‘i = 1.

1.26 Example. Let A(V) be an affine space, b € V:

(1) The translation Ty, : A(V) — A(V) : & — x + b is affine, since for A 4+ p = 1 we have

Ty(Ax + px) =Xz + py + b
=Xz + Ao+ py+ (1 —A)b
=T+ A0+ py + pb
=Az +b) + pu(y +b)
=Ty () + pTy(y)

(2) If we stretch with center z and factor A, i.e. z — z and for x # z we map z to the
point y on the line through z and z for which y — z = A(z — 2), we obtain an affine
map

o AV) = AV):z—= Az +(1—-)N)z:

o(pzy + (1 — paz) = A(par + (1 — p)as) + (1 — Nz
= Az + (1 —=XN)z2)+ (1 —p)(Aze + (1 — N)2)
= po (@) + (1= poes)

Abbildung 6: Map z on y °

If A = 0 everything is contracted to the point z, if A =1, ¢ =id. If A = —1 this is the
reflection with center z.

1.27 Theorem. A = A(V), choose an origin py € A. f: A(V) — A(W) is affine
< 3 linear map ¢ =V — W s.t. f(po+ ) = ¢(x) + f(po). ¢ does not depend on the
choice of po. It is called the linear part of f.

5Image from Hannah Markwig.
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Beweis. 7 <=7 Letp=po+x, q=po+y,

fOp+ (1 =XNq) =f(Apo+ Az + (1 = N)po + (1 = N)y)
=f(po+ Az + (1= N)y)
=¢(Ar + (1 = A)y) + f(po)
=Ap(x) + (1 = N)o(y) + Af(po) + (1 = A) f(po)
=A¢(x) + f(po)) + (1 = A)(o(y) + f(po))
=Af(p) + (1 =A)f(qg)

hence f is affine.
7= 7 Define

¢:V—=W: z= f(po+z)— f(po)

We show ¢ is linear, i.e.

Vr,y €V, ¢z +y) = ¢(z) + ¢(y), p(Ax) = Ad(x), A € K :
We have pg, po + 2, po +y € A(V). Thus (with f affine and 1 +1—1 =1 in the fourth line)

o +y) =f(po+2x+y)— f(po)

=f(po+x+po+y—po)— fpo)

=f(1*(po+x) + 1% (po+y) — 1% po) — f(po)

=f(po+ ) + f(po+y) — f(po) — f(po)

=f(po+z) — f(po) + f(po+y) — f(po)
=¢(z

)+ d(y)

for the additivity. And for the linearity:

P(Ax) =f(po + Az) — f(po)
=f(Apo +x) + (1 = Npo) — f(po)
=Af(po+ )+ (1= A)f(po) — f(po)
=A(f(po + ) — f(po))
=Ap(x)

Uniqueness: Assume p; € V is a different choice of origin. We obtain a linear map
UV Wz f(pr+a)— f(p)
Then

U(x) =f(pr+x) — f(p1)

=f(po+ (p1 —po) + ) — f(p1)
=o((pr — po) + ) + f(po) — f(p1)
=¢(x) + ¢(p1 — po) + f(po) — f(p1)
=¢(x) + f(p1) — f(po) + f(po) — f(p1)
=(x)

11



1.28 Remark. By theorem 1.27, the choice of origin is irrelevant in the context of affine
maps. We can thus choose 0 as origin and obtain

f(x) = o(x) + f(0) = Ty 0 p(x), b:= [f(0),

thus every affine map is a linear map followed by a translation. In particular, affine maps
A(K"™) — A(K™) are of the form z — Ax + b, where A € Mat(m x n, K),b e K™.

We now consider affine maps A(V) — A(V) which are bijective:

Let B ={p1,...,ps} be a basis of V, py a choice of origin. Every x € A(V') can uniquely
be written as

X =po+ D upj.

Jj=1

M1
In affine coordinates, x is thus given as : e K™

fhn
Let A = pMp(¢), where ¢ denotes the linear part of the affine map f.

Let f(pO) = Ppo + Zznzl blpz Then

@) =Foo+ 3 pp)

=f(po) + (D paps)
=po + Z: bip; + Z i (pi)

=po + Z bip; + Z Mj(z ai;pi)
:p0+z Z z]MJ+b

The affine coordinates of f(x) are thus A x p + b, where p are the affine coordinates of z.

1.29 Remark. (1) Translations 7} are bijective.
(2) f is bijective < the linear part ¢ is bijective.

1.30 Theorem. The bijective affine maps on A(V') form a group.

Beweis. Choose 0 as the origin of A(V'). Then every bijective affine map is of the form
T}, o ¢ for a bijective linear part ¢.
idy : A(V) — A(V) is a bijective affine map. For f =T}, o ¢1, g = Tp, o ¢ we have

fog=Tyop10Ty,0py =Ty o(p10T,) 02 =Ty 0Ty )0 ¢10 P2

since

¢1 0 T, (X) = 01(X +b2) = 1(X) + 91(b2) = Ty, (6 © 01(X)

Furthermore,

Ty, 0 Ty (by) © D10 P2 = Ty 16, (b) © (1 © P2)

12



is again affine and bijective. For f =T} o ¢ we have
fl=(log) =gt o T =g 0Ty =Ty1( o™

is again affine and bijective.

The set of bijective affine maps, viewed as a subset of the group of bijective maps on V' is
thus nonempty, closed under composition and closed under taking inverses. Hence it is a
subgroup. O

1.31 Example. A bijective affine map f of A(K™) is of the form x — Az + b,
A € Mat(n x n, K). We write A(K™) as an affine subspace of K"

0 T

A(K™) = o +{ x |xi€K}

and define

A (g‘ ’;) € Mat((n+1) x (n+1), K).

([ Az +b
thus A maps A(K™) into itself and we can combine the linear part and the translation
part of f into one matrix.

Then

1.32 Definition. Two affine subspaces Wy = w; + Uy, Wy = wy + U, are parallel, W, ||[Ws,
if U1 C U2 or U2 C Ul.

1.33 Remark. Being parallel is reflexive and by definition symmetric, but not necessarily
transitive, e.g.

S LR Pl

P bk L, 4L,
——,

Abbildung 7: Lines parallel to a plane

If we restrict the relation to subspaces of the same dimension, then it is transitive. Then
being parallel is an equivalence relation.

"Image from Hannah Markwig.
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1.34 Definition. Let p,q,r be collinear (i.e. on a line) and p # ¢q. If ¢ = p+ x and
r = p+ Az, then X\ is called the ratio of r and ¢ w.r.t. p.

1.35 Lemma. (1) Affine maps map parallel affine subspaces to parallel affine subspaces.

(2) Bijective affine maps preserve ratios.

Beweis. (1) Let f: A(V) — A(V) ba an affine map, ¢ its linear part. Let W) = wy + Uy
be an affine subspace, then f(W;) = f(w1) + ¢(Ur). For Wi ||Wa, Wy = wq + Us, we

have U; C U, without restriction
= ¢(Ur) C ¢(Uz) = f(Wh)]|f(W2).

(2) Let p, g=p+a, 7 =p+ Ax be on a line. By (1), f(p), f(q) and f(r) are on a line,
and f(p) # f(q). Furthermore,

f(@) = f(p) + ¢(x), f(r) = f(p) + ¢(Ax) = f(p) + Ad(x)
= \ is also the ratio of f(q) and f(r) w.r.t. f(p).
[l
Now we restrict to K = R and consider Euclidean vector spaces (V. (-,-)), V with a scalar
product (-, -). V' is then also a metric space with
d(z,y) = [z =yl = y{z =y, 2 —y)

1.36 Definition. A (Euklidean) isometry on V (resp. A(V)) is a bijective map f such
that

d(f(z), f(y)) = d(z,y), Va,yeV.
1.37 Remark. Euklidean linear maps ¢ : V' — V satisfy

(9(x),d(y)) = (x,y) YVa,yeV.

These are spacial cases of Euklidean isometries.

1.38 Theorem. The Fuclidean isometries form a group.

Beweis. id is an Euklidean isometry. If f and ¢ are, then

d(go f(x), g0 f(y)) = d(g(f(x)), 9(f ()
PR (), S ()
fisometry ; (z,7)
so g o f is an isometry. Since f is bijective, f~! exixts and
for x = f(u), y = f(v) = f'(z) =u, f~'(y) = v and
(7M@), 7)) = A (@), FH W) = d(u,v) =T d(f (), f(v) = d(z,y)

therefore f~! is an isometry.
Isometries thus form a nonempty subset of the set of bijective maps which is closed under
composition and taking inverses, hence a subgroup. O
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1.39 Lemma. Let ag, ..., a, be affinely independent in A(V), dim(V') =n. A Euklidean
isometry f: A(V) — A(V) is uniquely determined by the images f(ao), ..., f(a,).

Beweis. Let f,g be isometries with f(a;) = g(a;), Vi. Then g~' o f(a;) = a;Vi. Let
by :=T_,,(a;) = a; — ag, then {by,...,b,} is a basis of V.

Claim: h:=T ,,0g o foT,, =id.

Since T4, = (T,,) ™", we then have g™'o f = T, 0Tt = id, = f = g proving the theorem.
We have

h(O) = T—ao © g_l °© f o Tao(o) = T—ao o (g_l © f)(ao) = T—ao (ao) =0,
and

h’(bl) = T—(lo © gil © f © Tao (bl) = T—ao © 971 o f(bz + a())
= Tfao o g_l o f(az> - Tfao(ai) = bz

Since h is an isometry, we have for x € V and y = h(z), d(z,0) = d(y,0), d(b;, z) = d(b;, y)
=

Since {by,...,b,} is a basis of V|
(,2) =(y,2)Vz=(x—y,2) =0VzeV=>ar—y=0=>x=y=~h(z)Ve eV
and h = id as claimed. ]

1.40 Theorem. FEvery isometry is of the form f =T, o ¢, where ¢ is an Fuklidean linear
map.

Beweis. Let {ai,...,a,} be a basis of V and ag := 0 a choice of origin. {aq,...,a,} then
form an affine basis. Let by := f(ag) = f(0) and g := T4, o f. Then ¢g(0) = 0.
Furthermore, we set b; := f(a;) for 1 < i < n. We construct a Euclidean linear map

¢ satisfying ¢(a;) = g(a;) = T4, © f(a;) V0O < i < n, by lemma 1.39 we then have
¢:g:T—boof:>Tboo¢:f'

Since ¢ is an isometry, we have
d(as, a;) = d(g(ai), g(a;)) = d(f(a;) — bo, f(a;) — bo) = d(b; — bo, bj — bo)
Let b; := b; — by, then d(a;, a;) = d(g(as), g(a;)) = d(b;, b;). Furthermore,
<ai7 ai> = d(aia O>2 fisogetry d(f(al)a f(o))2 = d(bl7 b0)2 = d(bl - b07 0)2 = d(b~17 0)2 = <~Z7 ~i>
and with

d(as, a;)? = (a; — aj,a; — a;) = (a;, a;) — 2(a;, a;) + {(a;, a;)

15



and

we can conclude

Let ¢ be the unique linear map satisfying ¢(a;) = b; — by = b;Vi=1,...,n.

Let z,y € V, write

rT—y= Z)\iai
i=1

Then it follows

and therefore

so ¢ is Euclidean.

To sum up we have:

Isometries

C

Affine bijective maps

f=Tyo9

with ¢ Euclidean linear map

f=Tyo9

with ¢ bijective linear map

in coordinates:
x+— Ax + b,
A € O(n) (orthogonal)

in coordinates:
x+— Ax + b,
A e GL,(K)

16



2 Dual vector spaces

2.1 Definition. Let V' be a vector space over K.
VY = Homg(V, K)

is the dual vector space of V. Its elements are called linear forms.
From linear algebra 1: Homg (V, W) is a vector space, in particular V'V is a vector space.

Xz

2.2 Example. (1) V=R3 f:R* - R:| y | =z +y+zis a linear form.
z

(2) V=Klz]<gya e K, ¢:V — K : f+ f(a) is a linear form.
(3) Let V={f:R =R, fcontinuous}, [*:V = R: f — [° f(x)dz is a linear form.

2.3 Lemma. Let V be finite dimensional. Then VYV 2 V.

Beweis. VY = Hom(V, K) 2 Mat(1 x n, K) if dimV =n, Mat(1 xn, K) = K"=V. 0O

2.4 Remark. It is not its vector space structure that makes V'V interesting, but its relation
to V! We have a pairing:

VYV = K:(fv)— f(v)

2.5 Definition (Dual Basis). Let dimg V < 0o, B = {vy,...,v,} be a basis of V. We
set v € V'V,

L
U@-V(Uj):%i:{ -

0 else

the Kronecker symbol and BY = {v/, ...

? n

2.6 Remark. v, depends on all of B, not just v;. v;” is defined by linear extension:
viv(i&% Z/\U (v;) ZZH:
j=1 =
2.7 Lemma. Let dimV < oo, B a basis. BY is a basis.
Beweis. We show:

(1) BY is linearly independent.

(2) BY generates V.

Then the statement follows.

17



(1) Let
vy + .o, =0 = YoeV v+ 4 )l (v) =0
in particular, Vi=1,...,n:
0= vy + ...+ pnv,, (v;)
= vy (v;) + -+ pavy (0:)

= (1015 + o+ nOpi

(2) Let f € VY. f is determined by its values on B. Let u; = f(v;), v €V, \; € K :
v =1, \v;. Then

= fOQ_Niv) =Y Nif(vi) =3 N
=D Ai(pavy + o vy (v0)

= vy + A vy (D Aivs)

= vy + .o+ pavy (V)

= f=mvy + ...+, = fe,...,v).

r n

2.8 Remark. If we write v = 3 \jv; and f = 3 pyv) then
v) = Zujvjv(z Aiv;i) Z,uj/\ v; (v;) Z,u])\ dij = Zﬂz‘)\i = AL+ .o+ A
] i i

The pairing V¥ x V. — K : (f,v) — f(v) can thus in coordinates be written like the
A
standard Euclidean scalar product (or matrix multiplication (g1,...,pn) - | @ |)-
An

2.9 Definition. Let f € Homg (V, W). We define its dual map:

frwY = VvVige fi(g)i=gof

v— s ok
f(g)

2.10 Lemma. Let f, f € Hom(V, W), f' € Hom(W,U), A € K. Them:

(1) f* is linear
(2) (idy)" = idyv
(3) (frof)=feo(f)

18



(4) [ isomorphism = f* isomorphism
(5) (f+ = fr+ f1, )= At In particular
t: Homg (V, W) — Homg (WY, V), f s f!
s a linear map.
Beweis. (1) Let g,h € WY, A € K. Then

fflg+h)=(g+h)of=gof+hof=fg)+ f'(h),
ffAg) = (Ag)o f = Ago f)=Af(g).

(2) Let g € VY, then

(idy)i(g) =goidy =g = (idy)’ =idyv.

(3) V- W -5 U, fofeHom(V,U). Let g € UV, then
(f'of)(g)=gofof=(gof)of=fgof)=f(f)(9)
= (ffof) =fro(f)
(4) If f is an isomorphism, there exists f~': W — V. Using 2) and 3) we have

(f ) off=(fof)
fro(f ) =("of)

thus f? is invertible with inverse (f~!)*.

(ldw)t == ldwv
(idv)t - idvv7

(5) Follows via computation.
O

2.11 Theorem (Dual maps and transposed). Let V, W be vector spaces over K with
bases B = (by,...,b,), C = (c1,...,¢m), f € Homg(V,W). Then

(BMc(f))" = ovMpv(f")

Beweis. Let x € W, x = ¥, uic;. Then with f -V = W, ft : WY - VV g+ go f,
f g
V—W —K

¢/ (@) = &/ Qo nics) = Do mie] (¢5) = D mydiy = pua,
J J J

thus © = Y1, ¢//(z)¢;. For f(b;) € W we thus have f(b;) = 1", ¢/ (f(b)))ci.

Hence gMc(f) = (¢/(f(bj)))iz1...m, j=1,..n- For g € V¥ we have g = 321" | g(b;)b;, since
the values of these maps coincide on the basis B. In particular,

£ = S BB =

Jj=1 J

= ovMpv(f") = (¢} (f(0;)))iz1,..m, j=1,.n. = 5Mc(f)"



2.12 Remark. The following diagram is commutative:

s '
1 Homg (v, W) ——> Homy (WY, V")

Mat(m x n, K) L>Mat(n x m, K)

€ 2
sMc(f) — v My (f)
Al AT

In particular: ¢ : Homy (V, W) — Homg (VY, WV) is an isomorphism.

2.13 Definition (Annihilator). Let U C V be a linear subspace.
U'={gecVY|g(u)=0VuecU}CVY

is the annihilator of U.

2.14 Remark. Annihilators are subspaces.

2.15 Theorem (Dimension annihilator). Let U C V' be a subspace. Then

dimU° = dimV — dimU. If (uy,...,uy) is a basis of U and (uy,. .., ug,v1,...,0,) is a
basis of V, then (vy,...,vY) is a basis of U°.

Beweis. vy,...,v) are linearly independent, since they belong to the same basis. It remains
to show: (vy,...,vY) =U"°

"D 7 Let g € UY, g = muY + ...+ ppw) + Moy + ...+ A\ We have
0=g(w)=p = g, ..,v)
7C 7 Since v (u;) =0Vi=1,...,k we have vy € U’ Vj=1,...,7. O

2.16 Theorem (Annihilators and dual maps). Let f € Homg(V, W).

(1) Ker(f*) = (Im(f))°
(2) Im(f*) = (Ker(f))®

Beweis. (1) f' € Homg (WY, VV), let g € WY, then

geKer(f') 0= f(9)=gofeV’
& gof(r)=0Vx eV
& g(y) =0Vy €Im(f) CW
< g € (Im(f))°.
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(2) 7C”: Letgelm(ff)yCcVV=3heW'withg=fi(h)="hof.
Let x € Ker(f) = g(z) = ho f(z) = h(0) =0 = g € Ker(f)°.
7D 7 Let g € VY with g|ker(sy = 0. We construct h € WY with g = f*(h) = ho f.
Choose bases B = (uq, ..., Uy, v1,...,0;) of V, C' = (wy, ..., Wy, Wpi1,...,Wwy,) of W
with Ker(f) = (v1,...,v), Im(f) = (w1, ..., w,), f(u;)) =w;, i =1,...,r. Set

h(wi):{g(“’) ;8_61,...,7~
Then
ho f(ui) = h(f(u;)) =h(w;) = g(u;) i =1,...r
and
ho f(v;)) =h(0)=0=g(v;)i=1,...,k,

since glker(s) = 0.
= hof=g= f'(h) =g= g€ Im(f).

[
2.17 Corollary. rank(f*) = rank(f)
Beweis.
rank(f') = dim(Im(f")) = dim(Ker(f)°) = dim V — dim(Ker(f)) = dim(Im(f)) = rank(f).
0

2.18 Corollary. Let A € Mat(m x n, K). Then rowrank(A) = columnrank(A).

Beweis. A = gMpg(fa) for the canonical basis £ and f4 : K" — K™ : x — Ax. By the
theorem on dual maps and transposed matrices,

pv Mpv(f4) = (8Mp(fa))" = A"
columnrank(A) = dim(Im(f4)) = rank(fa) corollary 217 rank(f%)
= dim(Im(f%)) = columnrank(A”) = rowrank(A)

2.19 Definition (bilinear form). Let VW be vector spaces over K.
b: VW —K:(v,w)— blv,w)
is a bilinear form, if
by : W — K 1w b(v,w)
and
by :V — K v b(v,w)
are linear Vv € V, w € W. We then obtain linear maps
bV —=WY:v—b,
bW = VYV :iwe b,

A bilinear form is called non-degenerate, if b’ and b” are injective.
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2.20 Example. Scalar products are bilinear forms and are non-degenerate:
V.V =V v (v-)
Let w € Ker(b') = the map (w,-) is the zero map = (w,v) = 0Vv € V, in particular

(w, w) = 0.
Since a scalar product is positive definite, w =0 = V' is injective, b” analogously.

2.21 Theorem. Let V. W be finite dimensional, b : V x W — K a non-degenerate bilinear
form. Then

ViV wY, Y w s vy
In particular, dim 'V = dim W.

Beweis. Since V' is injective, dim V' < dim WY = dim W, since b” is injective,
dimW <dimVY =dimV = dimV = dim W and ¥/, " are isomorphisms. ]

2.22 Corollary. Let V be a Euclidean vector space with scalar product (-,-). Then
VSV o (v,

and
V=V e (o)

2.23 Example. Let V = R", (-,-) the standard scalar product, E the canonical basis.
Then

V=VYive (v,
and
VoVYVie e
are the same linear map.
2.24 Theorem (Scalar product and dual space). Let V' be Fuclidean, dimV < oo.

V=SV ioe (0,

(1) Let U C V be a subspace. Then W(UL) = U°

(2) Let B = (by,...,b,) be an orthonormal basis of V and BY = (bY,...,b)) the dual
basis. Then W (b;) = b .

Beweis. (1) dimU+ = dimV — dim U = dim U, thus it is enough to show ¥(U+) c U°.
Let v e Ut = (v,u) =0Vu e U = (v,-) € U°.

(2) W(bz) = <b“ > and <bl,bj> = 51] as B ONB. Thus <bl, > = b;/
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2.25 Definition (Adjoint map). Let V, W Euclidean and finite dimensional,
f € Homg (V,W). The linear map f*: W — V, for which (f(v),w) = (v, f*(w))
Vv e V,w e W is the adjoint map of f.

2.26 Lemma (Adjoint and dual map). f* =¢ 1o flo¥

*

( Vv w u
¢ 1
t
(v) VY ! WY ()
gof X

Beweis.

2.27 Corollary.
Im(f*) = Ker(f)*, Ker(f*) = Im(f)*

Follows using lemma 2.26, theorem 2.16 and theorem 2.24.

2.28 Remark. In the following, we work in R™. R" is a Euclidean space. We identify its
dual space with R™ using the scalar product. Important is not the dual space itself, but
the relation between R™ and (R™)" (they are isomorph).

RZ R

/1 1]

K | :) A .
0l 1’(/@ éfﬁ@ﬂonwﬂ {I-""'ﬂﬁ- Z (_ /1\} o 7 [ O/,
sbove 26 Ledow =6

Abbildung 8: Relation between R? and (R?)Y ®

Convention:

In (-,-), we insert in the first place objects m € (R™)", in the second u € R". m € (R")Y
defines a linear form on R™ via u — (m, u). Note that, vice versa, u also defines a linear
form on (R™)Y via m + (m,u). Thus, the dual space of (R™)" gets canonically identified
with R". (See also linear algebra 2.)

8Image from Hannah Markwig.
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3 Cones, polytopes, polyhedra: the duality theorem

Let R™, (R™)" be dual vector spaces.

3.1 Definition. A (convex, polyhedral) cone in R” is of the form

o = Cone(S) = {>_ Aul\, >0}

uesS

where S C R" is finite.
We say o is generated by S. We set Cone()) = {0}.

