Analysis 2

Übungsblatt 12

Aufgabe 50: Der Lösungsoperator linearer Differentialgleichungen

Sei $I \subset \mathbb{R}$ ein offenes Intervall und $A: I \to M(n, \mathbb{R})$ stetig. Sei $\Phi(t): \mathbb{R}^n \to \mathbb{R}^n$ der Propagator der homogenen linearen Differentialgleichung $\dot{\gamma} = A(t)\gamma$ zum Anfangszeitpunkt t_0 . Zeigen Sie:

- Für alle $t \in I$ ist $\Phi(t)$ ein Vektorraumisomorphimus.
- Die Matrix $\Phi(t)$ erfüllt

$$\dot{\Phi}(t) = A(t)\Phi(t) \quad \text{mit} \quad \Phi(t_0) = E_n.$$

Hinweis: Überlegen Sie sich, was die Spalten der Matrix $\Phi(t)$ sind. Beherzigen Sie dazu die Merkregel "Die Spalten einer Matrix sind die Bilder der Basisvektoren".

Aufgabe 51: Die Dyson-Reihe

Sei $I \subset \mathbb{R}^n$ ein offenes Intervall, $t_0 \in I$ und $A: I \to M(n \times n, \mathbb{R})$ stetig. Wir betrachten die Differentialgleichung

$$\dot{\gamma} = A(t)\,\gamma\tag{1}$$

und machen den Ansatz

$$\gamma(t) = \left(E_n + \sum_{i=1}^{\infty} \int_{t_0}^t d\tau_1 \int_{t_0}^{\tau_1} d\tau_2 \cdots \int_{t_0}^{\tau_{j-1}} d\tau_j A(\tau_1) \cdots A(\tau_j) \right) x_0.$$

- (a) Rechnen Sie nach, dass γ die Differentialgleichung (1) zumindest formal löst, also indem Sie die Reihe einfach gliedweise differenzieren.
- (b) Zeigen Sie, dass die Reihe in der Definition von $\gamma(t)$ absolut konvergent ist für alle $t \in I$.
- (c) Zeigen Sie, dass $\gamma \in C^1(I, \mathbb{R}^n)$ und, dass γ tatsächlich die Differentialgleichung (1) löst. Hinweis: Hierzu müssen Sie zeigen, dass Sie die Reihe gliedweise differenzieren dürfen. Eine hinreichende Bedingung dafür ist, dass die Partialsummenfolge der abgeleiteten Reihe gleichmäßig konvergiert (vgl. Satz 7.35 aus Analysis 1).

Aufgabe 52: Variation der Konstanten

Bestimmen Sie für folgende inhomogene lineare Differentialgleichungen die Lösung jeweils zu einem beliebigen Anfangswert $x_0 \in \mathbb{R}$.

(a)
$$\dot{\gamma} = -\frac{\gamma}{1+t} + e^{2t}$$
 für beliebiges $t_0 \in (-1, \infty)$.

(b)
$$\dot{\gamma} = \tan(t)\gamma + \frac{1}{\cos(t)}$$
 für $t_0 = 0$.

Aufgabe 53: Lineare Differentialgleichungen mit konstanten Koeffizienten

(a) Betrachten Sie eine allgemeine homogene lineare Differentialgleichung m-ter Ordnung mit konstanten Koeffizienten, d.h.

$$\sum_{j=0}^{m} a_j \, \gamma^{(j)}(t) = 0, \quad \text{mit} \quad a_m = 1.$$
 (2)

Wir definieren das zugehörige charakteristische Polynom durch $p(\lambda) := \sum_{j=0}^{m} a_j \lambda^j$. Sei nun λ_0 eine ℓ -fache Nullstelle von p.

Zeigen Sie, dass für $k=0,1,\ldots,\ell-1$ die Funktionen

$$\gamma_k(t) = t^k e^{\lambda_0 t}$$

linear unabhängige Lösungen von (2) sind.

Hinweis: Machen Sie sich klar, dass (2) in der Form

$$Q(D) (D - \lambda_0)^{\ell} \gamma(t) = 0$$

mit $D:=\frac{\mathrm{d}}{\mathrm{d}t}$ und einem geeigneten Polynom Q geschrieben werden kann.

(b) Bestimmen Sie die allgemeine Lösung der Differentialgleichung

$$\gamma^{(4)}(t) - 2\ddot{\gamma}(t) + \gamma(t) = e^t$$

indem Sie gemäß Teil (a) bzw. Bemerkung 9.21 aus dem Skript die allgemeine Lösung der homogenen Gleichung und eine spezielle Lösung der inhomogenen Gleichung finden.

Hinweis: Machen Sie für die spezielle Lösung der inhom. Gleichung den Ansatz $\gamma_i(t) = c t^k e^t$. Wählen Sie k dabei groß genug, um nicht wieder eine Lösung der homogenen Gleichung zu erhalten, aber nicht größer.

Aufgabe B5: Die Legendre-Differentialgleichung

Betrachten Sie die Legendresche Differentialgleichung

$$(1 - t^2) \ddot{\gamma}(t) - 2t \dot{\gamma}(t) + n(n+1) \gamma(t) = 0$$

auf dem Intervall I = (-1, 1).

(a) Bestimmen Sie für alle $n \in \mathbb{N}_0$ eine Lösung mittels Potenzreihenansatz

$$\gamma_n(t) = \sum_{j=0}^{\infty} c_{n,j} t^j.$$

Hinweis: Durch Einsetzen in die Differentialgleichung erhalten Sie eine Rekursionsformel für die Koeffizienten $c_{n,j}$. Wählen Sie die Startwerte $c_{n,0}$ und $c_{n,1}$ so, dass die Rekursion abbricht.

(b) Bestimmen Sie γ_n für n=0,1,2,3. Bestimmen Sie anschließend Konstanten α_n , sodass $P_n(t) := \alpha_n \gamma_n(t)$ die Normierungsbedingung $P_n(1) = 1$ erfüllt. Überprüfen Sie, ob die so erhaltenen Polynome P_n mit den in der Vorlesung definierten Legendrepolynomen übereinstimmen.

Abgabe: Bis Dienstag 17.7. um 10.10 Uhr im Briefkasten Ihres Tutors im 3. Stock des C-Baus.