Lineare Algebra 1

Übungsblatt 11

Aufgabe 41: Dualraum und duale Basis (30 Punkte)

- (a) Sei V ein endlich-dimensionaler Vektorraum über \mathbb{K} mit Basis $\mathcal{A} = (a_1, \ldots, a_n)$. Wir definieren nun n lineare Abbildungen $\hat{a}_i : V \to \mathbb{K}$ durch $\hat{a}_i(a_j) = \delta_{ij}$. Zeigen Sie, dass $\hat{\mathcal{A}} = (\hat{a}_1, \ldots, \hat{a}_n)$ eine Basis des Dualraums \hat{V} bildet. Diese wird die duale Basis zu \mathcal{A} genannt.
- (b) Sei nun eine zweite Basis $\mathcal{B} = (b_1, \dots, b_n)$ von V gegeben, die man durch die Transformation S aus der alten Basis \mathcal{A} erhält, also $b_j = Sa_j$. Wie lautet die Abbildung, die $\hat{\mathcal{A}}$ in $\hat{\mathcal{B}}$ überführt?
- (c) Seien $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, $y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \in \mathbb{R}^2$ zwei linear unabhängige Vektoren. Berechnen Sie die duale Basis zu (x,y).

Aufgabe 42: Matrixgruppen (15 Punkte)

- (a) Geben Sie eine Matrix an, die in $SL(3,\mathbb{C})$ liegt, aber nicht in SU(3).
- (b) Geben Sie eine Matrix an, die in O(2) liegt, aber nicht in SO(2).
- (c) Geben Sie eine Matrix an, die in U(3) liegt, aber weder in O(3) noch in SU(3).

Begründen Sie jeweils Ihre Antwort.

Aufgabe 43: Drehbewegungen (25 Punkte)

Betrachten Sie einen starren Körper, bei dem ein Punkt im Ursprung des Koordinatensystems festgehalten wird. Die Bahn eines Punkts in dem Körper mit Ortsvektor x_0 zur Zeit t=0 wird durch $x(t) = D(t)x_0$ mit $D(t) \in SO(3)$ beschrieben. Wir definieren nun die Zeitableitung $\dot{D}(t)$ der Matrix D(t) komponentenweise. Dann folgt $\dot{x}(t) = A(t)x(t)$ mit $A(t) = \dot{D}(t)D^{-1}(t)$.

- (a) Zeigen Sie, dass A(t) schiefsymmetrisch ist, d.h. $A^T(t) = -A(t)$.
- (b) Sei S der Vektorraum der schiefsymmetrischen 3×3 -Matrizen. Zeigen Sie, dass es einen Isomorphismus $L: \mathbb{R}^3 \to S$ gibt, so dass $L(u)v = u \times v$, für alle $v \in \mathbb{R}^3$.
- (c) Folgern Sie daraus, dass es ein $\omega(t) \in \mathbb{R}^3$ gibt, so dass $\dot{x}(t) = \omega(t) \times x(t)$.

Aufgabe 44: Diagonalisieren (30 Punkte)

Bestimmen Sie eine orthogonale Matrix $S \in \mathcal{O}(3)$, die

$$A = \left(\begin{array}{ccc} 8 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & 8 \end{array}\right)$$

diagonalisiert, also

$$S^{-1}AS = \left(\begin{array}{ccc} \lambda_1 & 0 & 0\\ 0 & \lambda_2 & 0\\ 0 & 0 & \lambda_3 \end{array}\right)$$

erfüllt. Wieviele verschiedene solcher Matrizen S gibt es? Schreiben Sie weiterhin A in folgender Form

$$A = \sum_{j=1}^{r} \lambda_j P_j,$$

wobei r die Anzahl verschiedener Eigenwerte λ_j von A ist und P_j die Projektion auf den Eigenraum zu λ_j ist. Diese Darstellung nennt man Spektraldarstellung und die Projektionen P_j Spektralprojektionen.

Vokabeln: Eigenwert = eigenvalue (selten: proper value), Eigenvektor = eigenvector (selten: proper vector), Eigenraum = eigenspace (selten: proper space), Vielfachheit = multiplicity, diagonalisierbar = diagonalizable, Spur = trace, Skalarprodukt = scalar product oder inner product (oder dot product), positiv definit = positive definite [definitt], Hermitesch = Hermitian, euklidischer Raum = Euclidean space, Orthonormalbasis = orthonormal basis, Betrag/Länge/Norm eines Vektors = magnitude/length/norm, Einheitsvektor = unit vector, normierter Raum = normed space, Orthonormierungsverfahren = orthonormalization procedure, Isometrie = isometry [aißometri], unitär = unitary, adjungierte Matrix = adjoint matrix, selbst-adjungiert = self-adjoint, Dualraum = dual space.

Abgabe: Bis 16:00 Uhr am Mittwoch dem 18.7.2018 im Briefkasten Ihres Übungsleiters (Gebäude C, Raum links vom Eingang in Ebene 3).