3.2 Remark. o is convex, i.e.

ryyeo=Xx+(1-Nyeco VO<A<I,

v

3.3 Example. Some cones:
X (o

\\\\\\ @ \%
N ol

CF,D(SWJ> cohes fm/fjl@(m{

Abbildung 9: Cones *

gisacone: x €0 => M xre€oVA>0.

3.4 Example. Cone(ey, —e;) C R?
Cone(ey, —ey, e3) C R?

3.5 Definition. A polytope is a set of the form

P =Conv(S) ={>_ AaulX, >0, N\, =1} CR"

u€esS
where S C R" is finite. We say P is the convex hull of S.

3.6 Remark. One can define convex hulls as

Conv(K) = N K’

K'CR", K’ convex, KCK'

i.e. the smallest convex set containing K. Then we can show:

CODV(K) = {)\15(71 +...+)\kxk,{l’1,...,l’k} - K,)\l > 072)\Z = 1}

9Tmage from Hannah Markwig.
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in the usual way:

7D 7 Induction on k. For k = 2, \jx; + Aexe € Conv(K) for 1,29 € K, \; > 0,
A1+ A2 = 1, since Conv(K) is convex. For the induction step, consider A\jzq + ... + \gzg
and assume A\, # 1.

A Ak—1

)\1£L‘1—|—+)\kl‘k = (1_/\k)( :L‘k—l)_’_)\k‘xka

but since

Mt A1 =1— N\

A Ak—1
= =1
= TN
A PV
:>1 _1>\kg;1 + ...+ 1 i ;kxk_l € Conv(K)

by induction assumption, using convexity we obtain again Ajx; + ...+ Az, € Conv(K)
”C 7. We show the right hand side is convex:
let \yxy + ...+ Mgk, payr + - .. + y; in the right hand side. Then

has coefficients A\;, (1 — \)u; and
ST A A =N =AY AN+ 1 =N)D =2 1+(1-N)x1=1,

thus this sum is also in the right hand side. Thus the right hand side is a convex set
containing K, and hence Conv(K') C right hand side.

3.7 Remark. If K = {xy,...,z;} is finite, the right hand side in remark 3.6 equals
{3 Nxi| i > 0,3 \; = 1} as used in definition 3.5.

3.8 Remark. We can compare:

Linear Geometry affine geometry
cones polytopes
have a 0-point no special point
o={\ (u,1) eR"™M|ue PX>0} P
0 T

o = Cone(5) s.th. Vu € S :upy1 >0 | 0N O +{ 5 |xiER}
‘/‘En
0

Figure 10 shows a polytope in R**1.

3.9 Definition. Let ¢ C R"™ be a cone. dim ¢ := dimension of the smallest linear subspace
U = span(c) C R"™ containing o.

(P C R™ a polytope, dim P := dimension of the smallest affine subspace W = aff(P) C R™
containing P.)

3.10 Definition (dual cone). ¢ C R" a cone.
The dual cone is 0¥ = {m € (R")"|(m,u) > 0Vu € o}
We will see later why this is a cone.

0Tmage from Hannah Markwig.
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wt A
“ V:QJU‘J“‘QL oA
@,ﬂ{wﬂ

wt
l‘“mfﬁl—ﬁ, JR

/
/
/ -
/
/ - L~
/ - =

IX_{n+1}=1}
R”

Abbildung 10: Polytope in R™+! 10

3.11 Example. ¢ = Cone (( ; ) , ( _11 ))

/\gu
0 e * § & ¢
¢ &:P ¢
/
e . 7 o @
> e >

Abbildung 11: ¢ and oV !

ceen(()(1)
(21w (2 (2]}

For any element v in o, we haveu:/\1<;>+/\g<_11),)\1,)\220

()= ()2 () (V)
AL ) ) (37) (7))

=3\ >0

HUTmage from Hannah Markwig.
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Analogously: < ( 1 ) ,u> >0Vueo

:><m:U>ZOVm€Cone<< —12>7< ! ))
icone«—l?),(})) .

To see equality, take a point m outside Cone << _12 ) , ( 1 ))

0_\/

Since ( —2 ! are linearly independent, they form a basis of R? and thus 3! \;, \g:

1 "\ 1
—2 1

Since m ¢ Cone << _12 ) , ( 1 )), at least one of the coeflicients are negative.

Assume without restriction A; < 0. Then

= Cone (( _12

Q
<
N
Q
o
=
@

N

— R _ ~~——

Abbildung 12: o 2

2Image from Hannah Markwig.
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What are the vectors orthogonal to the facets of this cone?

Plane through 0,

Plane through 0,

Plane through 0,

Plane through 0,

1 0

1 —1 1 | is orthogonal.
1 1
-1 1

, 1 0 | is orthogonal.
1 1
1 0

1 —1 | is orthogonal.
1 1
1 —1

1 0 is orthogonal.
1 1

In (R3)Y, in the affine space {x3 = 1}:

— -

A

—

Abbildung 13: Sketch of ¥ ?

One can prove, similar to example 3.11 that this is indeed the dual cone.

3.13 Definition. For m € (R™)¥ \ {0} we define the hyperplane

and the closed halfspace

H,, = {u e R"|(m,u) =0}

H, = {u € R"|(m,u) > 0}

For a cone o, H,, is called a supporting hyperplane if 0 C H'.
H is then called supporting halfspace.

3.14 Lemma. H,, is supporting hyperplane for o < m € " \ {0}.

Bewess.

H,, is supporting hyperplane for o
o C HY
<o C{ueR"(m,u) >0}, m#0
< (myu) > 0Vu € o,m#0
smeo’\ {0}

BImage from Hannah Markwig.

28



3.15 Lemma. Let o be a cone, u ¢ 0 = 3 seperating hyperplane, i.e.
dm e o : (m,u) <0.
Without proof, only picture 1/: (methodes from analysis)

Cm, ud> <O

Abbildung 14: Seperating hyperplane **
3.16 Lemma. (o

Beweis. " D7 Letu€o = (myu) >0Ymeo’ = ue (a¥)”

7 C 7. Assume there was u € (0¥)Y with u ¢ 0. Then there exists a seperating hyperplane,
i.e. m € 0¥ with (m,u) < 0 but this contradicts u € (¢")", 4. O
If 0¥ is a cone, 0¥ = Cone(my, ..., m,), then

o=(0")={ueR"(mu) >0Ymec’}
={ueR"{m;,u) >0,i=1,...,1}
=H, U...UH

We would thus have: ¢ is the intersection of finitely many closed halfspaces. Vice versa,
if o =H} U...UH then ¢V = Cone(m,,...,m,) is a cone.

Our next (non trivial!) goal is to show that every cone is the intersection of finitely many
halfspaces. We treat this in more generality:

3.17 Definition. A polyhedron in R” is the solution set of a system of linear equalities
and inequalities:

P ={x € R"|Bx = ¢, Az < b}.

3.18 Example. In R3,

-1 0 0 0
B=(001), c¢c=1 A=| 0 -1 0] b=]0
1 1 0 1

Image from Hannah Markwig.
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SIS
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I
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SIS
A
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|
8
IN
=
<
IN
=
8
+
<
IN
_

r\;,_ 2 {%;43

N
N\

Abbildung 15: P in {z = 1} 15

3.19 Definition. The Minkowsi sum of two subsets P, () C R" is
P+Q={p+dqlpePqeqQ}

0 1 0
3.20 Example. (1) In R3, Conv(( 0 ) , ( 0 ) : ( 1 )) =P,
0 0 0

0 (O
Conv 01,10 =qQ
0 1
'?A i& = Pro

Abbildung 16: P+ Q 16
oy con () ( 1) (2)) = oo ((8)-( 1)) =
e = N

Abbildung 17: P+ Q '7

5Image from Hannah Markwig.
Tmage from Hannah Markwig.
"Image from Hannah Markwig.
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(3) Figure 18

G
Abbildung 18: P+ Q '®

3.21 Theorem. [dual description of polytopes, cones and polyhedra).

(1) Polytopes: P € R"™ is a polytope < P is a bounded polyhedron.

(2) Cones: 0 € R™ is a cone < o is the intersection of a linear subspace with finitely
many closed halfspaces, i.e. inside span(o) we can write o = H N ...NH} .

(3) Polyhedra: P = Conv(V') 4+ Cone(Y) for V.Y C R” finite & P is a polyhedron.
Beweis. We will prove 2) later. Now: ”2) = 3)”

7«7 Assume P is a polyhedron. P = {z|Bx = ¢, Ax < b}. We can work in the affine
space Bx = ¢, that is, we can assume without restriction P = {z|Az < b}. Let

T _bl il
o — { : | A : : < 0}
x?’b _bn :L‘n
Tnt1 o ... 0 -1 Tp41
i.e. if P is given by the inequalities a;x < b; (z = (z1,...,%,), a; = rows of A), then o is

the intersection of the halfspaces z,,1 > 0, ¢,z — bjxp,i1 < 0 < a;x < bjx, 1. Thus we

have
P:{xER"|<T)€U}, oN{zp1} =P

Now ¢ is the intersection of finitely many halfspaces i; o is a cone, 0 = Cone(wy, . .., w,)
w; € R™™ (w;)pny1 > 0 (as 0 C {x,y1 > 0}). Without restriction, we can replace any
w; with (w;)n+1 > 0 with the intersection of the ray {Aw;|A > 0} with {x,, = 1}, i.e.
without restriction (w;),.1 = 1.

Let 7 : R*™ — R™ be the projection. claim:

P = Conv(m(w;)|(w;)nt1 = 1) + Cone(m(w;)|(w;)nt1 = 0)

"c”: LetxeP = (T) €o = <313>:)\1w1+...+)\rwr,)\i20.
Without restriction, let

(wl)n+1 =...= (ws)n+1 =1 and (ws+1)n+1 =...= (wr)n+1 =0

8Image from Hannah Markwig.
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=M m(w) + ...+ Asm(ws) + Asi1m(Wsi1) + ... + Ao (wy)
€Conv(m(wi),...,m(ws)) €Cone(m(ws41),-..,m(wr))

since A\; + ...+ Ay = 1 = (n+ 1)st coordinate.
"D 7 Let

x € Conv(m(w;)|(w;)ns1 = 1) + Cone(m(w;)|(w;)nt1 = 0)
=z =Mm(w) + ...+ A7(ws) + Asp1m(Wsy1) + ... + Ao (wy)
withA\y + ...+ A, =1, A >0

:>(f):>\1w1+~--+)\5w5+)\s+1w5+1+--'+>\er60
=zxe€P

? =" Now assume P = Conv(V)+ Cone(Y). Let V = {wy, ..., ws},Y = {wsy1,...,w,.}

T (1) (1) ()

aﬂ{xnﬂzl}:P:{x\(f) Ea},soforanyxéPwehave(x

1 > € o and vice

versa.

By 2), o is a finite intersection of halfspaces. Then P = {z € R"| ( :f ) € o}isa

polyhedron, as we can see by plugging in < v ) into the inequalities for o.

1
773) = 1)77

7= ": Let P be a polytope, then P = Conv(V) + Cone(Y") with
Y =0 g P is a polyhedron. Obviously, P is bounded.

7 <7 Let P be a bounded polyhedron A p- Conv(V) + Cone(Y). f Y # (), P was
not bounded = Y =0 = P = Conv(V) is a polytope. O

Now we move on to preparations for the proof on 2). Idea: If

o = Cone(yi, ...,y
= {tlyl + ... "’trym ti Z 0}
=7({(z,t) e R"""|t; > 0, x = Yt})
where Y is the matrix with the y; as columns. The set {(z,t)|t; > 0,z = Yt} is a
polyhedron. We want to understand projections of polyhedra.

3.22 Definition. Let P be a polyhedron

proj,(P) :=m(P)is its image under the coordinate
projection setting the k-th coordinate to 0
={z — xpex|r € P}
={reR"z,=0,FJyeR: x4+ ye, € P} C{xx =0} CR"
elimy,(P) := ;' (m(P))
={x —tex|z € P,t € P}
={r eR"|JyeR:z+ ye, € P}
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We have elimy(P) = proj,(P) x R.

N

@

peg, ()

. Py
elim., (P

Abbildung 19: elimg(P) and proj,(P) 1

Task: Find equations for eliminating and proj.

3.23 Example.

(1) —xy —4z5 < -9 (green)
(2) —2x; —29< —4 (purple)
(3) 1 — 2x2 <0 (pink)
(4) x; (red)
(5) 2381 + o <11 (orange)
(6) —2x1 4 625 < 17 (yellow)
(7) —6x; — 29 < —6 (blue)

Visualized in Figure 20.

For fixed z1, what are the possible values of x5?
Because of (4), we must take z; < 4. Except (4), we can write all the inequalities such
that they give upper or lower bounds for xs:

(1) —xy —4xy < -9 = i(Q — 1) < X9
(2) =211 — w9y < —4 = (—2z; +4) <2
(3) 21 — 222 <0 = ;xlgm

(4) =1

(5) 2x1 +x, <11 = —2x1 + 11 > a9
(6) —2x1 + 629 < 17 = é(2x1 +17) > x4
(7) —6x1 — 29 < —6 = —611+6 <2y

¥Image from Hannah Markwig.
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Abbildung 20: Lines (1) to (7)

Choose an upper and lower bound, e.g. x5 > %(9 — 1) and —2z1 + 11 > zs.

In order to have x5 which satisfies both we must have —2x; + 11 > i(9 —11).

If for every pair of upper and lower bound we have the expression in x; for the lower
bound < the expression in x; for the upper bound. Then we find x5 in P. In this way, we

can produce inequalities for elimy and proj,! Concretely:

1 S 47
1 1 1
Z(g—lEl) < —21’1+11, = 1(9—1}1) < 6(21’1+17)
1
(=221 +4) < —2x; + 11, = (=211 +4) < 6(23:1 +17)
1 1 1
5%1 < —2x1 + 11, = 5371 < g(2x1 —+ 17)
1
— 06z +6 < —2.’1’)1—|-].1, = —6x;+6< 6(21‘14—17)
< T S 47
71y < 35, — 14 < 14z,
4<11, —7 < l4ay
5.’1,'1 S 22, 2271 S 34
-5 S 41)1, 19 S 383(51

<z <4

N | —

-5 -1 1
(@551:4,73551,—13%,7§$1,§S$1 =

In figure 20, the leftmost point of our intersection of halfspaces is the common intersection
point of the lines (2), (6) and (7). It has a-coordinate 3:

—2$1—$2=—4
—61’1—1‘2:—6
—2.’171+6.’1?2:17
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-2 —-1]|-4 -2 —-1|-4
—6 —1|—6 ~ 0 2|6
-2 6 |17 0 7121

= 23=13, —211 —3=—4

1
:>—2$1:—1:>$1:§

Now more general. Let ¢ be the intersection of finitely many halfspaces,

o=H*, Nn...NnH*, . Write q; in the rows of a matrix A, then o = {z|Az < 0}.

Note: If ¢ is contained in a linear subspace, we can combine two inequalities (a,x) < 0
and (—a,z) < 0 to produce (a,z) = 0. We can write all equations of our linear space
as pairs of two such inequalities into our matrix. Therefore we can restrict to the case
o0 = {x|Az < 0} even is o is contained in a linear subspace.

Let A/* := {a;|a; = 0} U {aigaj + (—aji)as|ag > 0,aj, < 0} i.e. we take the rows of A in
which a;, = 0 < 1z does not show up (z; < 4 in our example) together with pairs of
lower and upper bounds:

<ai7 I)
& QipTE
1

& xp < —({(—a, ) — agry)
Ak

yields an upper bound if a;; > 0,

1
& x> —((—aj, 1) — ajpy)
Ak

yields an lower bound if a;; < 0. The combination of lower and upper bound is

1 1
—((—aj, z) — ajrry) < mp < —((—ai, ) — apzy)
Ajk Ak

Such xj, exists if and only if

1 1
—((—aj,7) — ajrzy) < —((—ai, x) — agxy)
a’jk ik
1 1
& s < —(—a
) € ()
A azk<_aj7$> > ajk<_aiafl7>
& 0> (—ajka; + aa;, x)

3.24 Lemma. Let 0 = {z|Ax < 0}

elimy (o) = {z|A’*z < 0}
proj, (o) = {z|A%z < 0,z), = 0}
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Beweis. The rows of A/* are positive linear combinations of the rows of A, thus the
inequalities of A/* are satisfied for points in ¢ = ¢ C {x|A/*z < 0}. Since the variable
), does not appear in the system A’*x <0, elimy, (o) C {z| A%z < 0}

Vice versa, assume z satisfies A’*z < 0 and let z, = 0. We want to see that there is yeR
s.th. © — yey, € o, then x € elimy (o).

Consider A(x — yey). We want A(z — yer) < 0. We have

A(x — yey) = Ax — Ayer, = Az — y(Aex)
The i-th entry of this vector is {(a;, x) — ya;,. We have

(a;,x) —ya; <0
& (ai, ) < yai
1
-

a,r)y <y ifay >0
<% .
o~ (a;,¢) <y ifay <0

To find a y satisfying all these inequalities, we must have

1
max{a—k@i,x) tag >0} <y < mjin{m
2 J

Such a y exists, since x satisfies A%z <0, i.e. (apaj + (—ara;, x) < 0Vi, 5 with a; > 0,

a;r <0, ie. i(ai, z) < (_;k)(—aj, x) V such i, j and thus also for their min and max. O
i j

(—aj, ) :aj, <0}

3.25 Lemma. A finite intersection of affine closed halfspaces of the form
0:{( ZJ ) € R" x R™|Az < w} is a cone.

Beweis. Claim:

O—Cone({j:<jéi>,1§i§n}u{< 04):1§j§m},

J

7C 7 Let ( i ) satisfy Ax < w. Then

x " e; Ui 0
(o) =Sttt (g, - an( )
since Ax = A(xieq + ...+ zpen) = x1(Aey) + ... + x,(Aey,). This is a nonnegative linear

combination of the generators above, since |z;| > 0, w; — (Az); > 0 as Az < w.

"D 7 Let ( Z} ) be in the cone, i.e.

(o) =5 (i) ez () -5 ()

with A, g, v; > 0, then z; = Ay — py,

wj = (Ax); +v;, as v; > 0
w;— (Az); =v; >0Vj = w—Ar=v>0 = w—Azr >0
w; <w; —v; = (Az); = Az <w
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An intersection of finitely many halfspaces {x|Axz < 0} can be written as

{(i)\AxSw}ﬂ{wlz...:wm:O}

Thus, we now set variables equal to 0 and make sure that the property of being a cone is
maintained.

3.26 Lemma. Let 0 = Cone(S) be a cone, then also o N{xx = 0} is a cone.

Beweis. Let S = {y1,...,y-}. We claim

o N{xp = 0} = Cone({y; : (yi)r = 0} U{yary; + (—yn)vilyix > 0, yju < 0})

7D 7. These generators all have coordinate k equal to 0. Furthermore, they are positive
linear combinations of vectors in S.

"’ Letv=tiyp+...+ty €0, >0, 0, =0= > tyysx = 0.

If t;y; = 0Vi = for one summand, t;y;, either ¢; = 0, but then the summand can be left
out, or y; = 0 = v € Cone(y;|y;x = 0). Else we sort in positive and negative summands:

thyzk— Zt yjk =R>0

1Y, >0 Jyi<0
Then we write v as

v =Yty
= > tyit Y twit+ Yty

2:y;,=0 1Yk >0 7Y, <0
= Z tiy; + Z Rt;y; + Z Rt;y;
1:y;,=0 l Yik>0 J Yk <0
= Z Ly + E Z Z t y]k Liyi + R Z Z tzyzk jy]
2y =0 2y >0 Jry;k<0 JYik<0 4:y;5>0
= > tyi+ Z titi ((=yjn)vi + Yiny;)
1:y;,=0 1y, >0
JYk<0
= v is in the cone as required. O

Now we finally prove part 2) of Theorem 3.21.
Cones: 0 € R™ is a cone < o is the intersection of a linear subspace with finitely many
closed halfspaces, i.e. inside span(c) we can write o0 = H N...NH} .

Beweis. 7 = 7: Let o ba a cone
bl

o = Cone(S) = Cone(yy, ..., Yr)
={tiyy + ... +try,, t; > 0}

=1Il,,0...01,.,, ({<§>€R”XT]Yt:x,tiZO})

intersection of finitely many halfspaces (Yt<z,Yt>z,t>0)

37



where Y is the matrix with the y; as columns.

The right hand side is a finite intersection of halfspaces (resp. can be written as such via
Yt—2 <0, —(Yt—2x) <0, (=t;) <0). Lemma 3.24 shows that for such ¢’ of the form
o' = {z|Az < 0} also elim; and proj, are finite intersections of halfspaces (of the form
{x|A’*2 < 0}). Hence our o is a finite intersection of halfspaces.

7« 7 Assume o is an intersection of finitely many halfspaces (we can assume that by using
two versions < 0 and > 0 for our linear equalities = 0 for the linear subspace), i.e. o is of the

form o0 = {z|Ax <0} = 7 = ) A < w} is a cone by lemma 3.24, and iteratively
w

applying lemma 3.25 we obtain o = 6N{w; = 0}N...N{w, =0} =onN{w; = ... = w, =0}
Is a cone. O

We have finally completed the proof of the duality theorem 3.21 that states that cones
(polytopes, polyhedra) defined via generators are the same as cones (polytopes, polyhedra)
defined via inequalities.

Why is this so good to know?

o for the theory: to finally prove that ¢V is a cone, will be done soon now

e in practice: assume you are given x and want to check whether x € P? That’s easy
if you have the inequalities for P.
Assume you have the task to find a point = € P: that’s easy if you have P given by
generators!

« Computations with polytopes, cones, .... POLYMAKE (TU Berlin) OSCAR

3.27 Proposition. ¢ is a cone.

Beweis. Because of theorem 3.21, we have 0 = Hf N...NH . Let o/ C (R")",

o' = Cone(my, ..., m,).

Claim: ¢/ = ¢V, in particular, ¢ is a cone.

"C Letmeod = m=3 \m;, A > 0. Since (m;,u) > 0Vu € o, Vi (0 C H,), also
(my,u) >0Vu€eo = meaoa”.

7 C ”: Assume not, then ¢’ & oY, let m € oV \ o/. Then there exists a seperating
hyperplane u € (¢/)" with (m,u) < 0. As ¢’ is generated by the m; and u € (¢')¥
= (my,u) >0Vi == ue Hf Vi =>uco=(0")" = (mu) >04% O

3.28 Remark. Generators of the dual cone are normal vectors to the hyperplanes which
cut the cone out, see Figure 21.

What if o is contained in a linear subspace? (Figure 229

We use a pair of two inequalities, e.g. z3 < 0, x3 > 0. We thus obtain two normal vectors
+e3 whose non-negative combination generate a subspace, namely the annihilator of the
subspace generated by ¢ in which o lives.

