Problem 8.1 - Boundary value problem for Jacobi fields

Let M be a Riemannian manifold and let $\gamma:[a, b] \rightarrow M$ be a geodesic from $p=\gamma(a)$ to $q=\gamma(b)$. Show that for all $v \in T_{p} M$ and $w \in T_{q} M$ there is a unique Jacobi field such that $J(a)=v$ and $J(b)=w$ if and only if p and q are not conjugate along γ.

Problem 8.2 - Metric in normal coordinates

Let (M, g) be a Riemannian manifold and $p \in M$. Show that the second-order Taylor series of g in normal coordinates centred at p is

$$
g_{i j}(x)=\delta_{i j}-\frac{1}{3} \sum_{k l} R_{i k l j} x^{k} x^{l}+O\left(|x|^{3}\right) .
$$

(Hint: consider the Jacobi fields $t W^{i} \partial_{x^{i}}$ along the geodesic $t \mapsto\left(t V^{1}, \ldots, t V^{n}\right)$.)

Problem 8.3 - Energy functional

Let (M, g) be a Riemannian manifold. Given a smooth curve $\gamma:[a, b] \rightarrow M$, we define the energy $E(\gamma)$ to be

$$
E(\gamma)=\int_{a}^{b} g(\dot{\gamma}(t), \dot{\gamma}(t)) d t
$$

a) Show that $\ell(\gamma)^{2} \leq(b-a) E(\gamma)$. When does equality hold?
b) Suppose that γ is a minimizing geodesic. Show that, for any curve $\eta:[a, b] \rightarrow M$ joining $\gamma(0)$ to $\gamma(1), E(\gamma) \leq E(\eta)$, and that equality holds if and only if η is a minimizing geodesic.

