Problem 1.1 – Connections

Let ∇ be a connection on a manifold M.

- a) Show that ∇ is torsion-free if and only if, in every coordinate chart, the Christoffel symbols satisfy $\Gamma_{ij}^k = \Gamma_{ji}^k$.
- b) Suppose that M is equipped with a Riemannian metric g. Show that the Christoffel symbols of the Levi-Civita connection are given by

$$\Gamma_{ij}^{k} = \frac{1}{2}g^{kl}(\partial_{i}g_{jl} + \partial_{j}g_{il} - \partial_{l}g_{ij}).$$

Problem 1.2 – Curves

Let (M, g) be a smooth Riemannian manifold and let $\gamma : [a, b] \to M$ be a smooth curve.

- a) Show that the length $\ell(\gamma)$ is invariant under reparametrization, i.e., if $u : [c,d] \rightarrow [a,b]$ is a smooth map with smooth inverse, then $\ell(\gamma) = \ell(\gamma \circ u)$.
- b) Show that there is a reparametrization $\tilde{\gamma}$ of γ with unit speed (i.e., $|\dot{\gamma}(t)| = 1$). It will be helpful to consider the arc length function $s : [a, b] \to [0, \ell(\gamma)]$ defined by

$$s(t) = \int_{a}^{t} \mathrm{d}u \left| \dot{\gamma}(u) \right|$$

- c) Show that for $X, Y \in \mathfrak{X}(\gamma), \ \frac{d}{dt}g(X,Y) = g(D_tX,Y) + g(X,D_tY).$
- d) Show that if $X \in \mathfrak{X}(\gamma)$ is parallel along γ , then $|\dot{X}| = \sqrt{g(X,X)}$ is constant.

Problem 1.3 – Gradient

Let $M \subset \mathbb{R}^n$ be a manifold with metric g. Given $f \in C^{\infty}(M)$, we define the vector field grad f by the relation

$$df(X) = g(\operatorname{grad} f, X).$$

Show that in local coordinates grad f is given by grad $f = g^{ij} \partial_i f \partial_j$.

Problem 1.4 – Isometries

Let $\phi: (M,g) \to (\tilde{M},\tilde{g})$ be an isometry. If $\tilde{\nabla}$ is a connection on \tilde{M} , we define the pullback connection by

$$(g^* \nabla)_X Y = \phi_*^{-1} (\nabla_{\phi_* X} (\phi_* Y)).$$

Show that $g^* \tilde{\nabla}$ is a connection on M and that if $\tilde{\nabla}$ is the Levi-Civita connection on \tilde{M} , then $g^* \tilde{\nabla}$ is the Levi-Civita connection on M.