Analysis 2

Übungsblatt 1

Aufgabe 1: Metriken und Normen auf \mathbb{R}

- (a) Sei $g: \mathbb{R} \to \mathbb{R}$ injektiv. Zeigen Sie, dass durch $d_g(x,y) := |g(x) g(y)|$ eine Metrik auf \mathbb{R} definiert wird.
- (b) Zeigen Sie, dass jede Norm $\|\cdot\|$ auf \mathbb{R} von der Form

$$||x|| = \alpha |x|$$

für ein $\alpha \in (0, \infty)$ ist.

(c) Für welche Funktionen g wird die in (a) definierte Metrik d_g durch eine Norm auf \mathbb{R} induziert?

Aufgabe 2: Mehr zu metrischen Räumen

(a) Sei (X, d) ein metrischer Raum. Zeigen Sie, dass für alle $x, y, z \in X$

$$|d(x,y) - d(x,z)| < d(y,z)$$

gilt. Machen Sie sich die Gültigkeit dieser sogenannten umgekehrten Dreiecksungleichung am Beispiel der euklidischen Metrik des \mathbb{R}^2 auch geometrisch klar.

(b) Seien (X_1, d_1) und (X_2, d_2) metrische Räume. Zeigen Sie, dass auf dem kartesischen Produkt $X_1 \times X_2 = \{(x_1, x_2) \mid x_1 \in X_1 \text{ und } x_2 \in X_2\}$ durch

$$d(x,y) := d_1(x_1,y_1) + d_2(x_2,y_2)$$

eine Metrik definiert wird.

Aufgabe 3: Die *p*-Normen auf \mathbb{R}^n

Für $1 \le p < \infty$ und $n \in \mathbb{N}$ sei

$$\|\cdot\|_p : \mathbb{R}^n \to [0, \infty), \quad x \mapsto \|x\|_p := \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$

und

$$\|\cdot\|_{\infty}: \mathbb{R}^n \to [0,\infty), \quad x \mapsto \|x\|_{\infty}:=\max_{i=1,\dots,n} |x_i|.$$

- (a) Zeigen Sie, dass durch $\|\cdot\|_p$ für $p \in \{1, 2, \infty\}$ jeweils eine Norm definiert wird. Tipp: Verwenden Sie im Fall p = 2, dass $\|x\|_2 = \sqrt{\langle x, x \rangle}$, wobei $\langle x, y \rangle := \sum_{i=1}^n x_i y_i$ das euklidische Skalarprodukt bezeichne, für das die Cauchy-Schwartzsche Ungleichung gilt, $|\langle x, y \rangle| \leq \|x\|_2 \|y\|_2$.
- (b) Skizzieren Sie für den \mathbb{R}^2 jeweils den "Einheitskreis" bezüglich der Normen $\|\cdot\|_1$, $\|\cdot\|_2$ und $\|\cdot\|_{\infty}$, also jeweils die Menge $\{x \in \mathbb{R}^2 \mid \|x\|_p = 1\}$.

Bemerkung: Es definiert $\|\cdot\|_p$ für jedes $p \in [1, \infty]$ eine Norm. Der Nachweis der Dreiecksungleichung für $p \notin \{1, 2, \infty\}$ würde aber den Rahmen einer Übungsaufgabe sprengen.