The dual cone is pictured in Figure 23

20Image from Hannah Markwig.
2'Tmage from Hannah Markwig.
22Image from Hannah Markwig.
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Q)\I
Y

Abbildung 21: ¢ and oV %°

Abbildung 22: ¢ in a linear subspace %!

N
K

Abbildung 23: the dual cone #?
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4 Faces of cones and polytopes
Remember the supporting hyperplanes H,, = {u|(m,u) = 0} for m € ¢¥ \ {0}.
We now also use Hy = R"™ and define:

4.1 Definition. A face of a cone ¢ is 7 = o N H,, for some m € ¢". For m =0, o is a
face of itself.

4.2 Example. ¢ = Cone (( ; ) , ( _11 ))

/\
v
6
e e+ [ 8 ¢
¢ &: 0 ¢
T
o . PR
> Y] " 2 >
Abbildung 24: o and o¥ **
oV = Cone (( _12 ) , ( 1 )) Faces of o
..!-Ir' .;f-'/TA: | {_) —_
@ @
P 2?
@ @ 2
.l 2 ‘)

Abbildung 25: Faces of o #

If we take m = A\ymq — Aoma, \; > 0,

2Image from Hannah Markwig.
24Image from Hannah Markwig.
25Image from Hannah Markwig.
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Abbildung 26: H,, N o *

for m = 0, we obtain 0. Altogether, we have 4 faces: the cone point (origin), two rays and

o itself.

4.3 Example. Faces of o: origin, 4 rays, 4 2-dimensional faces (the intersection with the
defining hyperplane, i.e. the hyperplanes whose inequalities cut out o), o itself.

Abbildung 27: o °

4.4 Lemma. Let o be a cone.

(1) o has finitely many faces.
(2) A face of o is a cone itself.
(3) The intersection of two faces of o is a face of o.

(4) The face 7' of a face T of o is a face of o.

Beweis. Assume o = Cone(S). H,,, N o is generated by all u € S s.th. (m,u) = 0.

(S ={uy,...,uxh,u € o,u=3 Nu;, \; > 0,u € H,, & (myu) =0

< Y Ai{m,u;) =0 < wu is a non-negligible combination of all u; with (m,w;) = 0.) This
proves 2). In particular, there are only finitely many faces, as there are only finitely many

26Image from Hannah Markwig.
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subsets of the finite set S. This proves 1).
3) Let m = Hy,, No, 70 = Hyy, No. Since m; € 0, (mi,u) > 0Vu € o.
Hyyvmy, No = A{u € a|(my +ma,u) =0}
= {u € o| (my,u) + (ma,u) = 0}
—_—
>0 >0
= {u € o|(my,u) =0 and (my,u) =0}
= {u € o[(my,u) =0} N {u € o|(mg,u) =0}
=(Hp, No)N (Hp,No) =1 N T
4)Let 7 = oNHypy ',y = TNHypy,my € 0¥ ,my € 7V, Assume 0 = Cone(uyg, . . ., Ug, Ugg1, -« - 5 Uy
s.th.
(my,u;) =0fori=1,... k
and (mqy,u;) >0fori=k+1,...,r

Then u; € H,,, No=1fori=1,....k = (mg,u;) >0Vi=1,...,k, as my € 7".
Pick p big enough, p >> 0, s.th.

p(my,w;) + (mo,u;) >0 Vi=k+1,...,r

This is possible, since (mq,u;) > 0. (Note that my € 7 but not necessarily in 0", so that
(ma, u;) < 0 is possible.)
Then pm; +ms € 0¥. Let u € o,u = 3 \jui, A\; > 0.

(pmi +mo,u) = Z i (pmy + ma, u;)

k r
— >\Z , Ujg )\Z y Wy s Wy 2 0
z.:1\/<mz U>+i%1v(p<m1 u;) + (M2, ug))
>0 >0 >0 >0

0N Hymysmy, = {u € o|(pmq + mg, u) =0}
= {u € alp(my,u) + (ma,u) = 0}

If (my,u) >0, then p(my,u) >>0 = p(my,u) + (mg,u) #0 = (my,u) =0
= u € H,, No =71 but then also (mg,u) =0 and u € 7N H,,, = 7.

Vice versa, every u € vy is in Hpp4m, N 0. [

-3 1 v -1 1 .
4.5 Example. ¢ = Cone N , 0 = Cone 1) s , shown in
Figure 28.

(e cm(()-( (1))

2
1 )€ ™V Hp, N7 ={0}.
Since here, mgo € 7V \ 0¥, 3u € 0 : (my,u) <0,

o ()((2)(3)]-

But if we add pm,, we get back to o¥. Here, p = 2 works.

Let mo =

2"Image from Hannah Markwig.
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Abbildung 28: 0,0V, 1,7V 7
Notation: A facet is s face of codimension 1, (i.e. dimension one less than o). An edge is
a face of dimension 1. A strict face is a face which is not o.
4.6 Lemma. Fvery strict face is contained in a facet.
Beweis. 1t is enough to show that every 7 = H,, N o of codimension > 1 is contained in a
face of strictly bigger dimension. Let V' = span(o), W = span(r),oc = Cone(uy, ..., u,).

The equivalence classes u; € V/W are contained in H-. We can move this halfspace around
s.th. it still contains all u;, but such that one u; # 0 moves into Hy:

(o)

%
Abbildung 29: o, Hz %
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T = origin, m = , H = upper halfplane. Turn such that one edge moves into the

1
hyperplane (see Figure 29). Then Hyz N o is bigger than 7, since it additionally contains

4.7 Remark. If codim 7 = 2 (as in Figure 29), then V/W is 2-dimensional and there are
exactly 2 such faces/ choices of hyperplanes. It follows:

If 7 is a face of codimension 2, then 7 is contained in precisely 2 facets F}, I3, and
7 = F} N F5. By induction we can conclude: Every strict face is the intersection of all
facets that contain it,

T = ﬂ E;.

TCF;, F; facet

This is because, if 7 is of codim > 2, we find a facet v with 7 C . By induction, 7 is the
intersection of all facets of v that contain it. But a facet of v is a face of ¢ of codimension
2 and can be written as the intersection of two facets as above.

4.8 Lemma. The topological boundary of a cone is equal to the union of its strict faces
(or facets).

Beweis. Let p € 7 = H,, No with m € 0¥\ {o}. As 0 C H/ and (m,p) = 0 there
exist points ¢ arbitrarily close to p which are not contained in ¢ = p is contained in the
topological boundary. Vice versa, let p be a point in the topological boundary. Let p; — p
be a converging sequence of points p; ¢ o.

For each p;, there exists a separating hyperplane H,,,, m; € " s.th. (m;,p;) < 0. We can
choose m; s.th. ||m;|| = 1, then the sequence (m;);c; is bounded and thus has a converging
partial sequence. Without restriction m; — m, m € ¢ \ {0} (as m; € ¢¥ and ¢ is closed)
m # 0 as ||m;|]| =1Vi. As p € o, (m,p) > 0. But

(m,p) = lim (m;, p;)
——
<0
= (m,p) =0=p € H,, No = pis contained in a strict face of o.

As every strict face is the intersection of the facets that contain it, we can as well take the
union of all facets. O

4.9 Remark. If span(c) = R™ and 7 is a facet, then 3 normal vector m, € ¢" which is
unique up to multiple with a scalar, s.th. H,,_ Mo = 7. This is true since span(r) is a
hyperplane, whose normal vector is unique up to multiple with a scalar.

From Chapter 3, we know already:

o= ﬂ H} .

T facet

Now, we can phrase this differently and reprove the equality (without the constructive
approach from Chapter 3):

28Image from Hannah Markwig.
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Beweis. 7 C ”: since m, € 0¥, = 0 C H} V.

7D 7 Assume there exists p E NH, ,p ¢ o. Let ¢ be a point in the topologmal interior
of o (6°). Let p' be the last pomt in the line pg which is still in . Then p’ is in the
topological boundary of o and thus contained in a facet 7. But then (m,,¢) > 0 (as ¢ is
in the interior of o, so not in the topological boundary, so not in the facet 7), (m.,,p’) =0
= (m;,p) <0%pe H O

4.10 Definition. A cone o is called rational if 0 = Cone(S) for a finite subset S C Z".

4.11 Remark. The dual cone of a rational cone, and faces of a rational cone, are rational
themselves, since the normal vectors of facets are again rational.

4.12 Definition. A cone is called strictly convex if {0} is a face.

_ Come (C8), 08, (D)
& e

1/10

\S’Pﬂ C,J’Ej ConveX

Abbildung 30: (strictly) convex cones #’

4.13 Example. For strictly convex rational cones, there is a nice generating set: Let p be
an edge of 0. As o is strictly convex, p is a ray (a half line). As o is rational, there must
be integer points on p. Denote by u, teh first integer point we reach on p starting from 0
and call it the ray generator of p.

s

Abbildung 31: p and the ray generator u,

30

4.14 Lemma. If o is strictly convex and H' a halfspace with H* N o # {0}, then H*
contains a ray of o, see figure 32.

Beweis. Induction on dimo.

If dimo = 1 (0 = Cone(u)), the statement is clear, since H contains Au, A > 0, if it
contains u # 0, u € o, hence the whole ray.

If dimo = n: since o is strictly convex, H™ ¢ o, hence in H' there are as well points
p # 0 in o as points ¢ # 0 which are not in o.

If o C H choose q ¢ 0, q ¢ H, see figure 33.

29Image from Hannah Markwig.
39Tmage from Hannah Markwig.
31Tmage from Hannah Markwig.
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S
X
A

| ] )7/
Abbildung 32: (Not a) ray of o *!

Ga ed ft= {52205
Pik q s gz e

pRts)
Abbildung 33: 0 C H **

If o ¢ H pick p ¢ H, see figure 34.

A3

o
"4

Abbildung 34: 0 ¢ H *3

In any case, the line pg does not pass through 0. On the line pg there is a point p’ in
the topological boundary of o. This point, p’, must be contained in a strict face 7 of o,
dim7 < n.

We have 7N H' # {0}, since p’ e TN H™.

By induction, a ray of 7 is contained in H'. But then also a ray of ¢ is contained in
HT. m

4.15 Lemma. A strictly convex rational cone o is generated by its ray generators.

Beweis. Let o be the cone and ¢’ = Cone(ray generators). Then o/ C . Assume Ip € o\o’.
Then there exists a seperating hyperplane H,,,m € (¢')" : (m,p) < 0. As m € (¢')¥ we
have (m,u) > 0Vu € ¢/ = H, N{c'} = {0}. But H,, containes p, thus H, No # {0}.
By lemma 4.15, H,. contains a ray of o 4 as all rays are in o’. [

32Tmage from Hannah Markwig.
33Tmage from Hannah Markwig.
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Now we turn to faces of polytopes. Here, we need affine supporting hyperplanes:

Hyp ={u e R"(m,u) =b}
HY: = {u € B[ {m,u) > b)
4.16 Definition. A face of a polytope P is
Q=H,,NP for me(R") beR
satisfying P C H ,. P is a face of itself. § is a face of P.

4.17 Example. Faces of the triangle in figure 35 are: ), the 3 vertices, the 3 edges and
the triangle itself.

T &

Abbildung 35: Supporting hyperplanes which cut out nothing (by), a vertex (bs) or an edge
(bg) 34

4.18 Remark. Let P be a polytope, consider it inside the affine space
C {zy1 =1} C R and let op be the cone over P, (Cone(P)).

Ay 7 1S

P 2
>
Hm b /

Abbildung 36: P and op %

Faces of op are precisely the cones over faces of P (where {0} is the cone of ), the empty
face of P):

Let 7 be a face of op = 7 = H,,Nop for m € o). Thusop C H, = P C (HN(R"x{1})),
and H,,, N (R™ x {1}) is an affine hyperplane cutting out a face @) s.th. 7 = 0g.

Vice versa, let @) be a face of P, then ) = PN H,,; for some P C Hﬁb. H,p x {1}
together with 0 generates a hyperplane Hy, in R" s.th. o € Hf, and o N Hy, is a face T
s.th. 7 = o0g.

Accordingly the following results on faces of cones hold for polytopes analogously:

34Tmage from Hannah Markwig.
35Tmage from Hannah Markwig.
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4.19 Lemma. Let P be a polytope.

(1) P has finitely many faces.

(2) A face is a polytope.

(3) The intersection of two faces is a face.

(4) The face of a face of P is a face of P.

(5) Every strict face is the intersection of all facets containing it.

(6) The topological boundary of P is equal to the union of its strict faces (or facets).

(7) The defining inequalities of a polytope P (of dimension n in R") are given by the
normal vectors of its facets.

4.20 Definition. A lattice polytope is the convex hull of a finite set S C Z".
The cone over a lattice polytope is rational and hence generated by its ray generators.

4.21 Corollary. A lattice polytope is the convex hull of its vertices (vertex = face of
dim0).

Beweis. This follows since op is generated by its rays and the rays are the cones over the
vertices. O

4.22 Remark. In fact, more generally: A polygon is the convex hull of its vertices.

This holds true, since the proof that a rational cone is generated by its ray generators can
be modified in such a way that we see: a cone is generated by a set wu,, where u, is an
arbitrary point # 0 on p.

Rational was only needed to define u, as ray generator.

4.23 Proposition. Let P = Conv(K), then K contains the vertices of P. In particular,
the set of vertices is the unique minimal generating set of P.

Beweis. Let o be the cone of P. Assume a vertex () of P was not in K. Let 7 be the cone
over (), then 7 is a ray of 0. () must be equal to a convex combination of K:
Q=Mui+ ...+ A, \i > 0,2\, =1 for K = {uy,...,u,}. Divide this sum into two
summands which are not 0 (this is possible, since we assume @ ¢ K). Q = v + w. Then

Qx{l}=vx{l}+wx {1}, and vx{1},wx {1} €0,
but v x {1}, w x {1} ¢ 7, since 7 only contains positive multiples of @ x {1}:

A (Q1D)=w]l) = A=1=v=0Q %
Homework: If v,w € c,v+w € 7= v,w € T 4. n

Also an analogue of the dual cone oV exists for polytopes:

4.24 Definition. Let P € R™ be a polytope. The polar set P” is defined by
P2 = {m € R")"|{(m,u) <1Vu € P} C (R")Y
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N 'P FA

Abbildung 37: P and P* 3¢

s peamte 2o (2 ).(7).(1).(21))

oo ((1).(0) ( O () e

Since ! , ! <1, 1 , -1 < 1,... all 16 combinations < 1, also
0 1 0 1
o 1 -1 -1 1 1
for convex combinations. < ( 0 ) s A1 ( 1 ) —l—)\g( 1 > —{—)\3< 1 ) +)\4< 1 > > =

)\1< ( (1) ) , ( :1 ) > + ... <1, since every scalar product is < 1 and Y. \; = 1.

4.26 Lemma. Let op be the cone over P, then

—P2 =g N (RN x {1})

Beweis. 7 D7 Let (m,1) € oy N ((R™)Y x {1}) = (m, 1) € o).
If P = Conv(uy,... uT):>ap—Cone ( 1 ) <lir )).As

[
() eet= ({7 )-(7))=0m

<:><m ;) > —1Vi
& (—myu;) < 1Vi

ll

Let u € P, then u = MAu; +...+ Au, for \; > 0,2\, =1
= (—m,u) = Z)‘Uz Zx\i<—m,ui>§2/\i:1 = —meP> = me-P>

"C” Let —m € P2 = (—m,w;) <1Vi= (m,u;) > —1 = (m,u;) +1>0.

36Tmage from Hannah Markwig.

49



=(m,u1)+1>0, as (—m,u;)<1,(m,us)>—1 =(m,uy)>0

= (”f) e ol n(RY)Y x {1}

4.27 Example. .

P (S ok
e cHoces
, 7)), (3, 65)
P
I [
© ek
W/M{Sv i
E Gl o o
TS VL‘DW’( vectors
b; % 4y (3),(3) )
P

N
A {Mkﬂld{pj
A// B A \\\\\\
ONLREE
A7 D L ~

W“ﬁ s ° ﬁ‘ Pa

Abbildung 38: Intersections with (R?)Y x {1} *7
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Indeed, since all points in P have nonnegative coordinates, the whole negative orthant
satisfies < 1.

4.28 Theorem. Let 0 be a point in the interior of P, 0 € P°. Then P* is a polytope, the
polar polytope (or dual polytope), and vice versa.

Beweis. 0 € P (interior) = all inner normal vectors of op have a positive last coordinate
& opN(RY)Y x {1} is a polytope < P* is a polytope. O

4.29 Lemma. If 0 € P° then also 0 € (P*)°.

0

Beweis. 0 € (P?)° & e (0p)°.

We can put P into a box B:

Abbildung 39: P in the box B. *®

Then P C B=op Cop = 0} D 0.

Using lemma 4.26 and example 4.27, we see [ | € (o)})°. O

4.30 Theorem. Let 0 € P°. Then (P*)> = P.

Bewess.

—P% = op N ((R")Y x {1})
= O_ps = UX,
= (P?)® = =(=P%)”® =0'pa NR" x {1}
= (0p)" NR™ x {1}
=opN R"™ x {1}
=P

4.31 Definition. A lattice polytope is called reflexive :<= P* is a lattice polytope.

37Tmage from Hannah Markwig.
38Tmage from Hannah Markwig.
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-1 -1 1 1
4.32Example.P—ConV<<_1>,< 1 >,<_1>7<1>>
0 1
T -1 0 x 1 : o
_{<y>| 0 1 <y>§ 1 }1sreﬂex1ve.
0 -1 1

Abbildung 40: P and P*, P is reflexive. %

po—cam((3):(9)( %) ()

4.33 Proposition. A lattice polytope is reflexive < it can be given in the form {u|Au < 1}
with an integer matriz A.

Beweis. " = 7: From (P#)® = P it follows that P is reflexive. By definition,
P2 ={m e (R")Y|{m,u) < 1Yu € P}
from which we can deduce the form above, using the integer vertices u of P.

7«7 Let P={u|]Au < 1}. Let @ be a facet of P given by the equation (m,u) = 1. As
A is an integer matrix, we can assume m € Z". The corresponding facet of op has the

equation < ( Tl > , ( llb ) > =0. = < Tl ) is a ray generator of o),

= P2 = —g}n(R"Y x {1}

has the vertex m € Z" and all vertices arise like this. Hence P* is a lattice polytope. [

39Tmage from Hannah Markwig.
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4.34 Example. Figure 41

Ex

A

T= Conu (L ) L \ (3))

=l

oo~ s (8 6),C)E)
Y= = —xt1
' = X+ﬂ é/\f &j"’){ =/
e { KogeA, —xty s ﬁ

Abbildung 41: P and P> *°

4OTmage from Hannah Markwig.
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5 Fans

5.1 Definition. Let Y be a finite set of cones in R” s.th.

(1) Every face of 0 € X' is also in Y.
(2) The intersection o7 N g of 01,09 € X' is a face of oy and 3.

Then X is called fan.
The support of a fan is

supp(X) = |J o
oeX

A fan is pointed if 0 € X.
A fan is equidimensional, if all inclusion maximal cones have the same dimension.

A fan is complete, if supp(X) = R™.

‘sigma ist 11 elem. Menge: Mittelpunkt, 5 Strahlen, 5 Flichen
supp = R"2

L, | 62

62,
“‘MVLQJL
O N J

@-P (r @5\/"” | u;gﬂ;[-”’%-‘ﬂrawﬂ/ﬂ)

Mittelpunkt, 4 Strahlen,
2 Flichen'Ke

ol

pointed, not complete

o ot %Mﬁm

ot
wCW sk
cmmf
\MMW‘J
DJ 1& } mek@i

Abbildung 42: Fans *!

“Tmage from Hannah Markwig.
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We will study the (outer) normal fan of a polytope.
5.2 Definition. P C R" a polytope, @) a face.

og:={me R"),Q C {ue P|{m,u) = 2}2}3{(7%,1/}}}
N (P) :={00|Q face of P}

the (outer) normal fan of P. (Gets minimized on the face @), minimize for the inner
normal fan.)

5.3 Example. We identify (R?)Y and R2.

CC"J'A")

v 1 E_ 1
E 3= .

GD O\}E 2 C/T 9“5
Abbildung 43: P = Conv(vl, Vg, v3) 1

A functional m defines an orthogonal hyperplane, it takes the same values on a shift of

this hyperplane. Maximal values in P are thus taken on a face. E.g. m = < 1 )

m=(D 1 E —U\\f&

Abbildung 44: m *3

0., = Cone << _01 > : ( 1 )) N (P) is pictured in figure 46
5.4 Lemma. o is a convex cone (polyhedral: later).
Beweis. If m € 0g =
Q C {u € P|{m,u) = ma;g(m,u@}
u'e
={u € P|AX(m,u) = /\mafjc(m,u')}
u'e

20 fy e Pl(Am,u) = H}g}}){()\m,u’ﬂ

42Image from Hannah Markwig.
43Tmage from Hannah Markwig.
44Tmage from Hannah Markwig.
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To  obtin P2 eyl bebwee

) el (4) N =

N(P)= =

x|
Abbildung 45: N (P) *

= Am € og for A >0.0-m =0 € o¢ since

QCP={uePl0=(0,u) = g}g})__)((O,tL’}}.

For convexity, by the above it is sufficient to show m; + my € o¢ for m;,ms € 0. Let
u € @, then

(my,u) > (my,u)Vu' € P,
(ma,u) > (mg,u")Vu" € P
= (mq + ma, u) = (my,u) + (ma,u) > (my + mo,u”)Vu" € P
= Q C {u € Pl{{my +may,u) = n;g}gc(ml + mag,u)}
=my +mg € 0g.
[
5.5 Lemma. Assume dim(P) = n. Then og = Cone(mp|Q C F) where F' denotes the

facets of P and mp the (up to positive multiple) unique outer normal vector on F.

Beweis. > " Let m € Cone(mp|Q C F),m =Y gcp Apmp, Ap > 0. Assume the affine
hyperplane H,,, o, cuts out F'. Here, we take outer normal vectors, i.e. P = Np gacet Hm

Let b = ZQCF )\FCZF.

