Exercise sheet 2

Nonlinear Dispersive PDEs
Sommersemester 2018
M. Falconi, G. Marcelli

Exercise 1 (6pt). Inequalities
[Justify your answers]

- Let $u \in H^{1}\left(\mathbb{R}^{3}\right), A \in \dot{H}^{1}\left(\mathbb{R}^{3}\right)$. Is $A|u|^{2}=A u \bar{u} \in L^{1}\left(\mathbb{R}^{3}\right)$?
- Let $u, v \in L^{3}\left(\mathbb{R}^{4}\right), w \in H^{\frac{3}{2}}\left(\mathbb{R}^{4}\right)$. For which values of p is $u *(v w) \in L^{p}\left(\mathbb{R}^{4}\right)$?

Exercise 2 (5pt). Fourier transform

Compute the Fourier transform of $e^{-\lambda|x|^{2}+i \eta \cdot x} \in \mathscr{S}\left(\mathbb{R}^{d}\right)$, where $\lambda>0$ and $\eta \in \mathbb{R}^{d}$.
Optional (10pt). Compute the Fourier transform of $e^{i \lambda x^{2}+i \eta x} \in \mathscr{S}^{\prime}(\mathbb{R}), \lambda>0, \eta \in \mathbb{R}$. Hint: Even if this is a distribution, it is sufficient to see the Fourier transform integral as one part of the limit $R \rightarrow \infty$ of a complex R dependent contour integral. The contour is

Exercise 3 (7pt). Homogeneous Sobolev function
Find $\hat{u} \in C^{0}\left(\mathbb{R}^{3}, \mathbb{C}\right)$ such that: $\hat{u}=\lambda, \lambda>0$, in a neighborhood of zero, $\operatorname{supp} \hat{u}=\mathbb{R}^{3}$, and $u \in \dot{H}^{-\frac{1}{2}}\left(\mathbb{R}^{3}\right)$. Is it possible to find an analogous function on \mathbb{R}^{2} ? And on \mathbb{R} ?

Exercise 4 (5pt). Sobolev norm
Prove that it is possible to write the norm $H^{\sigma}\left(\mathbb{R}^{d}\right), \sigma \in \mathbb{R}$, of u as the L^{2}-norm of $f(D) u$, for a suitable pseudodifferential operator $f(D)$. For $\sigma=1$, prove in addition that

$$
\left\|u ; H^{1}\right\|^{2}=\|u\|_{2}^{2}+\frac{1}{4 \pi^{2}}\|\nabla u\|_{2}^{2}=\|u\|_{2}^{2}+\frac{1}{4 \pi^{2}} \sum_{j=1}^{d}\left\|\partial_{j} u\right\|_{2}^{2} .
$$

Exercise 5 (7 pt). Symmetries
Find the Hamiltonian $H\left(u_{t}, \alpha_{t}, i \bar{u}_{t}, i \bar{\alpha}_{t}\right)$ of the nonlinear system of PDEs:
(S-W)

$$
\left\{\begin{array}{l}
i \partial_{t} u_{t}(x)=-\Delta_{x} u_{t}(x)+A_{t}(x) u_{t}(x) \\
i \partial_{t} \alpha_{t}(k)=\omega(k) \alpha_{t}(k)+\frac{1}{\sqrt{\omega(k)}}\left(\underline{\left.\hat{u_{t}}\right|^{2}}\right)(k)
\end{array} ;\right.
$$

where $\omega(k)=|k|$, and

$$
A_{t}(x)=\int_{\mathbb{R}^{3}} \frac{1}{\sqrt{\omega(k)}}\left(\alpha_{t}(k) e^{2 \pi i k \cdot x}+\bar{\alpha}_{t}(k) e^{-2 \pi i k \cdot x}\right) \mathrm{d} k
$$

The two fields are $\varphi_{1, t}=u_{t}$ and $\varphi_{2, t}=\alpha_{t}$, and the associated momenta are $\pi_{1, t}=i \bar{u}_{t}$ and $\pi_{2, t}=i \bar{\alpha}_{t}\left(A_{t}\right.$ instead should be considered as a function of α_{t} and $\bar{\alpha}_{t}$, but it may appear in the Hamiltonian). Is (S-W) invariant with respect to $\mathrm{U}(1)$ transformations on u_{t} ? And with respect to $\mathrm{U}(1)$ transformations on α_{t} ?

You may justify the steps in this exercise only formally, as it was done during the lecture.
N.B. The points of the optional exercise are bonus points: they are added to your overall points but they are not counted in the total of available points.

