Exercise sheet 5

Nonlinear Dispersive PDEs Sommersemester 2018 M. Falconi, G. Marcelli

Exercise 1 (9pt). Duality in spacetime spaces

Prove that for all $(q, r) \in [1, \infty]^2$, if $f \in L^q_t L^r_x$ and $g \in L^{q'}_t L^{r'}_x$ (where $\frac{1}{q'} + \frac{1}{q} = 1 = \frac{1}{r'} + \frac{1}{r}$), then $fg \in L^1(\mathbb{R}_t \times \mathbb{R}^d_x)$. In particular, prove that

$$\left|\int_{\mathbb{R}_t \times \mathbb{R}_x^d} f(t,x)g(t,x) \mathrm{d}t \mathrm{d}x\right| \leq \int_{\mathbb{R}_t \times \mathbb{R}_x^d} |f(t,x)g(t,x)| \mathrm{d}t \mathrm{d}x \leq \|f\|_{L_t^q L_x^r} \|g\|_{L_t^{q'} L_x^{r'}}.$$

(*Hint:* Remember the definition of the spacetime norms and apply Hölder's inequality in both time and space in the correct order)

Exercise 2 (21pt). Strichartz estimates

Let $(U(t))_{t \in \mathbb{R}}$ be a family of continuous operators on $L^2(\mathbb{R}^5)$, with norm uniformly bounded w.r.t. t. In addition, suppose that it satisfies for all $t \neq t'$

$$||U(t)U^*(t')f||_{\infty} \le \frac{1}{|t-t'|^2} ||f||_1.$$

Prove the following assertions:

• Prove that for all $g \in L_t^4 L_x^8$, $\int_0^t U(t) U^*(\tau) |g(\tau)|^4 d\tau \in L_t^2 L_x^4$. In other words, prove that

$$\left\|\int_0^t U(t)U^*(\tau)|g(\tau)|^4 \mathrm{d}\tau\right\|_{L^2_t L^4_x} \le C \|g\|^4_{L^4_t L^8_x} \ .$$

Find at least one couple (q, s) ∈ [1,∞]² (or prove that there is no such couple) such that for any g ∈ L^q_tL^s_x, g ≥ 0,

$$\left\|\int_0^t U(t)U^*(\tau)g(\tau)^{\frac{1}{2}}\mathrm{d}\tau\right\|_{L^3_tL^3_x} < \infty \ .$$

• Let $V \in L_x^{\frac{4}{3}}(\mathbb{R}^5)$, and $f \in L_t^1 L_x^{\frac{4}{3}}$. Is it true that

$$\int_{\mathbb{R}} U^*(t) (V * f(t)) \mathrm{d}t$$

belongs to $L^2_x(\mathbb{R}^5)$?