F,afr:

H {m Fa F}

Abbildung 46: F %°

Claim: P C H,, ;. Let u € P

= <m,u):(z Apmp,u) = Z Ap (mp,u) < Z Apap = b

F F F
Qc QC <ap, since ueP Qc

45Tmage from Hannah Markwig.
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Claim: Q C Hy,, N P.
Q C Pv'. @ is the intersection of all facets F' containing ). For any such facet, we have
u € F < (mp,u) = ap. Hence

ueQ e ue (| F & (mp,u)y=apVFDQ.
QCF

For u € () we thus have

(myu) = (> Apmp,u) = > Ap{mp,u) = > Apap =b

QCF QCF — QCF
= u € H,,;. Thus the functional m takes its maximum for points in P on Q = m € oq.
7C 7 Let m € og = m takes its maximum on @), i.e. m defines an affine hyperplane

Hyp with P C H,, and Q C Hyp N P. Let v € @ be a vertex of P. The facets F' are

given by the affine hyperplanes H,,, ,,.. Consider
o= ﬂ Hp .o
FuveF

As a finite intersection of halfspaces it is a cone, satisfying (—o)¥ = Cone(mpg|v € F) by
chapter 3. Since P C H,,, and v € Q C Hy,, N P we have

O'CH;L,O:>—O'CH$70:>m€(—0'>v:>m:Z)\Fmp, Ar >0
FoweF

O .
"y, \ /
{

I
—

"
o b

Abbildung 47: o “°

(Pretend that v is zero, look at the cone from the sides.) It remains to show that Ap = 0V F'

sth. Q ¢ F.
Choose p € Q, p ¢ F; for some @ ¢ F;. Since p and v € () C H,,;, we have

b= (m,p) =Y Ar{(mp,p)

F
ve <ap

b= (m,v)=> )\F<m_p,v>

veF

= Z Arap

veEF

46Tmage from Hannah Markwig.
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where the last equality holds since v € F.
Since p ¢ F; we have (mg,;,p) < ag,. Since

(mp,p) <apVF(pe€ P) and since Z Ap{mp, p) = Z Arap

veEF veF

we conclude Ap; = 0. Hence m = Y- p Apmp. ]
5.6 Definition. Let 7 be a face of a cone o.

= {m € (R")V|(m,u) =0V u € 7}

™ :={meco'|{mu) =0Yuecrt=0"N7"
We call 7* the dual face of 7.

5.7 Example. 0* =" Not =0" N {0} = vertex
(vertex)* = oV N vertex® = o" N (R")Y = oV

Abbildung 48: 7* 47
5.8 Proposition. (1) 7* is a face of 0V.
(2) dim7* + dim 7 = n.
(3) The map T+ 7* is an inclusion reversing bijection between faces of o and faces of o".

Beweis. (1) Faces of oV are, by definition, of the form ¢¥ N H, for some v € 0 = (¢¥)V.
Let 7 be the face of o s.th. v € Relint(7), then

oV N H, ™ =" (cVNTYNH,=0c"N(r"NH,) (1)
Claim: 7V N H, = 7+
7’ form e 1Y we have (m,u) > 0V u € 7. Assume 7 = Cone(vy, ..., v,),

= Jd\; > 0 s.th. v =Y \v;, as v € Relint(r) = for m € 7V N H, we have

0= (m,v) =(m,> \v;) = Z\)\; (m, v;)

>0 >0 as merV and v;eT
= (m,v;) =0Vi=1,....,r = mert
"D 1t CrV. Asv €T we have (m,v) =0YVm et = 7t C H,.
Thus 1oVNH,=0"N(tVNH,)=0"N1t=1"
Hence 7* is a face of ¢V and every face of ¢V is of the form 7*.

4"Tmage from Hannah Markwig.
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(3) If

T C T :TILCT; :TILQO'\/CTQLQO'\/ =7 DT,.

We have 7 C (7%)*, since
(") ={u € o|(m,u) =0Vm e 7°}.

*

Since inclusion is reversed, we obtain 7% D ((7%)*)*.
But if we insert the face 7* of ¢V in the relation 7 C (7%)* above, we obtain
™ C ((1%)*)* = 7 = ((7%)*)*. Thus the map 7 — 7" is a bijection.

(2) The smallest face of o is

(o) = {u € R"|(m,u) =0YVm € 0"}
C{u e R"|(m,u) >0Vm e c"}
— (V) =0

since
ueo < (mu)>0vYmeo’
ue€—o & (mu) <0Vmeao’
u€on(—o) & (mu)=0Ymeo’ < uc ()"
= dim¢" + dim(¢")* = dimo” + dim(¢¥)* =n

Analogously, the smallest face of ¢V is 0* and dim o + dim ¢* = n. Given a face 7 of
o, T C o, consider a maximal chain of faces of ¢ containing 7:

77 CnncC..Cr; C...CT.=0

=(oV)* =T

We have dim 7; = dim(¢¥)* 4+ j and dim(c")* + r = dim 0. Consider the dual chain:

o o7 D... D7) D... Do
=T7*
n—dmo+7r n—dmo+r—1...n—dimo+r—14¢...n—dimo
To cnn C... cTn C...CT =0
:(O'V)* =T
dimoc—r dimoc—r+1...dimoc —7r+14¢ ... dimo

=dm7"+dimT=n—-dimoc+r—714+dmo—-—r+i=n

29



Abbildung 49: 7* 4

1

5.9 Example. v; = ( ! 1

) € Relint(7), 0¥ N H, = 7%, vy = ( O > € Relint (o),

0

0
o*=0"Not =0"N{0} =vertex = 0¥ N H,,, v3 = <
(vertex)” = oV Nvertex: =o' N(R")Y =0" =0V N H,,

) € Relint(vertex),

5.10 Theorem (Normal fan). Let P be a fulldimensional polytope.
Let Q, Q) be faces of P.

(1) Q CQ & og Doy
(2) If Q C Q', o¢ is a face of og and all faces of og are of this form.
(3) og Nog = ogr, where Q" is the smallest face of P containing Q and @'
Beweis. (1) 7 ="
og = Cone(mp|Q' C F) < Cone(mp|Q C F) =o0q

since every facet containing @)’ also contains Q).

"< lfog Cog= V generators mp of og (i.e. Vmp with Q' C F') we also have
mp € 0g = V facets F' with )’ C F' 3 supporting hyperplane H,,, ,,, of P s.th.

QCF=Hy,,.,."P=QcC (| F=Q
F|Q'CF

(2) Let v € Q be a vertex. As before we consider 0 = NpjperH,,, o

Abbildung 50: @ and Q *’

48Tmage from Hannah Markwig.

60



@ corresponds to a face Q of (—o) which, by proposition 5.10 yields the dual face
Q= (—0)"N QA" of (—0)".

We have (—0)¥ = Cone(mplv € F) = 0, and Q* = Cone(mp|v € F and Q C Hy,,.0).
As v € @), we can conclude from Q C H,,,0,Q C Hppop = Q@ C F

= Q" = Cone(mp|Q C F) = o0¢ is the dual face to Q of (—0)" = 0,. Since all faces
of (—o)" are of the form Q* for some Q, also all faces of o, are of the form og. With
that, also all faces of g are of the form oy,.

If Q@ C Q' og is also a face of (—o0)" = 0,, and hence because of 1) o is a face of

O'Q.

(3) Let Q" be the smallest face of P containing () and @)’. Then

" — ﬂ F — ﬂ F
F|lQ"CF F|QCF
and Q'CF

(if the intersection is empty, Q" = P)
By 2), o~ is a face of og and of

og = ogr CogNog (2)
Assume og Nog = {0} = op, then
ogNog C ogr,ogr = {0} = Cone(mp|Q" C F) = Cone() = Q" = P.
Assume now og Nog # {0} and let 0 # m € og Nog .

Let b = max, vertex of P(M,v). Claim: P C H_ ;.
If

wEP=u=>Y ANu,A>0,) A =L{mu)=> A(mv) <> Ab=D_N)b=1b

Since m € 0g,0¢ and H,,; is a supporting hyperplane of P = the form m takes its
maximum on () and on Q' = Q, Q" C H,,, N P. Since H,,;, N P is a face that contains
Q and @', and Q)" is the smallest face that contains ) and @’

=Q"CH,,NP

= m takes its maximum on Q"
= m & ogr

= og Nog Cogr

(2 o
= UQ N UQ/ = O'Q//

O

5.11 Definition. The lineality space of a fan X' is the biggest subspace of R™ which is
contained in every cone of .

5.12 Example. o Y pointed < lineality space = {0}
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.
Abbildung 51: X °Y

1 —1 1 1 -1 0
o )M = {Cone 1(,] =1 1,10 , Cone 11,1 -1 1],]1 ,
1 -1 0 1 1 0

el () E () ()

5.13 Definition. Let X be a fan and 0 € X. The star of o0 € X' is a fan in R”, stary(o),
whose cones are indexed by 7 € X with o being a face of 7. Let w € o. The cone in
stary (o) with index 7 is the Minkowski sum

T={veR"Fe>0:w+eveT}+spanc —w

i AT
7
s
.:Jif“’(-
ﬂfﬂhaﬂij N
Y o,

Abbildung 52: w and w’ !

49Image from Hannah Markwig.
"0Image from Hannah Markwig.
5'Tmage from Hannah Markwig.
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We show that 7 is independent of the choice of w:

{veR"Fe>0:w+ev €T} +spanoc —w
c{v eR"I >0:w' + v €7} +spanoc —w' :

Let v +r — w be in the left hand side, i.e. w 4 ev € 7 for some € > 0, r € span(c). Let
v' = L(ev +w — w'). Then

wHe=uw+ev+w—w=ecv+wer.
1

1
v+r—w=—-(ev+w—w)+(—)(w—-uw)+r+uv —w-—uw
€ €

,Ul

€span(o)
is contained in the right hand side.

5.14 Example. The lineality space of stars(o) is span(o).

& L
5 \_2 V

Abbildung 53: stars(c) >

Exercise: Let @ C P be a face, then N(Q) = stary(p)(og) and has lineality space
span(og) = span(Q)*. In particular, normal fans of of polytopes which are not full-
dimensional can be viewed as the sum of the normal fan in its span and a lineality
space.

5.15 Example. .

Abbildung 54: starx (o) *

52Image from Hannah Markwig.
53Image from Hannah Markwig.
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5.16 Proposition. Let P C R" be full-dimensional, N'(P) its normal fan. Then:

(1) dim @ +dimog =n
(2)

R)Y= U o= U o9

v vertex of P Q face of P

In particular, N (P) is complete.

Beweis. (1) Let v be a vertex of ). As before, ) corresponds to a face Q of NpyerH,,, o
and for the dual face Q* of the dual cone g, = Cone(mp|v € F') we have Q* = oy,.

Then

dim @ + dimog = dim Q 4+ dim Q" = n.

(2) Let m € (R")". Let b = max{(m,v)|v vertex of P}. Then P C H,, , as we saw before
and v € H,,; for at least one vertex v of P. Then m takes its maximum at v =
m € o,. The second equality is clear.

]

Not every complete fan is the normal fan of a polytope, see exercises. Our next goal is to
study normal fans of lattice polygons. We will see that there is a natural way to define
weights in their codim—1—skeleta s.th. they fulfill the so-called balancing conditions. To
define these weights and to state the balancing condition, we need to discuss lattice
indices.
More about this topic can be studied in an algebra class or any class that discusses the
classification of finitely general abelian groups.
Remember: for a (finite) group G and a subgroup U, we call |G/U]| the index. If G =Z
and U = mZ, |Z/mZ| = m
a - i
RZ fal holex L =
—f———— 0 (,U\QJ:J&ZCDV‘GL
Z_ (;1,4,& belovss
do {e cblathe

o . & e : & }\]OL"\J"' Z’Z
9 e - f ¢ A
el s Z(D02
- s>

e - ® ¢« ° [L,LOLLX':”B

Abbildung 55: Index 2 and 3. **

*Image from Hannah Markwig.
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How to understand the Z-span of ( ? ) , < ; )?

Z™ is a module (like a vector space over a ring instead of a field). Modules are generally
more difficult than vector spaces, since they do not need to have a basis. But Z™" has a ba-
sis: ey, ..., e,. Every point in Z" can be uniquely written as a Z-linear combination of the e;.

Therefore it is not much different to work with Z™ than with a vector space. < < ? ) , ( ; ) >
Z

denotes the Z-linear hull. One can also view it as the subgroup generated by < ? > and
( ; ) in Z2. Every abelian group is a Z-module, if we define

z-g=g+...+g if z>0,
—_—
z times
z-gi=—g—...—¢g it 2<0,

—_—
|z| times

and 0 - g := 0. The Z-linear structure is thus implicitly given by the structure as abelian
group.

5.17 Theorem (Elementary divisors). Let U C Z" be a submodule, then there exists a
basis v1, ..., v, of Z™ and a basis (u1, ..., uy) of U s.th. \;-v; = u; mod (vy, ..., v;_1). The

i are (up to sign) uniquely determined by U and are called the elementrary divisiors
of U.

Beweis. See classes on Algebra. m

Idea: Given generators of U, write them into the rows of a matrix. To get a nice form, we
would usually apply the Gaufl Algorithm to get it to row echelon form - then we get a
relation of our new set of generators to the vectors in the canonical basis, e.g.

1 0 2
(O 1 3> e1 + 2e3, e + 3es

But when we do Gaufl we have to divide! We can’t do that here, over Z.

Ex:
1 2 T T 21 1 2
2 1 0 —3

now we can’t continue since we cannot divide by 3. At least we got a triangular form. In
general, one can obtain diagonal form: with the Euclidean algorithm, for matrix entries
a, b satisfying ged(a, b) = 1, we obtain an expression of the form ua + vb = 1 which we can
use to produce pivots. If some ged are not 1, we obtain (non-trivial) elementary divisors \;.
In the end, one obtains the so-called Smith-Normal-Form of an integer matrix, which is
diagonal and has the elementary divisors \; on its diagonal:

A

Am

For more details on the algorithm to produce a Smith-Normal-Form, see class on Algebra.

65



5.18 Corollary. Z" /U is the direct sum of a free module with summands of the form
VAIONY/

28U =72"""" X LINL X ... X LI\

Idea:

Z" = (e1,...,en)z = (V1,..., )z
= (V1) X ... X (Un), U= (Mv1) X ... X (ApUm)

= 7" /U = (v1) /(A1) X ... X (V) /A Vm) X (Uma1y -0, Up)
=Z/MZ X ... X LI NGZL X "™

If U C Z™ is a submodule of full rank (n = m), Z"/U is a finite group. Then:

5.19 Definition. |Z" /U] is the lattice index of U in Z".
Using theorem 5.17, it equals

[TT AL
i=1

Given a basis of U in coordinates, write it into a matrix (square, size n). Since we use only
Z-row-operations to bring it to Smith-Normal-Form

A

Am

the absolute value of its determinant equals the absolute value of the product of its
elementary divisors. We can thus compute lattice indices as determinants:

w=(()-(0)),

5.20 Example.

The matrix ( (1] _23 ) already satisfies the needs, we can let
(0 _ _a. 0 (1 (1
U1 = 1 , U = 1 , Ug = 0 , Ug = 2 )
then (uj,us)z = U and u; = v; mod (vy,...,v;_1) as required by theorem 5.17. The

elementary divisors of U are thus 1, —3.

The lattice index |Z?/U| equals |1 - (—=3)| = 3. It also equals | det ( ; ? ) | = 3.

5.21 Definition. Let G; be groups, f; : G; — G;41 group homomorphisms. The sequence

LG S G T G

is called exact at Gy if ker(f;11) = Im(f;). In particular f;,q 0 f; = 0.

66



5.22 Example. 1) ... A I B — Oexact & f surjective.
(B — 0 is the zero map, ker = B = Im(f)).

2) 0 — A 5 B .. exact & f injective.
(ker(f) =Im(0 — A) = {0})

5.23 Definition. A sequence 0 — A4 -4 B Ly ¢ — 0 which is exact everywhere
is called a short exact sequence.

< Im(g) = ker(f), g injective, f surjective

5.24 Lemma. Let0 — A %5 B L5 ¢ — 0 be a short ezact sequence of finite
groups. Then |A| - |C| = |B].

Beweis. For x,y € B define

vy e flo)=fly) e C.

In every equivalence class, we have |ker(f)| elements = |B| = |B/ ~ |- |ker(f)|. But
|B/v| = |C| as f is surjective, and |ker(f)| = |[Im(g)| = |A], as g is injective. O

5.25 Definition. Let X' be an equidimensional, d-dim, Z-rational fan in R". Let o € X
be of top dimension, 7 of dim d — 1 and a face of 0. We call u,/, € o a normal vector of
o w.r.t. 7, if 3 lattice basis B of span(7) (i.e. a basis for Z" Nspan(7)) s.th. B U {ug/,} is
a lattice basis of span(o).

5.26 Example. 7 = ((1,1)). (—1,1) is not a normal vector but (0,1), (1,0),(1,2),...

Abbildung 56: o and 7. *°

The normal vector of o w.r.t. 7 is not unique. If 7 is the vertex and o a ray, U,/, is unique,
it is the ray generator.

5.27 Definition. Let Y be an equidimensional, d-dim, Z-rational fan in R”. Let w be a
weight function on the top-dim cones, we require w(o) € NV o top-dim. (X, w) is called
a balanced fan if the following balancing condition is satisfied for every cone 7 of
dimension d — 1:

> w(0) up;r =0 in R"/span(r)

TCOo
o top dim

5Image from Hannah Markwig.
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Well-defined: If u,. and u, are normal vectors of o w.r.t. 7, then B U {uy/,} and

B U{u. ,_} are lattice basis for span(o).

o/t
We must have u,/, = u;,,, mod span(r) as both are lattice basis and since both are in 0.

5.28 Definition. A refinement of a fan X' is a fan X’ s.th. supp(X) = supp(X’) and
Vo'eX'doe X : 0/ Co

5.29 Example. .

Abbildung 57: X and X’. °

5.30 Definition. For two fans X', X’ with supp(X') = supp(L’), the common refinement
is{onNdloce X o €X'} It is a refinement of both.

5.31 Example. .

Abbildung 58: Common refinement of X and X', °7

5.32 Definition. Two weighted fans (X, w), (X', w’) with supp(X) = supp(L’) are called
equivalent, if their common refinement respects the weights.

5.33 Example. Figure 59

5.34 Remark. Being balanced depends only on the equivalence class, not on a represen-
tative. If we subdivide a top-dim cone by a codim-1-wall, the two new normal vectors can
be chosen opposite to each other, and the weight is the same, so the balancing condition
on the new codim-1-cone reads w - u — w - u = 0. We thus often consider balanced fans
only up to equivalence, see Figure 60.

*Image from Hannah Markwig.
5TImage from Hannah Markwig.
58Image from Hannah Markwig.
"Image from Hannah Markwig.
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Abbildung 59: Common refinement of X and X’ respecting the weights. °®

D

Abbildung 60: Balancing condition °°
5.35 Definition (1)). 1. Let X be an equidimensional fan. We denote by £®*) the
codim-k-skeleton of Y, i.e. the set of all codim-k-cones in X and their faces.

2. Let X = N(P) be the normal fan of a top-dim lattice polygon. A top-dim cone og
of Y1) = a (n — 1)-dim cone of X = a 1-dim face of @, i.e. an edge

Abbildung 61: Edge %

We define w(og) := lattice length of the edge Q = |Q N Z"| — 1. (XY, w) is called
the (standard) hyperplane dual to P.

5.36 Example. Figure 62

60Tmage from Hannah Markwig.
61Tmage from Hannah Markwig.
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? w)s £ el

Abbildung 62: Standard hyperplane %!
5.37 Theorem. The hyperplane dual to P is a balanced fan.

Beweis. Let 7 be a cone if codim 1 of N'(P)®) | i.e. a cone of codim 2 in A/(P), corresponding
to a 2-dim face of @ of P. Let K1,..., K, be the edges of Q.

K2
A
N “

Abbildung 63: @Q

The top-dim cones neighbouring 7 in N (P)(l) correspond to the edges Ky, ..., K, call
them oy, ...,0,.. We can check the balancing condition around 7 at the star, star N(P)YD (T).
By the exercise, starypya = N (Q)M) x span(Q)*.

It remains to show: the hyperplane of ) is balanced. The ray generators of the &; are the
outer normal vector of the edges of @ in span(Q) = R.

—_—

y

1) A o= \
F‘“\
Abbildung 64: o; %

Weighted with the lattice length of their dual edges, they sum up to 0, because the dual
edges form a closed path in R? (the boundary of the polygon Q). O]

62Tmage from Hannah Markwig.
63Tmage from Hannah Markwig.
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5.38 Definition. X}, Y, fans in R",R™, f : supp(X;) — supp(Xs) is called a map of fans
if it is Z-linear.

Construction/ Definition:

Let X be equidumensional of dimd in R", 35 in R™, f : 2} — 35 a map of fans. We
construct the push-forward/ image fan f,(X) in Y.

Idea: We want to use cones of the form f(o), 0 C ¢/ maximal in X s.th. f|,/ is injective.
Problem: such images of cones could overlap.

5.39 Example. Consider o, = {x > 0,2 > 0}, 09 = {y <0,z < 0} (careful, these do not
form a fan, since their intersection is not a face of both. However, this example is sufficient
to get the idea of the problem. One would have to embed those cones into R* and use “the
fourth coordinate direction”to “separate”them in such a way, that one can build a fan).

fiR =R (2,y,2) = (,y)

a A\

7 e
>

{( 2)

o ) nags O‘Nﬁ‘?‘-ﬁj :
Abbildung 65: f(oy) and f(o3)

But we consider fans only up to equivalence, so we can subdivide oy and o5 s.th. the image
of oy is subdivided and that of o5, too.

N

/" &._‘:\/bf
= \-i/

(a) o1 subdivided % (b) oo subdivided %

In the following, we always assume that Y is suitably subdivided for f.
Then

fo(X1) :={f(0),0 € X1,0 C ¢’ maximal with f|, injective }

is a fan, equidimensional of dim d. If 3 is weighted, we also define weights for f,); : For
o' € .2 we let

span(c’) N Z™
f(spano N Z")

wf*21(0-/) - Z Wy (U) : |

oeX:
flo)=0c’

5.40 Example. ¥, in R?, balanced since ( _01 ) + ( _01 > + ( 1 ) =0

64Tmage from Hannah Markwig.
66Tmage from Hannah Markwig.
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Abbildung 67: X, 7

[R5 R:(z,y)—~x

L3

2 3,

=

Abbildung 68: f 8

flos is not injective, f(o1) = o}, f(02) = 04. spanc, NZ = Z, spanc N Z? = < (

f< 1 > = 1 generates Z =

spanc; N 7Z =1
f(spano; NZ2)"
Analogously for g9, o).
< -—e——
’FH’ 2/[ A A

Abbildung 69: f, X %

RS R:(r,y)—~z+y

5"Image from Hannah Markwig.
68Tmage from Hannah Markwig.
69Tmage from Hannah Markwig.
"Image from Hannah Markwig.
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by

Abbildung 70: f ™

Flen) = ot o) = Jlow) = o spant) V2 = Zyspuno) 12 = 1) )

Z

f< 1 > =2 = f(spano, NZ?) = 27

spanoy N Z
f(spanoy N 7Z2)

= | | =12/2Z| =2

span(oy) NZ?* = < ( _01 ) >  f ( _01 ) = —1 generates Z = Index 1
z

Analogously for o3.

