Problem 2.1 – Submanifolds

Let (M, g) be a Riemannian manifold and let ∇ be the Levi-Civita connection on M. We suppose that $N \subset M$ is an embedded submanifold equipped with the Riemannian metric inherited from M.

- a) Show that every $X \in \mathfrak{X}(N)$ has an extension $\tilde{X} \in \mathfrak{X}(U)$ where $U \subset M$ is an open set such that $N \subset U$.
- b) Let $P: TM \to TN$ be given by g-orthogonal projection and define $\tilde{\nabla} : \mathfrak{X}(N) \times \mathfrak{X}(N) \to \mathfrak{X}(N)$ on N by

$$\tilde{\nabla}_X Y = P \nabla_{\tilde{X}} \tilde{Y},$$

where \tilde{X}, \tilde{Y} are arbitrary extensions of X, Y. Show that $\tilde{\nabla}$ is well-defined and that it is the Levi-Civita connection on N.

Problem 2.2 – Isometries II

- a) Let $\phi : (M, g) \to (\tilde{M}, \tilde{g})$ be an isometry. Show that if $\gamma : I \to M$ is a geodesic, then $\phi \circ \gamma : I \to \tilde{M}$ is also a geodesic.
- b) Consider the *n*-sphere $S^n = \{x \in \mathbb{R}^{n+1} | ||x|| = 1\}$. Show that for every orthogonal $(n+1) \times (n+1)$ -matrix A, the map $x \mapsto Ax$ is an isometry of S^n .
- c) Consider the hyperbolic plane $H = \{x + iy \in \mathbb{C} \mid y > 0\}$ equipped with the metric $g = (dx^2 + dy^2)/y^2$. Show that map

$$z \mapsto \frac{az+b}{cz+d}$$

for $a, b, c, d \in \mathbb{R}$ is an isometry if ad - bc = 1.

Problem 2.3 – Laplacian

Let (M, g) be an oriented Riemannian manifold of dimension n, and let dV be the associated volume form. Recall that the Hodge star operator on k-forms, k = 0, 1, ..., nis the map $\star : \Omega^k(M) \to \Omega^{n-k}(M)$ defined by the condition that $\omega \wedge \star \eta = g(\omega, \eta) dV$ for all $\omega, \eta \in \Omega^k(M)$. We now define the Laplacian Δ on functions by the formula

$$\Delta f = -\star d \star df.$$

- a) Show that for \mathbb{R}^n with the standard metric, we have $\Delta f = -\sum_{i=1}^n \partial_i^2 f$.
- b) Show that in general, Δ is given in local coordinates by

$$-\frac{1}{\sqrt{\det g}}\,\partial_j\left(g^{ij}\sqrt{\det g}\,\partial_i f\right)$$