Problem 4.1 - Sectional curvature
Let (M, g) be a Riemannian manifold. Recall that the curvature R is defined as the mapping that maps pairs $(X, Y) \in \mathfrak{X}(M) \times \mathfrak{X}(M)$ to the map $R(X, Y): \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$ given by

$$
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z
$$

Given two linearly independent tangent vectors $u, v \in T_{p} M$, we define

$$
K(u, v)=\frac{g(R(u, v) v, u)}{|u|^{2}|v|^{2}-g(u, v)^{2}}
$$

Show that if $\{u, v\}$ and $\{x, y\}$ are bases of the same two-dimensional subspace of $T_{p} M$, then $K(u, v)=K(x, y)$.

Problem 4.2 - Constant sectional curvature

a) Consider \mathbb{R}^{n} with the usual Euclidean metric $g=\sum_{i}\left(d x^{i}\right)^{2}$. Show that $K \equiv 0$.
b) Consider the n-sphere of radius $R, R<0$, given by

$$
S_{R}^{n}=\left\{x \in \mathbb{R}^{n+1} \mid\|x\|=R\right\}
$$

equipped with the metric inherited from \mathbb{R}^{n+1}. Show that $K \equiv R^{-2}$.
c) Consider hyperbolic space of radius $R, R>0$, given by

$$
H_{R}^{n}=\left\{x \in \mathbb{R}^{n} \mid x^{n}>0\right\}
$$

equipped with the metric $h=R^{2}\left(x^{n}\right)^{-2} \sum_{i}\left(d x^{i}\right)^{2}$. Show that $K \equiv-R^{-2}$.