Wi, s, (04) = ws, (02) - Index + wy, (03) - Index =1-1+1-1=2

ji*g’: P 2

A1

Abbildung 71: f.3; ™

5.41 Theorem. Let f : Xy — X5 be a map of fans, X balanced, then f.X, is also
balanced.

Beweis. We need to show the balancing condition at every codimension 1 cone 7" € f, .
Let 7 € X of codim 1 with f(7) = 7'. Around 7 we have the balancing condition:

> ws,(0) Uy, =0 in R"/spant

TCOo

Apply f:

> ws (o) f(ugyr) =0 in R™/spant’

TCOo

"'Image from Hannah Markwig.
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Let 7 C 0’ and 7 C 0 s.th. f(o) = ¢’. The normal vectors uq /- and f(u, ;) satisfy:

spano’ N Z™
spant’ NZ™ + Z - f(uq/r

f(toyr) = |

| . ua” 7
) /

if f is injective on o and f(u,/;) = 0 else.
The following sequence is exact:

spant’ N Z™ spanc’ N Z™ spano’ N Z™
0 — — — 0
f(spant N Z") f(spano N Z") spant’ NZ" + Z - f(ty)7)

N spant’ N Z™ spano’ N Z™ = spanc’ N Z™ |

f(spanT NZ")" ‘spant’ NZ" + Z - f(ug)r) ' f(spano N Zn)
N spanc’ N Z™ = | ffiii;wzzj |

n nt/NZm
spant' NZ" + Z - f(uq/r) | fsziam%zn |

Insert this into the equation above, the factor

spant’ N Z™ B
f(spant N Z")

is the same for each summand and can therefore be taken out:

spang’ N Z™

3 gy =0 i R /
= wx (o SpanT NZ"+7Z- f(ug)r) [ ey - fspant
spanog’ N Z™ ) ,
=Y : AUgiyp =0 in R™
2 wy, (o F(spano A Z7) | - gy in /spant

Now we sum over all 7 s.th. f(7) = 7': In R™ /span7’,

Z Z ()| spano’ N Z™ |
w ag) - Uyt /7
— o > f(spano NZ") /
F)=r
Z Z (o) -] spano’ N Z™ |
= wy, (o) - Uyt )71
T/Ca-/ ag: ! f(spana m Zn) /
flo)=0’
= > wrx(0) gy
T'Co’
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6 Regular subdivisions and the secondary fan

6.1 Definition. A simplex is a polytope of dim d with d + 1 vertices

Abbildung 72: Simplices

6.2 Definition. A triangulation of a polytope P is a subdivision into finitely many
simplices s.th. the intersection of two such simplices is a face of both.

B R

Abbildung 73: (Not a) triangulation ™

For lattice polygons, we consider triangulations in the lattice, i.e. we require that the
vertices of the simplices are in PNZ". We do not require all points of PNZ"™ to be vertices
of the triangulation.

a E] a i

Vv Vv

Abbildung 74: Triangulations on a lattice ™

More generally, we can fix A C PNZ" (or A C P finite containing the vertices of P) and
consider triangulations with vertices in A.
Construction: Let P C R" be a fulldim lattice polytope. Let

v: A =R

(PAZm)

"2Image from Hannah Markwig.
"Image from Hannah Markwig.
"Image from Hannah Markwig.
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be a “height function” We project the upper faces (i.e. those with an outer normal
vector whose last coordinate is positive) of

conv{(u,2)|z <¥(u)jlu e A,z€ R} CR"xR to P.

6.3 Example. .

@ﬂ
Ay o
o 4, ‘0

Abbildung 75: Projection of the upper faces ™

For generic functions ¥, the result is a triangulation: assume @) is a face which is no simplex,

. . U1 Un+2
then @) has at least n+2 vertices, v, ..., v,19, and the points s
Q 1 +2 p ( W(Ul) ) < W(Un—i—?)
lie on an affine hyperplane in R"*!, i.e. they satisfy an equation
(% -
(m (ofey ) )=
(%] e W(Ul) b
= det : : : C =0
Up+2 - .- !p</Un+2) b
—~—
U1 e W(Ul) 1
=det| : ; c =0
Up+2 - .- !p(Un_,_g) 1
v U1 1
only columns ( 7 (51}1)) ) which are contained in the linear span of
n+2
Un+2 1

(n + 1 vectors in R"™2) do not produce a triangulation.

S S

Abbildung 76: triangulation "
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P e o ¢
a a [ ] - o ° I} @
@ a %
v ¥ Va e

Abbildung 77: (no) circuit(s)

6.4 Definition. A circuit 7 is a set of points which are affinely dependent, s.th. every
strict subset is affinely independent. (Simplex U a point, see figure 77)

6.5 Lemma. Let {vy,...,v;} be a circuit. Then there exist coefficients A1, ..., A\, which
are unique up to scalar multiple s.th. > \jv; =0, > A\, =0, \; Z0Vi.

Beweis. vy, ..., is affinely dependent
= El()\177)\k) 7é (0,,0) : Z)\Z’Uz :O,Z)\Z = 0.
We need to show that \; # 0V1i. Assume without restriction A\; = 0. Then

k k
Z)\lvl:O and Z)\ZZO
=2 =2

= Vs, ...,V is affinely dependent 4.

Finally, we need to show that the )\; are unique up to scalar multiple.

Let Y pv; = 0,3 u; = 0. As before, all u; # 0. We can scale both equations s.th.
A1 = pp = 1. Then

k
DAvi =Y i =0-0=0=> (N — p)v;
=2
and
k
i=2
as v, ..., v, are affinely independent. ]

6.6 Definition. Let Z = {vy,...,v;} be a circuit with 3 \;jv; = 0, 3 A\; = 0 where the
A; # 0 are unique up to scalar. Define

ZT ={vl\ >0} and Z = {v;|\; <0}
This is well-defined up to swapping.

6.7 Example. To figure 78a: as 1-0+1-2—2-1 =0, if we use coordinates 0, 1, 2 for the
points, or more generally, 1 -p+1-(p+2)—2-(p+1)=0

0 2 1 1
Toﬁgure?&m(top).l-<O>+1~<O>+2.<2>_4.<1)_0

0 1 1 ;
Toﬁgure78a(b0tt0m)-1'<0>+1'<1>_1.<0>_1.<1>:O

"Image from Hannah Markwig.
"6Image from Hannah Markwig.
""Image from Hannah Markwig.
"Image from Hannah Markwig.
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@ L] o
- - = +
(a) Zt and Z— 78 (b) Zt and Z— ™

6.8 Proposition. Let Z be a circuit and P = conv(Z). Then Z has precisely 2 triangula-
tions with vertices in Z,

Tt = {conv(Z \ {w})|w e Z*}

T™ = {conv(Z \{w})|lw e Z7}

6.9 Example. .
{E:&f A G—0—® >—®—@
_ﬂ#ff e~—

Abbildung 79: T+ and T~ &

Beweis. Let x € P, x =3 ez fhow With g, > 0,3 p, = 1.
This expression for x is not unique, as we can add multiples of >~ A, ,w = 0 while keeping

the coefficients nonnegative, since the sum of the coefficients will stay 1 as 3> A, = 0.
Let ' € ZF s.th. u, /A, is minimal. Then

X:Zuww—'[;w/ > Aw

wez W' wez
Mo’ X
=D (o — ")w
weZ Aw/
,uw’)\w
= Z (1w — T)W
wHw’ w’

is a convex combination, since

89Tmage from Hannah Markwig.
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e ifweZt:

M 3054 >0 Hoo? )\w 3754 >\w
— > 220> Sl >0
N oA, - He= Ty Po =37 =
o fwe Z™:
o Mw’)\w
A <O0= py ———>p, >0

)\w/ ~~ a )\w/ Ho =

~~ <0

>0

= z € Conv(Z \ {w'}) where w' is chosen as above

= P= U Conv(Z\{w'}).
w'eZ+

If 7 is contained in two or more of the Conv(Z \ {w'}), the minimum of the § for w € Z*
is taken multiple times (say for w’,w"), and x € Conv(Z \ {w’,w"}) which is a face of
both, hence

Tt = {Conv(Z \{W'})|w € ZT}

is a triangulation. Analogously, we can see that T~ is a triangulation.

Assume there existed more triangulations than 7t and 7~. One such further triangulation
T would have to combine simplices in T with simplices in 7, as these are all simplices
that exist with vertices in Z. Assume Conv(Z \ {w'}) and Conv(Z \ {w”}) are in T', with
Wwe Zt Wwe Z . A point x € Conv(Z \ {w'}) is, as before, given as X = 3 u,w s.th.

’;—w is minimal at w’ for w € Z7. X is in the relative interior of
w

! >\w
Ao

Conv(Z \ {w'}) & pw — >0 Vw # w' < the minimum is unique at '

Analogously: a point is in the interior of Conv(Z \ {w"}) if X =3 pw, K2 is maximal at
W” for w € Z~, and the maximum is unique.

Given w’ and w” in Z* resp. Z~, one can find coeff. p,, satisfying both conditions = x is
in the interior of both simplices = 7' is not a triangulation.

Pd

Abbildung 80: not a triangulation 5!

]

6.10 Definition. Let T" be a triangulation of P. g : P — R is called T-piecewise linear,
if g is affine-linear on each simplex of T’

< the graph of g is a “roof” whose corners are (at most) at the facets of the maximal
simplices of T'.

g : P — R is called concave:&

Ve,ye P,O<t<1:g(te+(1—1t)y) >tg(x)+ (1—1t)g(y)
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A0

8
A

Abbildung 81: line segments %2

< line segments of points on the roof are below the roof (see figure 81).

A domain of linearity of a piecewise linear g : P — R is a maximal U C P s.th. g|y is
linear.

6.11 Definition. A triangulation 7" is regular :< 3 concave T-piecewise linear g : P — R
whose domains of linearity are exactly the minimal simplices of T'.

6.12 Example. A triangulation which is not regular (Exercise):

Abbildung 82: A not regular triangulation %

6.13 Remark. Let P be a polytope, A C P finite, ¥ : A — R a height function, T a
triangulation of P with vertices in A.

Then there exists a unique T-piecewise linear function gy r : P — R s.th.

gur(w) =¥ (w)Yw € A which are vertices of a simplex of T, linearly continued, given by
affine-linear continuation in each simplex. Values of ¥ at points which are not vertices of
a simplex of T do not have any effect on gy 1.

6.14 Example. See figure 83.

6.15 Definition. Let T be a triangulation with vertices in A of P. Define C(T) C R#4
by

C(T) ={¥ : A — R satisfying
— gy P — R is concave
— Vw € A which are not a vertex of a simplex of T': gy r(w) > ¥(w)}

C(T) is called the secondary cone of T'.
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Abbildung 84: P and T %

6.16 Example. See figure 84.

There are two triangulations. Their two secondary cones subdivide R? via the hyperplane
20 =x+ 2.

R T S
TZ_ Z Xt 2 Y7wW

Abbildung 85: P, Ty and T %°

R* subdivided by the hyperplane x + z = y + w yields the two secondary cones.
In the hyperplane separating the two cones, z + z = y + w, we obtain a regular subdivision
which is not a triangulation by projecting the “roof function”:

81Tmage from Hannah Markwig.
82Tmage from Hannah Markwig.
83Image from Hannah Markwig.
84Image from Hannah Markwig.
85Image from Hannah Markwig.
86Tmage from Hannah Markwig.
87Tmage from Hannah Markwig.
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Abbildung 86: not subdivided "

The definition of secondary cone is build such that such more general subdivisions can be
part, too:

the domains of linearity of gy r do not have to be the simplices of T, they can be larger
(unions of simplices of T, if the two affine-linear continuations of 2 neighbouring simplices
happen to fit together.

6.17 Lemma. (1) T reqular < C(T)° # ()

(2) ¥ € C(T)° < Using ¥ as height function and projection the upper faces of the convex
hull of its graph yields T

(3) C(T) is a cone

Beweis. (1) T regular < J gy for ¥ € C(T") whose domains of linearity are exactly the
simplices of T' < Jgyr for ¥ € C(T') and it is not on the boundary, i.e. satisfying
additional relations corresponding to domains of linearity fitting together
<~ ng/j for ¥ e O(T)O

(2) Given ¥ € C(T')°, it yields gy which is concave by definition, gy r(w) = ¥(w)Vw € A
which are vertices of simplices of T" and gg.r > ¥ (w) for all other w. Thus, the graph
of gy 1 is the convex hull of the graph of ¥, and projecting its upper faces yields its
domains of linearity. As we are not in the boundary, these are exactly the simplices of
T.

Vice versa, if we obtain 7" from the height function ¥, we get gy from its graph
which we define to be the convex hull of the graph of ¥. Changing the heights slightly
will not change the projection, because T is a triangulation, so we are in C'(T)°.

(3) Scaling a “roof function” or adding two with the same corner locus (Knickstelle)
does not change this corner locus. The boundary of C(T') is given by hyperplanes
that describe the affine linear functions of neighbouring simplices to fit to each other,
or interior points of a simplex “hitting the roof ”and sticking out. Thus C(T) is a
polyhedral cone.

]

6.18 Theorem. The cones C(T') for all triangulations T' of P with vertices in A together
with their faces form a complete fan in R#4, the secondary fan of (P, A).

6.19 Example. R? divided by the hyperplane 2y = z +y is the secondary fan (figure 87a).
(Two triangulations 77, T.)
R* divided by = 4+ z = y + w, see figure 87b.

89Tmage from Hannah Markwig.

82



>—o—o

(a) in R3 88 (b) in R* 8

6.20 Remark. (1) The secondary fan is not defined as the dual fan of a polytope, but it
is dual to a polytope, the secondary polytope (later).

(2) The secondary fan is not pointed: (1,...,1) is in the lineality space, since shifting
a roof function does not change the induced triangulation. Also, if A = {vq,..., v}
then Vi=1,...,n, (vy,,...,v,) € R*4 is in the lineality space.

Adding such a vector amounts to “turning” the roof function and does not change the
induced triangulation.

6.21 Example. ¥ € C(T')° has a triangle/ triangulation between the 1s.

—_— ! D'ﬂ O o
a@ ' A Y
A De ¢ 1o e
s A 2 e € 07
’ o f ¢ é © Z

o 10
- - r\l/\_ﬂ:;i./f-“-?l-j
rneality Yol

i— e oher e che

Abbildung 88: ¥ plus the lineality vector *

Beweis. Let ¥ € R#4, then projecting the upper faces of the convex hull of the graph of ¥
yields a subdivision. If it is a triangulation 7', then ¥ € C(T'). If it is not a triangulation,
we can refine it to a triangulation 7', and then ¥ is in (the boundary of) C(T'). Hence, the
secondary fan is complete.

To see that it is a fan at all, note first that faces are contained by definition.

We have to show that the intersection C'(T)NC(T”) is a face of both. Let ¥ € C(T)nC(T").
gy,r and gy 7 are both concave. If 0 € T, 0/ € T are maximal simplices which intersect
in the interior, gy 7 and gy must be defined by the same affine-linear function on o U o’
This yields a linear condition on ¥ = C(T) N C(T") is the intersection of C(T") with a
linear subspace given by these conditions, and the same holds for C'(7”). Thus it is a face
of both. O

Next we’ll show that the secondary fan is dual to a polytope.

6.22 Definition. Let P be a fulldimensional polytope, A C P finite containing the
vertices. Let T be a triangulation with vertices in A. The characteristic function of 7' is
er:A—=-R:wm— > vol(o)

o max simplex:
w is vertex of o

OTmage from Hannah Markwig.
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The secondary polytope of (P, A) is
Conv(pr(w)| T triangulation) C R#4

6.23 Remark. We identify R#4 = (R#4)V by using the Euclidean scalar product

(T, 0) =D ¥(w) pw).

w€eA

6.24 Example. The secondary polytope is the interval connecting these two points. This

line segment is orthogonal to the hyperplane y + z = x + w, thus the secondary fan is the
normal fan.

Exacple:
NI ST PLI ARy e

= W
(. ps : Lj . . 17 N broiad

Abbildung 89: polytopes !

o F
o ) ° G —o @
(A, 2, C z,°2)

Abbildung 90: secondary polytopes 2

The secondary polytope is the line segment connecting these two vertices. It is orthogonal
to the hyperplane 2y = x + 2 in R3.

6.25 Lemma. V triangulations T and ¥ : A — R we have

Wpr) = (n+1) [ gor(e)de

Beweis. The integral of an affine-linear function over a simplex o is
vol(o)- the arithmetic mean of the values at the vertices

91Image from Hannah Markwig.
92Tmage from Hannah Markwig.
93Image from Hannah Markwig.
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Abbildung 91: example ?*

Let o4, ..., 0, be the maximal simplices of T', then

(n+1) /Png(:v)d:C =(n+1)- (/01 gor(z)dr + ... +/

a1

gW,T(x)dx)

= ( > g@T(w)) -vol(oy) + ...+ ( > QW,T(W)> - vol(oy)

w vertices w vertices
of o of o

= ZQQ/,T(W) . ( Z VOl(U))

w. vertex
of cinT

= <lp7 90T>

Notation: Let ¥ € R#4. We consider the convex hull of the graph of ¥, the “roof” of
Gy = Conv((w,y)|y <V¥(w),w € A,y € R)

The upper faces (the roof) is the graph of a piecewise linear function gy : P — R,
go(z) = max{y : (z,y) € Gy}

6.26 Lemma. Let ¥ € R#4,

(1) ¥ triangulations T' with vertices on A gw(z) > gor(z)Va € P
(2)

max (¥, ) :(n—l—l)/Pg.p(a:)dx

pESecpoly(P)

Beweis. (1) Consider a maximal simplex o of 1. gy r is affine-linear in o
and gy (w) > ¥(w) = gg,r(w)Vw vertices of o.
Then the inequality holds for all points x € o.

(2)

maX@p? 90> = maX@pa (;OT>>
® YT
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since the secondary polytope is the convex hull of the ¢, and the maximum of a
linear functional is always also taken at a vertex (the vertices are a priori among the
o7, we will see later: they are the ¢r).

I%%X<W, or) = H;%X(n +1) /PglkT(:U)dﬂU

1§) (n+1) /ngv(l“)dw

Equality follows if we find T s.th.

/Pg@T(m)dm:/Pgw(x)dx.

We get this by finding 7" s.th. gy r(z) = gu(z) V2 € P. Projecting the upper faces of
the graph of gy, we obtain a subdivision of P, but not necessarily a triangulation. If
we choose ¥ in a small neighbourhood of ¥, we obtain a triangulation 7" refining the
subdivision. For this triangulation, we have gy = gw, since gy is affin-linear on each
simplex of T" as it is so already on the bigger cells of the less fine subdivison.

]

6.27 Theorem. The secondary fan is the normal fan of the secondary polytope. The cone
C(T) corresponds to the vertex pr. In particular, all o are vertices of the secondary
polytope. Secfan = N (Secpoly), C(T') = ¢r.

Beweis. Let W € C(T)°, then the projection of the graph of gy yields the triangulation T
and we have

max(?,¢) = (n+1) [ gu(@)de = (n+1) [ gur(@)de = (@, ¢r)

= ¥ takes its maximum on @ = ¥ is in the cone of the normal fan of the secondary
polytope corresponding to ¢r.

Let ¥ be in the cone of the normal fan of the secondary polytope corresponding to ¢
& W takes its maximum at op

= s, (V) = Wepr) = (0+1) [ gur(o)do
<(n+ 1)/ gw(x)dx = mgx(l]/7 ©)
P

= gy = gwr is concave, and for every w € A, gyr(w) = go(w) > ¥(w), in particular
for w which are not vertices of simplices of 7" = gy r meets the requirements and yields
v el(). O

6.28 Corollary. The secondary polytope has dimension #A —n — 1.

Beweis. Since the lineality space of the secondary fan has dimension n + 1, the polytope
has dim #A —n — 1. n

6.29 Example. See figure 92.

Next, we study further faces of the secondary polytope, resp. cones of higher codim of the
secondary fan.
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Abbildung 92: 3—1—1and4—-2—1%

E’f’)(f_ﬁ_gﬁz_ﬁ;". ?i C%JCCE))'D)j C/I)o))(o‘}/f))(/f)/r]]

e Y

———|

% A= (CO,»O)) [/IJDJ; (e, ), (4,71), (A/‘Zf 4/‘2)}

A 7~
Trughhess [n [ B

0 Y@ 2arey (21429 Cannh2))

a A

Abbildung 93: A and its triangulations

6.30 Example. See figure 93.

The lineality space of the secondary fan is the rowspace of

[t )

The three points @7 satisty the equations

O O =
O = =
_ O =
—_ =
NN = =

T+ ... +x5 =

w

x2+x4+§x5:

.CL“3+334+§335:

Y

O W W

= they lie in an affine space orthogonal to the lineality space. We consider the orthogonal
complement of the lineality space, it is given by the two basis vectors

(=100 -12),(0 -1 =10 2).

94Image from Hannah Markwig.
95Tmage from Hannah Markwig.

87



We write the 3 points ¢ in the basis of R given by the 3 lineality vectors and the two in
the orthogonal complement: (multiply both sides with 1)

1 0 ~1 0 0 1
2 4 -1 1 0 0 1 6 1
2 :(—5)- —1 +(5)- 0 |+0-{ 1 ]+0-]0 +(5)- 1
1 0 -1 1 1 1
0 2 2 z : 1
2 0 -1 0 0 1
1 ] -1 4 0 0 1 6 1
1 :(5)- -1 +(—5)- 0 [+0-| 1 ]+0-]0 +(5)- 1
2 0 ~1 1 1 1
0 2 2 z 3 1
1 0 —1 0 0 1
1 ! -1 ] 0 0 1 6 1
1 :(g)- -1 | +(2) 0 |+0-[ 1 |+0-]0 +(§)' 1
1 0 -1 1 1 1
2 2 2 : z 1

In the orthogonal complement of the lineality space, the three points have coordinates

1 _4 1y 1/1 _4) 101 1
2 5 5 )12\ 5’ 5 )22\ 5 5

Abbildung 94: secondary polytope %

We can use this computation to convince ourselves that the secondary polytope is a triangle
as expected (3 vertices, dim 5 —2 —1 = 2), but we cannot compute the normal fan directly,
for that we would have needed an orthonormal basis, which we’d rather avoid.

But we can compute the normal fan directly in the affine plane in R® (figure 95)

vlzvectororthogonalto;(<1 2 21 0)—(2 11 2 0))

(-1 11 -10)
and to the lineality vectors, i.e. vector in the kernel of

1 11 1 1
0 10 1 1
001 1 3
-1 11 —-10

9Tmage from Hannah Markwig.
97Tmage from Hannah Markwig.
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Abbildung 95: normal fan 7

v = ( 1, 1, 1, 1, —4 ), analogously

vp=(2 -3 -3 2 2)wu=(-3 2 2 -3 2)
The secondary fan is:

VA

Abbildung 96: secondary fan %

We check the triangulations:

Pick a point in Cone(vy,v2)°, e.g.

