Problem 2.1 - Submanifolds

Let (M, g) be a Riemannian manifold and let ∇ be the Levi-Civita connection on M. We suppose that $N \subset M$ is an embedded submanifold equipped with the Riemannian metric inherited from M.
a) Show that every $X \in \mathfrak{X}(N)$ has an extension $\tilde{X} \in \mathfrak{X}(U)$ where $U \subset M$ is an open set such that $N \subset U$.
b) Let $P: T M \rightarrow T N$ be given by g-orthogonal projection and define $\tilde{\nabla}: \mathfrak{X}(N) \times$ $\mathfrak{X}(N) \rightarrow \mathfrak{X}(N)$ on N by

$$
\tilde{\nabla}_{X} Y=P \nabla_{\tilde{X}} \tilde{Y}
$$

where \tilde{X}, \tilde{Y} are arbitrary extensions of X, Y. Show that $\tilde{\nabla}$ is well-defined and that it is the Levi-Civita connection on N.

Problem 2.2 - Isometries II

a) Let $\phi:(M, g) \rightarrow(\tilde{M}, \tilde{g})$ be an isometry. Show that if $\gamma: I \rightarrow M$ is a geodesic, then $\phi \circ \gamma: I \rightarrow \tilde{M}$ is also a geodesic.
b) Consider the n-sphere $S^{n}=\left\{x \in \mathbb{R}^{n+1} \mid\|x\|=1\right\}$. Show that for every orthogonal $(n+1) \times(n+1)$-matrix A, the map $x \mapsto A x$ is an isometry of S^{n}.
c) Consider the hyperbolic plane $H=\{x+i y \in \mathbb{C} \mid y>0\}$ equipped with the metric $g=\left(d x^{2}+d y^{2}\right) / y^{2}$. Show that map

$$
z \mapsto \frac{a z+b}{c z+d}
$$

for $a, b, c, d \in \mathbb{R}$ is an isometry if $a d-b c=1$.

Problem 2.3 - Laplacian

Let (M, g) be an oriented Riemannian manifold of dimension n, and let dV be the associated volume form. Recall that the Hodge star operator on k-forms, $k=0,1, \ldots, n$ is the map $\star: \Omega^{k}(M) \rightarrow \Omega^{n-k}(M)$ defined by the condition that $\omega \wedge \star \eta=g(\omega, \eta) \mathrm{dV}$ for all $\omega, \eta \in \Omega^{k}(M)$. We now define the Laplacian Δ on functions by the formula

$$
\Delta f=-\star d \star d f
$$

a) Show that for \mathbb{R}^{n} with the standard metric, we have $\Delta f=-\sum_{i=1}^{n} \partial_{i}^{2} f$.
b) Show that in general, Δ is given in local coordinates by

$$
-\frac{1}{\sqrt{\operatorname{det} g}} \partial_{j}\left(g^{i j} \sqrt{\operatorname{det} g} \partial_{i} f\right)
$$

