Problem 6.1 – Covering maps

Let M and \tilde{M} be a manifolds, and let $\pi : \tilde{M} \to M$ be a smooth covering map, i.e., π is a smooth, surjective map, and each point in M has a neighbourhood U such that each component of $\pi^{-1}(U)$ is mapped diffeomorphically onto U by π . We say that a smooth map $\phi : \tilde{M} \to \tilde{M}$ is a covering transformation if $\pi \circ \phi = \pi$.

- a) Show that if g is a metric on M, then π^*g is a metric on \tilde{M} that is invariant under all covering transformations.
- b) Suppose that π is also normal, i.e., that the group of covering transformations acts transitively on each fibre of π . Show that if h is a metric on \tilde{M} that is invariant under all covering transformations, then then there exists a unique metric g on M such that $h = \pi^* g$.

Problem 6.2 – Covering Spaces and Completeness

Let $\pi: M \to N$ be a smooth covering map that is also a local isometry. Show that M is complete if and only if N is complete.