U1+ vp = ( 3, —2, —2, 3, -2 ) (figure 97a)
n+vs= (-2 3, 3 -2 —2) (figure 97h)

Vg + Vg = ( -1, -1, -1, -1, 4 ) (figure 97¢)
Let us compute the subdivisions for the rays in figure 98.

98Image from Hannah Markwig.
102Tmage from Hannah Markwig.

89

5‘/34:%



6.31 Definition. (1) A marked polytope is a pair (Q, A) s.th. A C @ is finite and
contains the vertices of Q.

(2) Let (@, A) be a marked polytope, dim () = n. A marked subdivision of (@, A) is a
set {(Qi, Ai)ier} s.th.
a) A; C AVi,dim@; =n
b) Q:NQ; is a face of Q; and Q)
c) AN (Qz NQ;) =A;0(Q:iNQy)
d) UQi =

6.32 Example. (1) A triangulation can be viewed as a marked subdivision by marking
the vertices of each simplex to be in A;.

(2) Condition ¢) implies that we can draw pictures as in figure 99.
6.33 Remark. It is not required that (J A; = A.

6.34 Definition. Let S, 5" be marked subdivisions S = {(Qs, 4i)}, 5" = {(Q}, A})} of the
same marked polytope. We say S refines S’ if V j the set {(Q;, 4;) s.th. Q; C Q}} is a
marked subdivision of (Q’, A%).
The set of marked subdivisions is a partially ordered set. Triangulations are minimal
elements, maximal is {(Q, A4)}.

103Image from Hannah Markwig.
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Abbildung 98: subdivisions '

Oy Ry

Abbildung 99: subdivision '3

6.35 Example. See figure 100.
Construction: “roof function”: Let ¥ : A — R,
Gy = Conv{(w,y)ly < ¥(w),w € A,y € R} CR" xR,

project the upper faces to R?. The ; are defined to be the images of the facets under
projection. The upper faces of Gy from the graph of the piecewise affine-linear function

gy x> max{y : (z,y) € Gy}

We set A; C Q; the subset of AN @Q; of all points “visible on the roof”, i.e. for which
gw(w) = ¥(w). (The point (w,¥(w)) = (w, gg(w)) is then on the boundary of Gy, i.e.
visible on the roof, not hidden below.) The marked subdivision constructed like this is
denoted by S(¥).

104Tmage from Hannah Markwig.
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Abbildung 100: refinement '

6.36 Example. .

, e s
@: C?IAB"*' B i: 97,1

NEAR B

Abbildung 101: ¥ and S(¥) '*°

6.37 Definition. A marked subdivision is called regular, is it is S(¥) for some ¥. This
extends the definition of a regular triangulation.

6.38 Theorem. (1) The faces of the secondary polytope of (P, A) are the convex hulls
F(S) = Conv(¢r|T triangulation refining S)
for a reqular marked subdivision S.
(2) The cone of the secondary fan corresponding to F(S) is

C(S) := {¥|S refines S(¥)}

105Tmage from Hannah Markwig.
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(3) F(S) C F(S') < S refines 5’

6.39 Remark. C(S) generalizes our use of C(7") for triangulations 7.

Beweis. (1) As before, we consider (R#4)Y = {¥ : A — R} and R#*4 = {p: A — R} to

be dual via

W, 0) = > ¥(w) - p(w).

wEA

A function ¥ thus yields a linear functional on the space surrounding the secondary
polytope. We consider a supporting affine hyperplane of the secondary polytope of
the form

Hyp = {p|(¥, ) = b}

which cuts out a face ) of the secondary polytope. ) contains all points of the
secondary polytope on which ¥ takes its maximum. Thus () is the convex hull of all
vertices ¢ on which ¥ takes its maximum. Let ¢p be such a vertex, then

W.or) = (n+1) [ gur(a)de

(because of the lemma about the scalar product, lemma 6.25), and, because it is a
maximum

W.or) = (n+1) [ gola)da.
Since gy (z) > gpr(z)Va € P we conclude gy = gwr < T refines S(¥).

=@ = Conv(er|(¥, pr) maximal)
=Conv(pp|T refines S(¥))
=F(5(¥))

Vice versa, any F'(S) is a face of the secondary polytope.
We can sum up: ¥ takes its maximum on a face F(S) (and not on a bigger face)

S FS)=FSW) < S=S5W).
Let S be a marked subdivision. Let
C(S)° :={w|S = S(¥)} = {¥|¥ takes the maximum at F(S)}

= C(S)° = op(s), the cone dual to F(S) in the secondary fan. We still need to show
that C'(S)° = C(95). For that, we first show C(S) is closed:
¥ € C(S) = gw|o, is affine linear V Q); in the subdivision S,

gw(w) = ¥(w) must hold Vw € [ J 4;,
gw(w) > ¥(w) must hold Vw ¢ (] A4;.

These are all closed conditions. Furthermore, a general ¥ € C(S) yields S(¥) = S :
if it yields a coarser subdivision, one can change the coefficients slightly to get back
the finer one, i.e. S. That means that C'(S) does not contain more than the closure of
c(S)°.

= ops) = C(S5) as claimed.
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F(S)C F(Y)
S opey = C(S") = {¥|S" refines S(¥)} C ops) = C(S) = {¥|S refines S(¥)}
& every subdivision refined by S’ is already refined by S
& S refines 5.

6.40 Example. Facets of the secondary polytope resp. rays of the secondary fan:

(1) Let w e A\ { vertices of P}, S = {(Q, A\ {w})} corresponds to a facet: we obtain a
ray of roof functions, since we can vary the height of w below the roof

| @
e

Abbildung 102: w below the roof '

(2) Let g be an affine linear function on R", define
P, ={z € Plg(x) >0}, P_={x|g(z)<0}.

Assume Py, P_ are full-dimensional. Then {(Py, P N A)} defines a facet:
Using lineality vectors of the secondary fan, one can assume that one part of the roof
is fixed and horizontal. We can move the position of the other part relative to it.

P

Abbildung 103: Move the position of the other part '°7

Not all rays are of a form like there two cases.

We study edges of the secondary polytope next.

6.41 Definition. Let (P, A) be a marked polytope, T a triangulation. Z C A a circuit
s.th. Conv(Z) is fulldimensional < n +2 = #7.

Assume Conv(Z) is the union of simplices of 7" having vertices in Z. We know Z has two
triangulations T’y and 7", so T’ |Conv( z) must coincide with one of those. We define a new
triangulation Sz(T") by replacing this with the other, and keeping all other simplices of T'.

106Tmage from Hannah Markwig.
107Tmage from Hannah Markwig.
108Tmage from Hannah Markwig.
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Abbildung 104: Sz(T) '*®

6.42 Proposition. With the assumptions from before, assume T and Sz(T') are regular.
Then the vertices o1 and @g, 1) of the secondary polytope are connected by an edge.

Beweis. Let S be the marked subdivision consisting of (Conv(Z),Z) and the marked
simplices that T" and Sz(T') share. Since T" and Sz(T) are regular, also S is (it is given by
a “flattening ” of the roof function of T resp. Sz(T)).

More precisely, if we want all the points of Z to be contained in a piece of an affine
hyperplane in the graph of the roof function, we obtain one linear condition on the heights
of ¥ = C(9) is of codimension 1 = F(S) is an edge of the secondary polytope connecting
the two vertices. O

The general case of edges is similar, but more notation is required:
6.43 Definition. Let T be a triangulation of (P, A), Z C A circuit. We call Z a part of
T, if
(1) T has no vertices in Conv(Z) except Z
(2) Conv(Z) is a union of simplices in T’
(

(3) If Conv(I), Conv(I’) are two maximal simplices of one of the two triangulations of
(Conv(Z),Z),and F C A\ Z, then

Conv(/IUF)in T < Conv(I'UF) in T.

6.44 Remark. If Conv(7) is fulldimensional, 3) is no further condition, as it requires
F #0.

6.45 Example. We look at Z and (P, A) in figure 105.

To see this, we check 3): for F'; we can take any of the upper or lower vertex. In the left
picture, there is only one simplex Conv([/). In the right picture, both triangles on the lower
half belong to T (for F' the lower vertex).

109Tmage from Hannah Markwig.
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Abbildung 105: Z, (P, A) and two triangulations %

6.46 Definition. Let Z be a part of T', then T induces one of the two triangulations of
Conv(Z) on it, say T'.

We let Sz(T') be the triangulation which substitutes all simplices of the form Conv(/ U F)
with Conv(/) € T} by all of the form Conv(I’ U F') with Conv(I’) € T_.

We say, Sz(T) is obtained from T by flipping Z.

6.47 Remark. S;(Sz(T)) =T

6.48 Theorem. Let T,T" be triangulations of (P, A). The vertices pr and w7 of the
secondary polytope are connected by an edge < 3 circuit Z which is a part of T and T’
s.th. T = Sz(T,)

The idea for the proof is similar to before: we need to describe the subdivision S corre-
sponding to the edge.

6.49 Definition. J C A\ Z separates T and 7" 1< Jw € Z s.th. Z \ {w} U J is the set
of vertices of a simplex of T" resp. 7" of maximal dimension.

The subdivision of the edge prp7 consists of simplices (Conv([), ) that appear both in
T and 7", and simplices of the form (Conv(Z U J),Z U J) for a separating set J C A\ Z.
If Conv(Z) is fulldimensional, () is the only separating set.

96



6.50 Example. .

Abbildung 106: Z, T, Sz(T) and S ''°

Question: What are choices for weights that make the codimension—1—skeleton of the
secondary fan balanced?

H0Tmage from Hannah Markwig.
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7 Ehrhart Theory

Ehrhart theory deals with counts of lattice points inside stretched lattice polytopes. We
start with a case study: the d-dimensional cube.

7.1 Definition. Let P be the d-dimensional cube,
P=1[0,1]={(z1,...,245) € R0 < z; < 1Vi}.

The cube has 2d facets given by the hyperplanes 1 = 0,21 =1,...,24 = 0,24 = 1.
We stretch the cube (respectively, any polytope P) with a factor ¢ € Nsq:

tP = {(txy,... txg)|(z1,...,2q4) € P}
We count:
#APNZY = #[0,4)*NZ = (#[0,{] N Z)* = (t +1)°.

7.2 Definition. For a lattice polytope P C R?, we consider the lattice point count of
the t-th stretch as the function

Lp(t) := #(tPNZY).

We can also imagine that we leave P fixed and make the lattice finer and finer:

Le(t) = #(P 1 1 2")

In this sense, we can view Lp(t) as the discrete volume of P.
Back to the cube:

Lp(t) = (1+1)*

is a polynomial in ¢, its coefficients are the binomial coefficients

(1+8) = Ed: (Z)tk.

k=0

We now consider lattice points in the interior of the cube:

Lpo(t) = #(tP°NZ% = #((0,)* N Z%) = (#(0,t) N Z)* = (t — 1)*.

Note: For the cube P we have (—1)¢ - Lp(—t) = Lpo(t)

7.3 Definition. For a lattice polytope P C R%, we define the Ehrhart series of P as
the generating series of the lattice point count:

Ehrp(z) =1+ Lp(t)2'
t=1

To understand the Ehrhart series of a cube, we define Euler numbers:
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7.4 Definition. We define A(d, k) via

Zjdzj _ Zi:o A(d, k)z*
= (1 — 2)d+1
The geometric series
1 .
= Z Z]
1—=z2 >0

can be derived and multiplied by z:

Z.j<1—z> ij]

3>0

If we do it d times, we obtain

(Z'dci)d<1—z> Zjdj:Zkf) i)dH)Zk

3>0

7.5 Example. d=0:

1

L= A=y A0 =1

§>0 >0 z)
d=1:

d 1 uotient rule 1 A(l 0) + A(l ].)Z
J — s q en i _ ) )
;ﬂz o (1—,2) SN TISE (1—2)?
= A(1,0) =0, A(1,1) = 1

d=2:

Bre- (-2 () ) -+ L

) o (I=2)42z 242
(I—23  (1-2)
= A(2,0)=0, A(2,1) =1, A(2,2) = 1
d=3:
37 i 2+ 22 72'(1—1—22)(1—2)3—(2—}—22)-3(1—2)2(—1)
;0‘72 _<Z dz><(1—z)3>_ (1—2)8
.(1+22)(1—z)+3(z+z2)_2 14+ 2—222 432432 z+42242°
- (1—2) N (1—2) (=2

= A(3,0) =0, AB3,1) =1, A(3,2) =4, A(3,3) = 1
7.6 Lemma. The Euler numbers A(d, k) satisfy:
(1) A(d,k)=(d—k+1)-Ald—1,k—=1)+k-A(d—1,k)
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(2) A(d,k) = A(d,d+1—k)
(3) A(d, k) = Z?:o(—l)j (d‘;l) (k _ j)d
(4) S3_ Ald, k) = d!

Beweis. (1)
Yo Ald — 1, k)2
z dz (1 — z)d-1+1

<ZA d—1,k) - k-251(1 = 2)¢ ZA d—1,k) kd(l—z)d_l-(—1)>

1
(1 —2)2d
k “ k+1 1
:(ZA —1,k) k-z(l—z)+l§)A(d—1,k‘)Z 'd)'ﬂ_z)dﬂ
d—1 d—1
:(ZA k) k-zk—ZA(d—1,k:)-k:-z’“+1+ZA(d—1,k:)-d-z"‘+1)
k=1 k=0
N
(1_Z)d+1
Wkl 2 d
E A= L) ke Y A= L 1) (0 1) 2
k=0 k=1
d , i 1
—i—kZA(d—l,k —1)-d'Z )(1—Z>d+1
d
rename k'=k . _ o . _ _ .k #
A(d—T,o)o(,;)(k Ad=LR+{d=k+1) Ad=1,k-1) Z> (1 —z)d+t

S Ad k) =k-A(d—1,k)+ (d—k+1)- A(d— 1,k — 1)

(2) We use induction on d. Note that for d = 1, A(1,0) = 0, A(1,1) = 1. We can use
d=1,k=1and obtain 1 = A(1,1) = A(1,1+1—1).

A(d,d+1—k) (d (d+1—-k)+1)Ad-1,d—k)+(d—k+1)A(d—-1,d—k+1)
=k-A(d—1,d—k)+(d—k+1)-A(d—1,d—k+1)
(d

1nduct10nk Ald—1,d— (d—k))—{-(d—k?—l—l)A(d_lad_(d_k+1))
—k-Ad—1,k)+(d—k+1)-Ad—1,k—1)

DA, k)

(3) Again, we use induction on d. For d =1, A(1,0) =0, A(1,1) = 1.

A(1,0) = 0 = empty sum v/

21: ()1—;)_1+O:1/

Jj=0
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A(d, k) 1:)k-A(d—1,k)+(d_k;+1).A(d_1’k_1)
idction Z (j) D (ke 1) :(—1)7 <d> o1 gy
- jflk; jzk% (j) N+ (d—k+1) Jijl(—w’—l(]/ ‘ 1) (h — )"
r?%7*2204y<fyk N+ (d k+1y§;p4yl<jf1>@_4yl

:]z:(—l)f (k (;l) (d—k+ 1)( ¢ 1>>(k _ e
:é(_”] (@i~ @)
:é(_l)j(d!(ls (d —(; +j1)+ 1)($!— k + 1)j> (ki
_é(_ly((d —dj++1)1')!j!)(k -3

(4) We use induction on d.

A(1,0)+ A(L,1)=0+1=1=1!

A(2,0)+ A(2,1)+ A(2,2) =0+1+1=2=2!

A(3,0)+ A(3,1) + A(3,2) + A(3,3) =0+ 1+4+1=6=3!
We would like to insert z = 1 into the numerator of our generating function to obtain
Yo Ad, k).
We cannot insert z = 1 into our whole generating function, since it does not converge.
We get around this by using induction:

dz (1 — z)d 1+1
d—1 1

seel(ZA —1,k) k-zk(l—z)+ZA(d—1,k)2k+1'd)'

= (1 _ Z)d+1

The numerator is
d—1

Ald—1,k) k- 21— 2)+ > Ad—1,k)2*1 . a
Z

k=0

Now we insert z = 1 and obtain

ZA —1,k) - d "M (@ — 1)1 - d = d!
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7.7 Remark. Using statement 1) of lemma 7.6, we can arrange the A(d, k) into a triangular
shape similar to Pascal’s triangle:

Ad-1,k—1)-(d—k+1) A(d - 1,k) - k

_|_

d=0 1
d=1 0 1
N?l
d=3 0 1_ 3 4 1
N% x3|
d=4 0 1 11 11 1
d=5 0 1 26 66 26 1
d=6 0 1 o7 302 302 o7 1

We can now express the Ehrhart series of the cube P via Euler numbers:

Ehrp(2) =1+ > (t+1)%" =Y (t+1)%!

t>1 t>0
t/::t+1 Z t,dzt/_l rerjéme 1 . thzt
>1 v=t 2 45
L A(d k)R
- (1 _ Z)d+1

We sum up our results for the cube:

7.8 Theorem. Let P be the d-dim cube.

(1) The lattice point count is the polynomial

Lp(t) = (t+1)? Edj (Z)tk
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(2) Evaluated at —t, we obtain the count of interior lattice points up to sign:
(=1)Lp(—t) = Lpo(t)

(3) The Ehrhart series is

_ Zg:l A(da k)zkil
B (1 — z)d+l

Ehr(z)

The next case study is the standard simplex
A = Conv(0,e1,...,eq) = {(21,...,24) ER?: > 2; < 1,24 > 0}
tA ={(z1,...,2q) + Y x; <tz > 0}

Abbildung 107: Standard simplex A !

To avoid having to deal with the first inequality, we introduce another variable:

We want to count integer points (mq, ..., my) satisfying m; > 0 and m; + ... +my < t.
Instead, we count solutions (my, ..., mg, mgy1) € Z‘?@l satisfying my +. .. +mg+mgy1 = t.
Then

La(t) =#(tANZY = #{(m1, ..., ma) € ZL my + ... 4+ mgpq —t = 0}

zconst(< 3 zm1)< > _z—t>

m12>0 mg412>0

1
~Const{( [y 1)

Claim:

(binomial series)

1 1 1 , .
=YY i
(1 o z>d+1 == 1=z j120 Ja+120
To obtain the coefficient of 2* of this product, we have to take all choices of ji,. .., jat1

s.th. their sum is k.~~ Combinatorically, we can view this as the count of possible ways to
separate d + k places with d walls (figure 108)

HTmage from Hannah Markwig.
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Abbildung 108: d + k places, d walls 12

Jilt+jot+ st iat+is=2+14+0+24+0=5
= # places not filled with a wall
=d+k—#walls =d+k—d=k

There are (dzk) choices to put walls on the d + k places

= Coeff & ((1—12)5”1) = <d—1: k)

For the lattice point count of the simplex A:

La(t) = #(1tANZY

1 1y d+k kq
Const<(1 oy zt> = Const(%% ( i >z
o (5 (1)) = (1)
>0 k d

E

:dﬁd+@'w+t—U-~@+U

d factors

is a polynomial of degree d in t.

M2Tmage from Hannah Markwig.
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Next, we count interior lattice points of the simplex:

LAo(t):#{(ml,...,md)EZ‘iO:m1+...+md<t}

:#{(ml,...,de) EZiEl :m1+...+md+1:t}

= Const(( Z z"“) co ( Z zmd“> -zt>
m1>0 md+1>0
5\ d+1
= Const(( ) z_t>
1—2

1
— d+1—t
= Const (Z ' (1_Z)d+1>

1
= Coeﬁt_l_d <(]_—Z)d+l>

= Coefft_l_d< Z (d * k) zk>
k>0 d

(-0

We sum up our results:

7.9 Theorem. Let A C R be the standard simplex. Then:

(1) The lattice point count equals

LMw:(dgﬁzi;m+@-w+t—m-“-@+n

d factors

(2) (=1)*- La(—t) = Lao(t)
(3) Ehra(z) = W

Beweis. (1) see before.

(2)
d afd—t
1zat-0 = (")
:(—1)d;!(d—t)-(d—t—l)-...-(—t+1)
1
= = d) (=) ()
1
= (=)t d)
1)
C(t—d—1)d

- (t;1> = Lpo(t)

by our previous computation.
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Our next case study:
Pyramids over the (d — 1)-dim cube with vertex at e,:

0

o
i\
U\J

Gnlee foc A-A =72

Abbildung 109: Pyramid '**

For those, we need Bernoulli polynomials. They are given via the generating function

ze™? Br(x)

62—122 k!

k>0

Remember the exponential series:

3Image from Hannah Markwig.
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We compute the first two Bernoulli polynomials:

ze*? z

Tz

er—1 - ez —1 c
= 22 Zz3 -e™’
Z+ ST + 31 —+ ...
22 Pat 22 23 k
22 23
Z2 23
22 23
—(1-= .
B Z (l‘z)k 1 Z xkszrl
>0 k! 2 >0 k!
1
= Bo(z) =1, Bi(z) =2 — 5
One can further show that
1
By(z) =2 — 2 + &
3 1
Bg([[‘) = ZL'3 — 5[[‘2 + 5.757 ce
7.10 Definition. The Bernoulli numbers are By := Bj(0) and have the generating
series
z Z %zk
er—1 ;= k!
7.11 Lemma. Let d > 1, n > 2 be integers.
1 n—1
5+ (Ba(n) =Bg) = 3k
k=0
Beweis. We consider the generating series of W:
Bai(n) — Ba 4 Ba(n) 4 Ba(n) 4 Ba 4
Y P =B 5 B a5 B a3 B
=0 d! =0 d! =0 d! =0 d!
_ze™ z z(e™ —1)
Ter—1 er—1 e? —1
2\ _ ] n—1
—y (ez) — . Z 6kz
ez —1 =
n—1 (kZ)j n—1 Z]—l—l
= YT =Y (Y )5
k=050 J- 7>0 N k=0 J
Fial n-1 Z,/
E ki’1>
= (,;) (j = 1!

