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Exercise 1 (5pt). HLS Inequality

Prove the Hardy-Littlewood-Sobolev inequality (Corollary 1.5 of the lecture):
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You may use the refined Young’s inequality.

Exercise 2 (4pt). Weakly integrable but not integrable functions

Prove that for any 1 < p < oo, LP(R¥) c L2 (R?) is a strict inclusion. (Hint: think of | - |*)

Exercise 3 (6pt). The weak L” norm is a quasi-norm

Verify that the weak L” norm, defined as
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satisfies the properties of a quasi-norm (the triangle inequality is true up to a constant).

Exercise 4 (7pt). Properties of the Fourier transform

Prove that for any f, g € (R?), and any a € N<:
- (#)F = (v ):
i0)F = ((£)°F);

Exercise 5 (3pt). Gaussian Mollifier
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Prove that ( —)2e ="'l is a mollifier, i.e. that for any measurable function f such that 3N € N,
(L+1-D7Nf(-) € LY(RY):
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Exercise 6 (5pt). Compactly supported distributions
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(e7#1'F % £) (x) = f(x) (for almost every x € R9) .

Prove that any T € 2’ (R¢) with supp(T) compact is tempered (i.e. T € £’ (R9)).



