Analysis 2

Übungsblatt 9

Aufgabe 35: Lokales Auflösen und der Satz über implizite Funktionen

Sei $F: \mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto F(x,y) = y^3 + y - x^4 + x^2$. Zeigen Sie, dass offene Umgebungen $U, V \subset \mathbb{R}$ von 0 und eine eindeutige Abbildung $g: U \to V$ existieren, so dass F(x,g(x)) = 0. Bestimmen Sie das Taylorpolynom $P_{g,0}^{(2)}$ zweiter Ordnung von g in 0.

Aufgabe 36: Höhenlinien

Diskutieren Sie die Höhenlinien der Funktion $F:[0,\infty)\times[0,\infty)\to\mathbb{R}$,

$$F(x,y) = xye^{-x-y}.$$

Gehen Sie dabei wie folgt vor:

- Bestimmen Sie die Nullstellen von $\partial_y F$ bzw. $\partial_x F$.
- \bullet Bestimmen Sie Lage und Art der lokalen Extrema von F.
- \bullet Skizzieren Sie qualitativ den Verlauf der Höhenlinien von F.
- In welchen Rechtecken $I \times J \subset [0,\infty) \times [0,\infty)$ lassen sich die Mengen

$$\{(x,y) \in I \times J \mid F(x,y) = c\}$$

in der Form

$$\{(x,y)\in I\times J\mid y=\phi(x)\}\quad \text{bzw.}\quad \{(x,y)\in I\times J\mid x=\psi(y)\}$$

mit differenzierbaren Funktionen $\phi: I \to J$ bzw. $\psi: J \to I$ darstellen?

Aufgabe 37: Lokale und globale Invertierbarkeit

Sei $f: \mathbb{R}^2 \to \mathbb{R}^2 \setminus \{0\}$ gegeben durch

$$f(x,y) = \begin{pmatrix} e^x \cos y \\ e^x \sin y \end{pmatrix}.$$

Zeigen Sie, dass jeder Punkt $(x,y) \in \mathbb{R}^2$ eine Umgebung U besitzt, so dass $f|_U : U \to f(U)$ ein Diffeomorphismus ist. Man sagt, dass f lokal glatt invertierbar ist. Ist f global glatt invertierbar, also $f : \mathbb{R}^2 \to \mathbb{R}^2 \setminus \{0\}$ ein Diffeomorphismus?

Aufgabe 38: Lokale Extrema unter Nebenbedingungen

Bestimmen Sie Lage und Art der lokalen Extrema der Funktion $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^3 - y^3$ unter der Nebenbedingung h(x,y) = 0 mit $h(x,y) = x^2 + 2y^2 - 9$.

Aufgabe 39: Extrema unter Nebenbedingungen

Man bestimme den achsenparallelen Quader größten Volumens, der dem Ellipsoid

$$E_{a,b,c} = \left\{ (x, y, z) \in \mathbb{R}^3 \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \right\}$$

einbeschrieben ist. Fertigen Sie zur Orientierung zunächst eine Skizze der Situation in zwei Dimensionen an.

Aufgabe B3: Maximale Entropie bei fester Energie: die kanonische Verteilung

Ein physikalisches System erlaube N verschiedene Zustände, wobei der j-te Zustand Energie $E_j \in \mathbb{R}$ habe und $E_1 < E_2 < \ldots < E_N$ gelte. Ein statistischer Zustand p des Systems ist eine Wahrscheinlichkeitsverteilung auf dem Raum der Zustände, d.h. ein Punkt $p \in [0,1]^N$ mit $\sum_{j=1}^N p_j = 1$. Hier ist p_j die Wahrscheinlichkeit, dass der j-te Zustand realisiert ist. Die Entropie einer solchen Verteilung ist durch die Funktion

$$S: [0,1]^N \to \mathbb{R}, \quad S(p) = -\sum_{j=1}^N p_j \log p_j$$

definiert. Wir möchten die
jenige Wahrscheinlichkeitsverteilung p, finden, welche die Entropie bei gegebener Gesamtenergie U mit $E_1 \leq U \leq \langle E \rangle$ maximiert, wobei $\langle E \rangle = \frac{1}{N} \sum_{j=1}^{N} E_j$ ist. D.h., wir möchten S unter den Nebenbedingungen

$$\sum_{j=1}^{N} p_j E_j - U = 0 \quad \text{und} \quad \sum_{j=1}^{N} p_j - 1 = 0$$

maximieren. Gehen Sie hierzu wie folgt vor:

- (a) Nennen Sie den Lagrangemultiplikator für die erste Nebenbedingung $-\beta$ und für die zweite $1-\lambda$. Zeigen Sie, dass für jedes Maximum $p\in[0,1]^N$ von S unter den obigen Nebenbedingungen $p_j=\frac{1}{Z(\beta)}\mathrm{e}^{-\beta E_j}$ gilt, wobei $Z(\beta)=\sum_{j=1}^N\mathrm{e}^{-\beta E_j}$ die Zustandssumme bezeichnet und $U(\beta)=-\frac{\partial}{\partial\beta}\log Z(\beta)$ ist.
- (b) Machen Sie sich klar, dass die Abbildung $U:[0,\infty)\to\mathbb{R},\ \beta\mapsto U(\beta)$ streng monoton fallend ist und somit auf ihrem Bild invertierbar ist. Zeigen Sie dann, dass das Bild genau das Intervall $(E_1,\langle E\rangle]$ ist. Überlegen Sie sich dazu auch, wie $p(\beta)$ für $\beta=0$ und $\beta\to\infty$ aussieht. Physikalisch spielt $\beta>0$ die Rolle der inversen Temperatur, d.h. $\beta=T^{-1}$. (Sie können die folgenden Teilaufgaben auch bearbeiten, wenn Sie Teil (b) nicht selbst zeigen können)
- (c) Mit Teil (a) und (b) haben wir nun zu jeder Energie $U \in (E_1, \langle E \rangle]$ einen eindeutigen Kandidaten $p(\beta)$, nämlich $p_j(\beta) = \frac{1}{Z(\beta)} e^{-\beta E_j}$ mit $\beta = \beta(U)$, gefunden. Zeigen Sie, dass für jedes $\beta \geq 0$ diese Verteilung $p(\beta)$ ein lokales Maximum von S unter den obigen Nebenbedingungen ist.
- (d) Zeigen Sie, dass es sich bei der kanonischen Verteilung $p(\beta)$ tatsächlich um das eindeutige globale Maximum von S unter den obigen Nebenbedingungen handelt.
- (e) Betrachten Sie nun den Spezialfall $E_j = j$, was einem quantenmechanischen harmonischen Oszillator entspricht. Berechnen Sie für diesen Fall die Zustandssumme $Z(\beta)$ und die Funktion $U(\beta)$ explizit. Wie lautet der Zusammenhang zwischen U und β im Grenzfall $N \to \infty$?

Abgabe: Bis Dienstag 26.6. um 10.10 Uhr im Briefkasten Ihres Tutors im 3. Stock des C-Baus.