I —
T=1i>1 N g=0



When comparing coefficients, we obtain the result. O]

Now back to our pyramid:

P:{(ml,...,:pd)GRd|O§m1,...,md_1§1—xd§1}

Lp(t) =#{(my,...,mq) €20 <my <t —mg<tVk=1,...,d—1}

If we fix mg between 0 and ¢, we can choose t — mg + 1 numbers for each of the my
independently. Thus

t t+1
=t—m, . 1
Lp(t) = 3 (t—mg+1)4 1 et 3o pd1 7(Ba(t+2) —By)  (polynomial in #)

mg=0 k=1

We count interior lattice points for the pyramid:

Lpo(t) = #{(my,...,mq) €EZ0 <my <t —mg<tfork=1,....d—1}

Similarly,
t—1 t—2 1
Lps(t)= > (t—=mg—1)" " =3 k"' = =(By(t — 1) — By).
deI k—O d
7.12 Lemma.
Ba(1 —z) = (=1)"Ba(x)
Beweis.
5 Bp(l—x) , zell™@2 zefe
A = =
= K e#—1 e*(l—e?)
_ozeT™ (—2) - e?(=2)
N |
k>0 M
the result follows by comparing coefficients. m
7.13 Lemma. B; =0 for all odd d > 3.
Beweis. By =1, By = —3.
Z—z :1—72%—2—7; = —
>0 k! 2 > k! e —1
By » 2 1 (2+32¢°—32) z(1+3e°—1) z-5-(eF+1)
= ,;2 k!z_ez—1+2z_ e —1 B e —1 N e —1
and k=0

We claim that this is an even function. We insert (—z):

()" 4D) _ (=) d ) (=23 (+e) - bi4e)
e(=2) — 1 o ere (e 1) 1—e? e —1
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7.14 Proposition. For the pyramid P:

(=1)"Lp(—t) = Lp=(t)

Beweis.
() 2=
:(_1)d(1j(13d(1 —(=1)—Ba)
lemmas E(Bd(t — 1) — Bg) = Lpo(t)

7.12, 7.13(

Next, we study the Ehrhart series. For this, we can even be more general:
for Q = Conv(vy,...,v,) C RS let P = Pyr(Q) be the pyramid

P = Conv((vy,0),...,(Vm,0),eq) C RY.
Then

prr(Q)(t) =1+ LQ(l) + ...+ LQ(t).

N A

Abbildung 110: Lpy(g))

7.15 Theorem.

Ehrg(2)
Ehrpyr(Q)(Z) = @

1—=z2

H4Tmage from Hannah Markwig.

109



Bewess.

With this, we can sum up our results for the pyramid P over the cube of dim d — 1:

7.16 Theorem. Let P be the pyramid over the cube of dim d — 1.

(1) Let lattice point count equals

Lo(t) = ;(Bd(t +2)—By)

is a polynomial in t of deg d.
(2)
(—=1)?Lp(—t) = Lps(1)

(3)

S A(d— 1, k)2F?
Ehrp(z) = =* 1(1(_ z)d+1>

Our next case study are diamonds (see figure 111):

P={(z1,...,2q) €RY|zq| 4+ ... 4|24 <1}

7.17 Definition. For Q = Conv(vy,...,vy) C R4 we define the bipyramide

P = bipyr(Q) = Conv((v1,0), ..., (vm,0), eq, —€q)

5Tmage from Hannah Markwig.
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Abbildung 111: diamond '°

7.18 Lemma.

t—1
Liipye(@)(t) =2 +2Lo(1) + ...+ 2Lg(t — 1) + Lg(t) =2 + ZZLQ + Lg(t)
7j=1

7.19 Theorem. Assume 0 € (). Then

1+ 2
1—

Ehrpipgrq)(2) = ~t Ehrg(z).

Beweis.

Ehrbipyr(Q)('Z) =1+ Z Lipyr(@) (t)zt

t>1

_1+Z<2+22LQ )+ Lol ))

t>1

=14+2) 2 +2ZZLQ 24+ Lo(t)

t>1 t>1 j=1 t>1
t—1
:Eth(z)+2<Zzt+ZZLQ(j)zt>
t>1 t>1 j=0
= Ehrg(2)+2- 2 - (Zz —i—ZZLQ zt>
t>0 t>0 j=0
:Eth(z)+2-z~(+ZLQ D )
7>0 t>]
:Eth(z)+2-z-(+ZLQ )
7>0

2

= Ehrg(z) + %Eth(z’)
-z

_ (1= 2)Ehrg(z) + 22Ehrg(2)

1—2z
1—24+22 1+2
= Ehrg(2) - = Ehrg(2) T



[]

With this, we can recursively determine the Ehrhart series of diamonds. For d = 0, the

diamond is the 0-pt, with Ehrhart series

1—|—Zl-zt:Zzt=1

t>1 >0

—z
7.20 Proposition. The Ehrhart series of the diamond in dim d is

(14 2)¢

Ehrp(z) = a—aet

7.21 Proposition. The lattice point count of the diamond is

-5

Bewess.

d
The claim follows by comparing coefficients.

with (x): since (t_k+d) =0for0<t<k.

We sum up the results:

7.22 Theorem. Let P be the diamond in dim d. Then:

(1) The lattice path count is

(2)



(3)

(1+2)

Ehrp(z) = A=t

Beweis. 1), 3) was shown already in the propositions 7.20 and 7.21.
2)

Lpo(t): (ml,...,md)EZd| |m1\++]md\<t}

(ma, ... ma) € Z9 | + ...+ [mg| <t} = Lp(t —1)

@)C—1+d—k>_§:<d )C—1+d—ﬁ

k d 2 \d—k d

d\ (t—1+k

k d

(where we relabel with &' = d — k, and then rename £’ as k). Since
d—1 t—1

—1)¢ —

()= ()

(see standard simplex: lattice path count and reciprocity, where we also established
Lao(t) = (tzll) for the interior lattice point count), this equals

oy (1) (1) - coteetn

1

=

#
#

As final case study, we consider polygons.

7.23 Theorem (Pick’s formula). For a lattice polygon with i interior lattice points,
b lattice points on the boundary and of area A, we have

b
A=i+-—1
z+2

(We have proved this formula already.)

7.24 Theorem. Let P be a lattice polygon.
(1) The lattice point count is
Lﬂﬂ:Aﬁ+;m+1
(2)
Lp(—t) = Lpo(t)
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(3)

Bewess.

After all these case studies revealing the same pattern, we aim for general results.

(A-24+1)22+(A+L2-2)z+1
(1-2)3

EhI‘p(Z) =

(1) The area of tP is At?, the points on the boundary of tP are tb.

Lp(t) = inside pts + boundary points of tP
= inside pts + tb

icl tb
P:kArea(tP) b +1+1tb

b
=At? + S+l
5 1 Pick .
Lp(—t) =At" — ibt + 1 =" pts inside tP = Lpo(t)

Ehrp(z) =1+ Y Lp(t)2'

t>1
b
=1+> (AP + -t +1)7
t>1 2
b
=14+ A 2+ 2> 2+ )
t>1 2 t>1 t>1
b
:Athzt—i-thzt—l—Zzt
t>0 2 t>0 t>0
z+ 22 b =z 1

(1—2) 2(1—2)2 1-—=z2
A+ AR+ 1 2)z+ (1—2)?

(1—2)?
A=+ )2+(A+E-2)z2+1
B (1—2)

We use the following result:

7.25 Theorem. Let P be a polytope. Then there exists a triangulation of P whose vertices

are contained in the vertices of P.

Beweis. Let A = vertices of P, we consider (A, P) as marked polytope. A point in the
interior of a top-dimensional cone of the secondary fan of (A, P) yields such a triangulation.
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e (e

Abbildung 112: (not a) simplicial cone '

7.26 Definition. A cone is called simplicial if it is the cone over a simplex, i.e. if it has
d ray generators for a cone of dim d.

7.27 Example. See figure 112.

In dim 2, every cone is simplicial.

A
>

“""'--.-
—
—

Abbildung 113: in dim 2 '*7

7.28 Definition. Let o be a strictly convex cone. A triangulation of o is a set T of
simplicial cones s.th.

(1)
o = U ag;

o, €T

(2) For 01,09 € T, the intersection oy N o3 is a face of both.

7.29 Remark. If a polytope P is triangulated, s.th. cones over the simplices yield a
triangulation of the cone over P.

7.30 Example. See figure 114.

16Tmage from Hannah Markwig.
U7 Tmage from Hannah Markwig.
H8Tmage from Hannah Markwig.
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Abbildung 114: P with cones ''®

7.31 Definition. We say that o is triangulated without new generators, if any ray
generator of a cone in the triangulation is already a ray generator of o.

By taking cones over a triangulation of a polytope P without new vertices, we obtain a
triangulation of the cone over P without new generators. Thus, the following is a direct
consequence of theorem 7.25:

7.32 Corollary. For any strictly convex cone, there exists a triangulation without new
generators.

7.33 Definition. Let o be a strictly convex, rational cone C RY. The generating function
of o is defined to be

fo(2) = folz1, ..oy 2q) = Z 2" = Z 2

meEonZ4 m=(mi,...,mq)

7.34 Example. ¢ = [0,00) C R, fo(2) = Xpez., 2" = 12

Abbildung 115: f,(z) of o 11

1 -2 9
)05 ))er
We tile ¢ with shifts of the fundamental parallelogram

7.35 Example. 0 = Cone(

I = {)\1(1, 1) + )\2(—2,3> | 0< )\1,)\2 < 1}

9T mage from Hannah Markwig.
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To understand the generating series of o, we first study nonnegative integer multiples of
the ray generators of o:

Z LM Z Z Zj(1,1)+k(—2,3)

m=75(1,1)+k(—2,3) J>0k>0
4,k>0
— Z Z z{_2kzg+3k
>0 k>0
= (2122)j‘ (21 2Z§)k
J>0k>0
= (z120) - Z(Zfzzg)k
7>0 k>0
1 1

For a given point (m,n) € II, we define

Limmy = {(m,n) +5(1,1) + k(=2,3) | 5,k € Zxo}

Then

JHZQZU

(m,n)elINZ? 'C(m,n)
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where

IIn7*={(0,0),(0,1),(0,2),(—1,2),(—1,3)}

Thus we can write the generating series of o as:

fo(21, 22) Z 2t
pEZ2No

S

(m,n) GHﬂZQ pEE(m n)

. Z S ( Z Zj(1,1)+k(2,3))

(m,n)eIINZ2 7(1,1)+k(—2,3)
J,k=>0
= Y A
(mon)e1NZ2 1 =220 1—27%2
1 1

:(1—1—22+z§+21 z2+zl_lz§)-

. — -
1-— Z1%9 1-— 21 Zg’

With (x) : p=(m,n)+j(1,1) + k(=2,3), j, k € Z>g

7.36 Theorem. Let o = Cone(wy, ..., wy) C R be a simplicial, (strictly convex), rational
cone. Consider for v € R? the shift v+ o. The generating function of the shift is
_ forn(2)
Joro(2) = 4= s (1= 2wa)

where II is the partially open parallelogram
H:{)\lw1+...+/\dwd\0§ A < 1}

11 is called the fundamental parallelogram.

Beweis. A lattice point m € (v + o) N Z¢ (contributing a summand 2™ to f,) can be
written as

mzv+)\1w1—|—...—|—)\dwd

with \; € RZO
Since the w; form a basis of R%, the \; above are unique. We write each )\; as sum of
integer part and decimal:
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Then
m=v+ ([\] +{MPHwi + ...+ ([Na] + {Aa})wa
and
p=v+{M}w+...+{jwg€v+11

Furthermore, since m € Z¢ and |\ |w; + ... + [ A\g]wg € Z¢, also p € Z°.
Hence, every m € (v + o) N Z% can uniquely be written as

m=p+ kiw + ...+ kqwy

for p € (v+ II) N Z% and k; € Z>o. The function

(1— zwliﬂff.(jzzl — ey e (2) ( 2 ka) o ( 2 dewd)

k1>0 kq>0

= > zp-<z,zk1w1>-...-<z,zkdwd>

pe(v+IT)NZ3 k120 kq>0

If we multiply out, the exponent of a monomial in this expression exactly takes such a
form. The equality

_ f’U+H(Z)
Joro(2) = (1—zw1) ... (1— 2wa)
follows. o
7.37 Corollary. Let 0 = Cone(wy, ..., wy) C RY be a simplicial, (strictly convez), rational

cone. Consider for v € R the shift v+o. Assume there are no lattice points in the boundary
of v+ o. The generating function of v+ o is

f’U+H(Z)
(1 —zwr)- (1 — zwa)

fu-i—a(z) =

where I1 is the open parallelogram

H:{)\lw1++/\dwd|0§ >‘z < 1}

Beweis. The proof follows the same ideas as for theorem 7.36. Since there are no lattice
points on the boundary we can safely work with the open parallelogram I1. O]

7.38 Corollary. The generating function of any strict convex cone is a rational function
in the z;.

Beweis. This follows since we can use a triangulation and theorem 7.36. If we insert new
facets in the interior, their lattice points would be overcounted if we just add contributions
from the simplicial cones. So we have to subtract such contributions again. But faces of
simplical cones are always simplicial, so the contributions we subtract are again rational
functions. If we subtract contributions from new facets, it is possible that we subtract too
much: new codim-2-faces that are faces of several facets. We have to add their contributions
again. Overall, we have to use an inclusion-exclusion principle, where we add (resp. subtract)
rational functions. m
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Abbildung 116: ¢ '

7.39 Remark. We can use the previous results for the lattice point count of polytopes.
Assume ¢ is the cone over a polytope P C R%. See 116

Then

foloeo o Lizap) = 1+ Y #(tPNLY)20, =1+ Lp(t)zg,, = Ehrp(za11)

t>1 t>1

The following technical lemma will be useful for the further study of lattice point counts
and Ehrhart series:

7.40 Lemma. If a generating series

Zf(t)zt _ 9(2)

= (1 — 2)d+1’
then f is a polynomial of degree d < g is a polynomial of degree at most d and g(1) # 0.

Beweis. “= 7 Assume f = aqz® + ... + ag, where ag # 0. Then

A0z = Y (aat + -+ ag)!

>0 t>0

= adthzt +ag_1 th_lzt +...4+ag Zzt.

t>0 >0 t>0
S A(d, k)2F SO A(d — 1, k)R 1
B VR T B G T R g
d d-1 1
= (ad< > A(d, l{:)zk> + ad_1<z A(d -1, k)zk> (1—=2)+--+ap(l - z)d> ST
k=0 k=0 (1-2)

So we have

d—1

g=ay (éA(d, k:)zk> + ag_1 (l;)A(d —1, k)zk> (1—2)+--+ag(l —2)~

120Tmage from Hannah Markwig.
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It is a polynomial of degree at most d, and

g(1) =aq (Z A(d, k:)) = aqd! # 0.

k=0

Assume g(z) = bgz? + - -+ + by, then

9(2) :(bdzd+.__+b0)'z<d+t>zt

(1 — z)d+1 =\ d

d+t d+t d+t
:bd.z< ;>zt+d+bd_1.z< ;>zt+d—1+...+boz< &L)zt

>0 >0 >0

(%) k kE+1 kE+d .
=Y [b by 4 b .
k20<d<d>+dl< d >+ +0< d :

With (x) : sort for 2%, (k=t+d = t=k—d)or (k=t+d—1 = t=k—d+1,...)
Thus, the polynomial f(X) is

£(X) :bd<§> +bd_1<X;1> +...+b0<X;d>.

1
= b X(X = 1) (X —d+ 1)+
1
F b (X DX (X =) (X —d42) 4.+
1
F b (X + (X +d—1)- ..o (X +1).

The X%-coefficient of f(X) equals

1
(bd+bd,1+...+b0)~J:g(1).—7é0

= f is a polynomial of degree d. m

7.41 Theorem (Ehrhart). If P is a lattice polytope of dimension d, then Lp(t) is a
polynomial in t of degree d.

Beweis. 1t is sufficient to prove theorem for simplices, since we can triangulate any lattice
polytope. The simplices in a triangulation intersect only in lower-dimensional simplices, so
any correction term we have to add/subtract with an inclusion or exclusion principle does
not effect the top degree part.

Notice that the leading coefficient of any Lg(t) for a simplex () must be positive, since
hmtﬁoo LQ (t) = OQ.

Hence adding L (t) for d-dimensional simplices in a triangulation of P, (and adding/subtracting
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correction terms of lower degree), we obtain a polynomial of degree d for Lp(t).
It remains to prove the theorem for simplices.
Let A be a d-dimensional lattice simplex. Because of lemma 7.40, it is sufficient to show

Ehra(z) =1+ ZLA(t)Zt = ﬂf(gdﬂ

for a polynomial g of degree at most d satisfying g(1) # 0. We have
Ehra(2) = f,(1,...,1,2),
where ¢ is the cone over A and f, its generating series. By theorem 7.36,

fr(z,.. zam1)
I—2zw). . - (1— zwat)

fo(Zl,...,zd+1> — (

where the w; = (v;, 1) generate o (A = Conv(v;)) and
H:{)\lw1+...+)\d+1wd+1:Og)\i< 1}

is the fundamental parallelogram. Since II is bounded, it contains finitely many lattice
points and fr7(21,. .., 24+1) is a Laurent polynomial in the z;.

Claim: deg, ., (frr) < d. The X4q1-coordinate of every w; is 1, hence the Xgi1-coordinate
of a point in I7 is
D N S S

for some 0 < \; < 1 = the X . 1-coordinate < d + 1, for a lattice point, < d.
= fu(1,...,1,z441) is a polynomial of degree at most d in z441. Furthermore,

fa(1,...,1) =#INZ #£0.
It follows that

Ehra(2) =f,(1,...,1,2)

_ fH(Zl7"'7Zd+1)
(1 —zwr) - (1 — zwar) el 71
() fr(1,...,1,2)
(L—2)(1—2)
:fﬂ(l, ceey 1, Z)
(1— z)dH
With (%) : Since 1 — 2% =1 — 2, ... 2, 2441
The claim follows. O

7.42 Corollary. The Ehrhart series of a polytope of dimension d takes the form

9(2)
(1 — z)d+1

for some polynomial g.
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We will study this polynomial g further. The following is a direct consequence of the
previous proof:

7.43 Corollary. Let A\ be a lattice simplex of dimension d with vertices vy, ...,vqy1, let
w; = (vj,1). Then

haz® + hg12% 1+ ...+ hiz + hy
Ehr(z) = (1 — z)d+

where hy = # lattice points in {\wi + ...+ Ngr1wayr : 0 < Ny < 1} whose last coordinate
is k.

7.44 Theorem (Stanley’s nonnegativity Theorem). Let P be a d-dimensional lattice
polytope with

haz*+ ...+ h
Ehrp(z) = d(l — z)d+l -

Then hg, ..., hqg > 0.

Beweis. We triangulate o = Cone(P).

Claim: Jv € R%! s.th. the facets of v + ¢ contain no lattice points, nor do any of the
facets of the simplices in its triangulation.

For a single rational hyperplane

H={r € R¥ayx; + ... +agwqg =0}

with a; € Z, we can use theorem 5.17 to find a lattice basis B of H N Z% and another
vector v € Z4, s.th. B U {v} is a basis of Z%. If shift H using integer multiples of v, we
cover all the lattice points. If we shift H by \v with A\ ¢ Z, we cannot cover any lattice
point. Adding vectors in H to Av does not change the shift.

We can do this for any hyperplane containing the facets of the simplices of our triangulation.
We have enough choices for each so that we can pick a vector with which we can shift all
while avoiding lattice points.

wr UJ& - o ! H A
] 2 e
o 9 o
¢ v "
o 9 ’
¢ o "

o o e o @ 0 0

Abbildung 117: H;, Hy, v, and vy !
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In figure 117, we pick v; and v, to add to the lattice basis. Suitable shifts can be found in
a ||ev;||-neighbourhood, the green vector is in the union of the two neighbourhoods, the
green shifts do not contain lattice points.

For the shifted cone, we have

ocNZ™ = (v+0o)NZ,

and no lattice point lies on any facet of the triangulation, i.e.,

ocNZM = (v+0)NZH = szl(v +0;) N Z*H!

:>f0(21, . 7Zd+1) = Z fgj (Zl, ey Zd—i—l)
=Ehrp(z) = f5(1,...,1, ifaj o1, 2)

Claim: The rational function
for(1,...,1,2)

has nonnegative coefficients in its numerator.
This follows from the previous corollary, where we showed for such a coefficient

hi. = # lattice points in {Ajw; + -+ + Agriwgr1 | 0 < A < 1}
whose last coordinate is k. O

7.45 Corollary. Let P be a d-dimensional lattice polytope with

hdZ + - —f—ho
Ehrp(2) = (1= z)d+
Then hg = 1.
7.46 Proposition. Let P be a d-dimensional lattice polytope with
hdZ +-+1
Eh'f’p( ) W
Then p i1 .
t+ t+d— t+ t
Lp(t):< d >+h1< d >+---+hd—1< d )—i—hd(d)-
Beweis.
Eh = (hgz" hiz +1 !
I‘P(Z)—( S R o (A P o )<1—Z)d+1
t+d
:(hdzd—i_...—i_hO).Z( )Zt
o\ d
t+d t+d t+d
:hdz<+>t 1z< >t+d1+“_+hlz(+>zt+1+z<+)Zt
=\ d >0 s\ d o\ d

g bl v (7)o L)1)

21Tmage from Hannah Markwig.
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With (x): sort for 28, k=t+d =>t=k—-dork=t+d—1=t=k—d+1,...

Lp(t) = <t2d> +h1<t+fl_1> +...+hd1<t21> +hd<fl>.

7.47 Corollary. The constant term of Lp(t) is 1.
Beweis. Lp(0) = (3) =1

Accordingly, we can write the Ehrhart series as

Ehrp(z) =Y Lp(t)z".

>0

7.48 Corollary. Let p be a d-dimensional lattice polytope with

hdZd + ...+ ho
Ehl‘p(Z) = (1 — Z)dJrl
Then
hi=Lp(1)—d—1=#PNZ—d—1.
Bewezs.

1+d 1+d—-1 2 1
LP(1)=< —; >+h1< _'_d >+"'+hd—1<d>+hd<d>Zd—|—1+h1.

7.49 Corollary. Let Lp(t) = cqt® + -+ + 1t + 1, then
d-ceZ Yi=1,...,d.

Beweis. Since

Lp(t) = (tzd>+h1<t+2_l>+...+hd_1<t;1> +hd(2>

1 1
:a(ﬂ—d)-...-(t+1)+h1-E(t+d—1)-...-t+...

The following will be useful when we evaluate Lp(t) for negative values.
7.50 Proposition. Let p be a polynomial of degree d s.th.
_ haz?+ hga 2T oz + R

gp(t)zt o (1 — z)d+!
Then
hg=hg1="+=hp =0
and
he #0 < p(=1)=p(=2)=---=p(=(d+k)) =0.
and

p(—(d— k+1)) £0.
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Beweis. “= 7 Let

hd:hd_lz"':hk+1:0 and hk#O
Then
1 t+d
k _ k t
t+d t+d
:th< + >2t+k+hklz< + )ZtJrkl—l—...
=\ d o\ d
t+d t+d
+h12< " )zt+1+z< * )zt
o\ d o\ d
t+d—Fk t+d—k+1
()
=0 d d
t+d
+h0< d ))Zt
t+d—k t+d—k—+1 t+d
1
:hka(t+d—k3)(t+d—k—1)-...-(t—k—l—l)
1
thi(t—d—k+1) (= k+2) 4.
1
+h0$(t+d)-...~(t+1).
All binomial coefficients are 0 for t = —1,—2,..., —d + k.
For t = —d + k — 1, all binomial coefficients except the first,
1
th(ter—k)(ter—k—l)-...-(t—k+1),

which is nonzero since hy # 0.
=p(-1)=-...-=p(—(d—k))=0 and p(—(d—Fk+1))#0.

“«< "7 As before, we can see that

p(t) :hd<fl> +hd1<tzl> +.“_+h0<tzd>

1
:hdat-(t—l)-...-(t—d—kl)
1
+hd_1a(t+1)~t-...'(t—d+2)+...
@
+h0$(t+d)~...~(t+1).
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Then,

0=p(=1)=hg-—(=1)(=2)...(=d) = hg- (=1)* = hy=0.
1
0=p(-2) = hd_la(—m(—z) co(=d)=hg_y- (=) = h4,=0.
Continuing, we can see that the fact that p(—i) = 0 implies

hd—i+1:O forizl,...,d—k:. :>hd:"'=hk+1:0.

If furthermore hy = 0, we could equivalently see p(—(d — k + 1)) = 0 which contradicts
our assumption. Hence hy # 0. O

Counting lattice points in stretched polytopes is related to the computation of volume:

7.51 Remark. Let S C R? be a subset of dim d, then

1S =1 1 SN 1Zd
vl § = lim # (51 (72)

because we can think of filling up S with little boxes of side length %, which have volume
t%~ The count of lattice points corresponds to the count of boxes.

d
Counting the lattice points of the lattice (lZ) is as good as counting the Z9-lattice points

t
of ¢tS. Thus 1
_ 1 s d
vol 5= lim td#(tSﬁZ ).

7.52 Example. Let P C R? be a lattice polygon. We know that Lp(t) = At* + 1bt + 1,
where A is its area and b = # lattice points on the boundary. Then

.1 9 !
lim t—z#(tPﬂZ )= tliglo t—QLp(t)

t—00

1 1
= lim — - (At2 + 5lnt+ 1)

t—o0 2
) b 1
:tlgglo<A+2t+t2> —A,

which is the area, i.e., the volume, of P.

7.53 Proposition. Let P C R? be a d-dim lattice polytope with

Lp(t) = Cdtd -+ Cdfltd_l + ... 4+ct+ 1.
Then cq = vol(P).

Beweis.
td et t+1
vol(P) = lim Cal” + Ca-1 tohatt
t—o0 1d
L Cd—1 1 1
= Jim (et 57 b gt )
= Cq.
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7.54 Corollary. Let P C R? be a d-dim lattice polytope with

haz + hg12¥ '+ 4+ hiz+1
Ehrp(z) = (1 — z)dt .

Then
1

vol(P) = 7

(ha+ha—1+ -+ hi+1).

Beweis. We know that

t+d t+d—1 t+1 t
LP<t):< d >+h1< J )—i—----i—hd—l( d >+hd<d>>

and the leading coefficient of this polynomial in ¢ is the volume. The leading coefficient is

1
a(1+I7J1+---+hd).

Questions:

« What is the number of triangulations of a polytope without new vertices? (Or: What
is the number of top-dim cones in the secondary fan (P, vert(P)), or in any secondary
fan?

« What is the minimal number of simplices needed to triangulate the cube [0,1]%?
(Known for d < 7).

o What are all polynomials of degree d which are Ehrhart-polynomials, i.e., of the
form Lp(t) for a polytope P of dimension d? (Known for d = 2, partial results for
d=3,4).

o What can we say about the zeros of Ehrhart polynomials?

« Let P,Q be lattice polytopes with Lp(t) = Lg(t). What further requirements do P
and @ need to satisfy to guarantee that P = f(Q) for an affine map f whose linear
part is Z-invertible?

Our next goal is to prove

7.55 Theorem (Ehrhart-Macdonald Reciprocity). Let P be a lattice polytope. Then
Lp(—t) = (=1)3™PLpo(t).

7.56 Remark. Lp(t) is a function which, for ¢ > 0, counts lattice points. For ¢ > 0,
Lp(—t) a priori does not make sense (not in the original meaning).

But, given that Lp(t) is a polynomial in ¢, we can still of course insert negative values.
EM-Reciprocity gives a meaning to the Ehrhart polynomial Lp(t) evaluated at negative
values.

We first study simplicial cones.
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7.57 Proposition. Let wy, ..., wy € Z¢ be linearly independent and let
o = Cone(wy, ..., wy).

Let v € R such that the boundary of the shifted cone v+ o contains no lattice points. Then
1 1
fv+0 <Z1’ ceey > = <_1)df—v+a<zla cee 7Zd>

Zd

as rational functions.

Beweis. We know that

fv+H(Zl,---,Zd)
L—zw)- - (1 — zwa)’

foro (21, 0y 24) = (

where II is the open fundamental parallelogram,

H:{A1w1—|—~~+>\dwd|0<)\i<1}.

Analogously,
. f7U+H<z1,...7Zd)
f‘”*“(zl"”’zd)_(1—zw1)-...-(1—zwd)'
O
Claim: v+ Il = —(—v+II) +w; + ... + wy
/z J/’ Y
-
Al “‘V‘”T — ,ﬁm f(fu+‘TTJ-iW4+“’a

Abbildung 118: v 4 I, —v 4 II, —(—v + II), —(—v + IT) + w; + wy 22

Let pev+ 11

= p=v+Mw+...+ A \wg, 0< )\ <1
p—w1—...—wd:v+()\1—1)w1+...+(/\d—1)wd.
Let
ui::)\i—lasO<)\i<1
=—-1<u; <0
:>1>—ui>()

= — W — ... — pqwg € I

= — U — Wy — ... — pqwg € —v + 11
=0+ pwy + ...+ pgwg € —(—v + 1)
=>p—w; —...—wg € —(—v+1II)

=pe—(—v+H)+w + - +wy

122Tmage from Hannah Markwig.
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Vice versa, if

pe—(—v+1II)+w + - +wy
=p—wy —...—wg € —(—v+II)
= —-ptw+...+wg € —v+1I
= —ptw+...+wg=—v+ANwy + ...+ Aqwy

for some 0 < \; < 1, so

SP—W— ... — Wy =0V — AW — ... — AWy
:>p:v+(1—/\1)w1—|—...+(1—)\d)wd

and0<1— )\ <1,= pe€wv+ Il It follows that

1 1
fv—i—H(Z) = f—(—v-‘rﬂ)(z) EACRRPRRF AR f—U+H <7 cee ) A
21 Zd
where the last equality follows since for any set S C R? (with —S = {—z | z € S}) we
have

fos(z1,-- 5 24) = fs (211, 1),

)
Zd

because a lattice point m € S produces a monomial z{" - ... - 2"

1 1
at Z,...,Zylelds
1™ 1\ .
() () =z ™y =TT
21 Zd

which is the monomial for —m € —S.
We insert i in the equation above and obtain

in fg, which, evaluated

Sorrt <i> = foprm(z) - 27" 2T

. (D . forrr (i)

—z7w) . e (1 — zmwa)
_ fovem(z) 270 27w
(1 —z7wr). oo (1 — z7wa)
fovrn(?)
2W1(1 — zmwr) . L zwa (] — z7wa)
fovin2)
(z1 —1) ... (2wa (—)1)
d f—v+H z
(=1) (1—zw)-. o (1 —2wa)
= (_1)df—v+0(z)'

7.58 Proposition. Let o be any d-dim strictly convex rational cone. Then

o (3) = (o).

z
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(a) o (b) v+o (c) —v+o

Abbildung 119: v 4+ ¢ contains all interior lattice points and —v + ¢ contains all lattice
points

Beweis. We triangulate ¢ into o4,...,0,,. Similarly to before, we can find v € R” s.th.
the shifted cone v + o contains the interior lattice points of o,

o°NZ = (v+o)NZ

and s.th. no lattice point lies on the boundary of any of the shifted simplicial cones v + o;
or —v + o;. It follows that
ocNZ'=(—v+o)NZ

Then, using the proposition 7.57:

. (5) = 10e (5)

m 1 m
- Z f—v+oj () fv—i—cr]
j=1 z yzl
= (D) oio(2) = (1) foe ()
m
7.59 Theorem. Let P be a lattice polytope. Then
1 .
Ehrp () = (—1) P B (2) = 3 Lo ()2
< t>1
Beweis. Let dim P = d. We know that
Ehrp ZLP Z :fcone(p)(l,...,l,Z).
t>0
Analogously,
Ehrpo(2) = foone(p)e(1,...,1,2).
Proposition 7.58 implies
1
fCone(P)°(17 BRI ]-7 Z) = (_1)d+1 : fCone(P)(L BRI ]-7 ;)
The claim follows.
1
Ehrp( ) Fol o L2y = (=)™ (1, .1, 2) = (—1)* Ehrps (2)
z
m
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7.60 Lemma. Let Q(t) be a polynomial. Let

Ri(z) = Q1)

t>0

Ro(z) =Y Q(t)z".

t<0

Then R(z) + Rg(z) = 0 as rational functions.

Beweis. Assume first Q(t) = 1. Then

1
Ré(z) = Zzt 1

>0
R_(z)—Zzt—Z(1>t—1—1 and
TS &\ 11
1 1 1 z
R} Ro(z)=—+—7—-1= -1
Q) T Ree) = T T =2 21
1 1—
- ~ =" 1=
1l—2 1-—=z 1—=z

Next, consider a monomial Q(t) = t<.

d k
RY(z) = 3 1t = Zimr ALKz

& (1— z)dtt
Ro(z) = 3t = -1 (3)

¢ S A(d k) (2 ’
= (1) ¢ (i) = (-1)? (1 _( 1)d3-1( )

t>0

_ T Al R T AR (1)
T (1= 2)dt -1 Zd+1(1 — Lyd+1
Yy Ad, k)2 a1 A(d, k)21 k
T (1= ) (=1) (z — 1)d+1
— Z%:l A<d7 k) b Ezzl A(d7 k)zd+1_k
(1— z)d+1
O A(d k)2 = A(d, d+ 1 — k)2
o (1 — z)d+1
_ Sia(A(d k) — A(d,d+ 1 — k)2
o (1 — z)d+1

RS (2) + Ry (2)

=0.
as A(d, k) = A(d,d+ 1 — k).

The claim for a general polynomial @(t) follows by adding the contributions for the
terms. O

Now we can prove the reciprocity theorem 7.55:
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Bewess.

o (2) -5 100 ()

t>0
= ZLPG)Zit = ZLP(—t)Zt
t>0 t<0
t<0
use lemma 7.60 t t
= 1= Lp(—t)z' =—=> Lp(—t)z".

with Q(t)=Lp(—t) >1 t>1

Using the reciprocity theorem for Ehrhart series we just proved, we have

Ehrps(z) =) Lpo(t)2'

t>1

=(—1)""'Ehrp (i)

by the above
YRR L) Lp(—t) 2

t>1

We compare the coefficient of z! and obtain:

Lps(t) = (=1)*Lp(—t).

m
We can apply reciprocity to deduce:
7.61 Theorem. Let P be a d-dim lattice polytope with
haz* 4+ ...+ hiz + hg
Ehrp(z) = (1 — z)d+
Then hg = hgq1 = ... = hgy1 = 0 and hy, # 0 < (d — k + 1)P is the smallest integer
stretch of P which contains an interior lattice point.
Beweis. We know
hd:...:hk+120andhk7é0
< Lp(—1)=Lp(—2)=...=Lp(—(d—k))=0and Lp(—(d—k+1)) #0
<:>Lpo(1) =...= Lpo(d—k?) =0 and Lpo(d-k?‘i‘ ].) 7é0
< (d — k + 1)P is the smallest integer stretch of P
which contains an interior lattice point.
]
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7.62 Theorem (Hibi’s palindrome theorem). Let P be a d-dim lattice polytope s.th. 0 € P°

and with .
hdZ ++h12—|—h0
Ehrp(2) = 1=

Then P is reflexive if and only if

hiy="hsy V 0<Ek<Z

TES

To prepare for the proof, we need:

7.63 Lemma. Let a,...,aq,b € Z with
ged(aq, ... aq,0) =1 and b>1.

Then 3 ¢, t € Z~q such that
tb<c<(t+1)b

and
{(ma,....,mq) € Z* | axmyi + - + agmq = ¢} # 0.

Beweis. Let g = ged(ay, ..., aq).

We have ged(g,b) =1 = 3 k,t € Z such that kg — tb = 1.

By possibly adding multiples of bg, i.e., using bg — g - b = 0, we can assume that in the
equation above, t > 0.

Let c=kg. Thentb=kg—1=c—1<ec.

Since b>1, th+b>tb+1=c=tb<c<(t+1)b. Since

g=ged(ay, ... aq), Imy,....,mg €EZ:aymy+ -+ agmg = kg = c.

We know: P is reflexive if and only if
P={ul]Au <1}
for an integer matrix A.
7.64 Lemma. Let P be a lattice polytope, 0 € P°,
P={u|Au <1}
for an integer matriz A if and only if
P°NZ* = {0}

and for all t € Zy,
t+1)P° NZ=tPNZ".

This condition means that the only lattice points we gain when passing from tP to (t+1)P
are the ones on the boundary of (t + 1)P.
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Beweis. “= 7

P°={zx| Az < 1}
EP={&x|Ax <1} ={Ex | A(Ex) <&} ={a' | A2/ <&}
ngin%)SP:{xﬂAa:'SE}:{O}

An integer point in P° satisfies Axr <0 < 1 =it is 0.
Furthermore,

(t+1)P°={zx| Az <t+ 1},
tP ={x| Ax < t}.

Any lattice point in (£ + 1)P° is already contained in ¢P
“<=7 Let P°NZ%={0} and for all t € Z,,

t+1)P°NZ=tPNZ%.
Let H be a hyperplane defining a facet F' of P. Assume
H = {z cR?| (a,z) = b}

for a € Z¢ such that ged(ay, . ..,aq) = 1. The points in P satisfy (a,z) <b.
The points in ¢P are t - x for x satisfying (a,x) < b

= (a,tz) <tb
= points 2’ in tP satisfy (a,z’) < tb
= the hyperplane tH is a defining hyperplane for ¢ P.

We can pick ¢ large enough such that ¢F (which is the facet of tP corresponding to F')
contains interior lattice points.

If there were lattice points between tH and (¢ + 1)H, we could fit a lattice shift L of
H N Z% between tH and (t + 1)H.

2H = {z +2y =4}

H={x+2y=2}

Since tF already contained interior lattice points, L N (¢ + 1) P° also contains lattice points
= (t+1)P°NZIN\NtPNZ*#0. 4
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Thus, there are no lattice points between tH and (t + 1)H.
= {r e Z|th < {a,z) < (t+1)b} = 0.

If b > 1, lemma 7.64 yields a contradiction = b = 1 = the defining hyperplane takes the
form (a,z) = 1. Since this holds for all hyperplanes, we deduce that P has the form

P={u]| Au <1}

for an integer matrix A. [ O
We are ready to prove Hibi’s palindrome theorem 7.62:

Beweis.
P is reflexive < P°NZ* = {0}
and for all t € Z~,

t+1P° NZ=tPNZ*

&Y Lp(t—1)2" =) Lpe(t)2'

t>1 >0

— Ehrpe(2) = (—1)*'Ehrp C)

ha (1) 4+ (1) + ko

z

— (_1)d+1

(1—1)d+t
d
s (hd (l) T+l (l) + h0>
= (~p*- : :
zd+1(1 _ %)d—&-l

hgz + ... 4+ hyz% + hozdt!

= (_1)d+1 ’ (z _ 1)d+1

On the other hand,

> Lp(t—1)z" =2) Lp(t)z' = zEhrp(z)

t>1 t>0
_ hgz™t 4o hoz hoz A+ hgztt!

(1 _ Z)d-‘rl o (1 _ Z)d+1

& hgz+ .o+ he2T = hoz + ..+ byt

S hy, = hg_y, forall 0<k<

|
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7.65 Example. Remember the Ehrhart series of a d-dim diamond is

(1+2)¢ B Zzzo (Z)Zk
(1 _ Z)d+1 o (1 _ Z>d+1 ’

(0= (%)

we conclude that any diamond is reflexive. We saw that before for d = 2.

Ehrp(z) =

Since

7.66 Definition. Let P be a polytope. We denote by fi := #k — dim faces of P, called
the face numbers for P.

7.67 Theorem. Let P be a d-dim lattice polytope. Then

d .
(1) f; =1
j=0
7.68 Example. .
vertices facets
8 —12+6 —1=1
edges P 4—-6+4—-1=1 5—84+5—-1=1

Beweis. We count lattice points in ¢P, organizing them in terms of the faces in which
relative interior they are contained. The relative interior of a vertex is the vertex.

Lp(t) = Z@ Lps(t)

F face of P
rec1p§mlty Z (—1)d1mFLF<—t)
F£D
F face of P
Inserting 0, we obtain
. d .
Lp(0)= > (=)™7-1=3 (1) f;
F£D =0
F face of P

We end the chapter with an application of Ehrhart theory to magical squares.

7.69 Definition. A magical square is an n x n-matrix with nonnegative integer entries
s.th. the sums of all entries in a row, column, or diagonal coincide. We call it semimagical
if the sums of the rows and columns coincide.
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7.70 Example. .

4 9 2 1 2 0 3 0 0
3 ) 7 0 1 2 0 1 2
8 1 6 2 0 1 0 2 1
The first matrix is magical (and particularly nice, since it contains all numbers 1,...,9

precisely once). The second is also magical, while the third is semimagical.

Problem: Count (semi-)magical squares. (If we restricted to consider only those with each
entry 1,...,n? precisely once (following the tradition). This is known only for n < 5.

7.71 Example. Let n = 2, denote the magical sum by ¢.

t t
s |t—s 5 5

13 I3
t—s| s 5 5

The left one is semimagical for any 0 < s < ¢, the right one is only magical (for ¢ even)
(2s=t)

Hy(t) := # semimagical squares of size 2 with sum ¢t = ¢ + 1.

, teven

1
Ms(t) := # magical squares of size 2 with sum ¢ =
0, else.

7.72 Definition.

LEUEO
r11 .. Tin
xip, =1 foralll<k<n
Tpl - Tpp ijkzl forall1 <j<n
k

is the n-th Birkhoff-von Neumann polytope.
7.73 Example. B, C R* is the segment

e {(53)-(9))

t 1—1t
<t <1.
<1—t t) for0<t<1

it contains all
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Fact: The vertices of B,, are the permutation matrices.
It follows that B, is a lattice polytope.

. . . . 2 . .
If we view the points in B,, as column vectors in R™" rather than as matrices, we can write

B, = {z € RY, | Az = b},

for

c Z2n xn?

and b= (1,...,1).

o
(@)
oo O oo

0 0
(viewed as column vector) is in the kernel of A, also:

(O A A o © ] [

; ©//1/L ©- 0O
‘ o - - o
' ®

\°
- O
Abbildung 120: Matrices in the kernel of A '*

There are (n — 1)? linearly independent vectors in ker(A).

rk(A) + dim ker(A) = n?
=1k(A) <n*—(n—10=n*—n>+2n—1=2n—1.

By subtracting the last n rows of the first, we obtain:

123Image from Hannah Markwig.
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1 1
1 1
1 ... 1
1 1 1 1
1
1 1 1 1
Furthermore, subtracting rows number 2, ...,n, we obtain 0 0-row. Reordering the rows,

the first ones in each row are pivots.
=t1k(A) =2n—1
=dim(B,) =n*-2n+1=(n—1)?

7.74 Theorem. The number of semimagical squares of size n with magical sum t is a
polynomial in t of degree (n — 1)?,

Beweis.
H,(t) = # semimagical squares of size n with magical sum ¢
= #(tB, NZ") = Lp, (t),
and dim(B,) = (n — 1)
[
7.75 Lemma.

H;(t) :=# semimagical squares of size n with magical sum t with positive entries
=H,(t —n).

Beweis. Given a semimagical square with positive entries, we can subtract 1 from each
entry and obtain a semimagical square (with not necessarily positive, but nonnegative
entries) and with magical sum n — t.

Vice versa, from any semimagical square with nonnegative entries and sum n — ¢, we can
produce one with positive entries and sum ¢ by adding 1 to each entry. This is a bijection

between the two sets we are counting. O]
7.76 Lemma.

H(1)=...=H,(n—1)=0.
Beweis. This follows, since we have at least sum n if we have only positive entries. O

7.77 Theorem.
Hy(—n—t) = (_1)(n_1) H,(t)

and



Bewess.
HE(t) = Lps (1) "= (1)’ Ly (—1) = (=1) "V H, ()
=H(—t) = (-1)""V H,(t).

Since Hy(—t) = H,(—t —n) by a previous lemma, the first statement follows.
Since
H(1)=...=H;(n—1) =0,

we conclude using reciprocity that

7.78 Corollary. The Ehrhart series of B, has the form

h(nfl)(nﬂ)z(n—l)(n—?) + -+ hg

Ehrp,(2) = (1= z)(-12+1

with the palindromic behaviour

—1 -2
hy = h(n,l)(n,g),k for0<k< (n )2(n )
Beweis. The fact that
h(n,1)2 = ... = h(nfl)zf(nf2) — 0
follows since
H,(-1) = =H,(—n+1)=0.

The palindromic behaviour follows since

Ehrp (i) =(—1)"Ehrps(2)
=(=1)""'> " Lpo(t)2

>k
:(—1)‘“r1 Z Lp(t— k:)zt
t>k
t/=£*k(_1)d+1 Z LP(t/)Zt’+k
t'>0

=(—1)4. 28 . Ehrp(2).

7.79 Lemma.
H,(1) =nl.
Beweis.

H, (1) = # vertices of B,, = # permutation matrices.
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7.80 Example. We can use these results to find H,(t) by interpolation.
We do that for n = 3. We know

H3(0) =1,

Hs(—1) = H3(-2) =0

Hy(—3) = H3(=3 - 0) = (1) - H3(0) = 1
H3(1)=3!=6

H3(t> :C4t4+"'+00 = H3(0) =cy =1,

o

)=c—c3+ca—c+1=0

) =16c4 — 8¢y +4cy —2¢1 +1=0
—3) = 8lcy — 27cs + 9cs — 3cy + 1 =0
H3(1)=cy+c3+---+co=6.

We can solve this 5 x 5 linear system of equations and obtain

1, 3, 15, 9
Hs(t) = —t* + 263+ = 4+ Zt+ 1.
s(t) = gt' + 38+ S0+t +

Outlook: Magical squares, Ehrhart theory for rational polytopes.
If we intersect B,, with the two additional hyperplanes for the diagonals, the polytope will

not be a lattice polytope anymore.
Being defined by integer hyperplanes, it will still be a rational polytope.

7.81 Example. {y+2r<2 —y—2<1 y—x<1 —y+z <1} isdefined by integer
hyperplanes, but is not a lattice polytope.

n
N

Its vertices (—1,0), (0, —1),(3,2),(2,1) are in Q?, but not in Z>.

There is an Ehrhart theory for rational polytopes as well.
For such polytopes, Lp(t) is not polynomial in ¢, but a quasipolynomial, i.e., it has
periodic behavior which is polynomial, as we saw in the example of Ms(t).
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