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Course Overview:

These are the lecture notes accompanying the course “The special unitary group SU(N), birdtracks,
and applications in QCD” held during the summer semester 2018 at the University of Tübingen.

In this course, we will discuss the representation theory of SU(N): We begin with general definitions
of group representations, and develop the parallels between the representations of a group G and the
representations of its group algebra F[G]. In particular, we show that the irreducible representations
of the group algebra F[G] are completely determined through the primitive idempotent elements
of F[G]. We pay particular attention to the symmetric group Sn, and show that the primitive
idempotents can easily be constructed from certain combinatorial objects called Young tableaux.

Thereafter, we discuss the Schur-Weyl duality which establishes a connection between the irre-
ducible representations of Sn and SU(N), showing that the Young projection operators corre-
sponding to the Young tableaux also project onto the irreducible representations of SU(N).

All of the discussion on group representation theory, the representations of Sn and even SU(N),
and the extensive discussion on the primitive idempotents is given in the birdtrack notation, which
is also introduced in this document. Birdtracks offer a graphical tool that makes dealing with the
primitive idempotents particularly easy and intuitive.

We will find the standard Young projection operators somewhat lacking for practical applications,
but rather require a Hermitian version of Young projection operators. To this end, we will introduce
an iterative construction conceived by Keppeler and Sjödahl (KS) that yields a complete set of mu-
tually orthogonal Hermitian Young projection operators. However, the KS operators soon become
rather long and unwieldy, again making them unsuitable for practical applications. We will thus
proceed to device simplification rules for birdtrack operators, which will be used to significanlty
simplify the KS operators. In the process, we will establish a compact construction algorithm for
Hermitian Young projection operators, dubbed the MOLD algorithm, that allows us to arrive at the
simplified Hermitian Young projection operators immediately from the Young tableaux, without a
detour through the KS operators.

Having obtained compact Hermitian Young projection operators, we will construct transition op-
erators between projectors corresponding to equivalent irreducible representations of SU(N). We
find that the set of Hermitian Young projection operators together with the unitary transition op-
erators span the algebra of invariants of SU(N) on V ⊗n. Thereafter, we will show that this set can
be used to construct all singlet projection operators of SU(N) on a mixed tensor product spaced
V ⊗n ⊗ (V ∗)⊗m.

Lastly, we will see which roles the singlet projectors of SU(N) play in the context of high energy
QCD. We will briefly discuss confinenement, and then look at some high energy interactions with
can be described using Wilson line operators. The singlet projectors of SU(N) are paramount in
hte construction of Wilson line operators.
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Part I

Classic representation theory of Sn and SU(N)
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1 Group theory recap: An introduction to birdtracks

Birdtracks are a graphical way of representing various tensorial objects that we come across in
representation theory. The main resource of this section is [1], but you may also be interested to
read [2]. Let us now develop the birdtrack notation while recapping some basic properties of the
permutation group on n objects Sn — good textbooks for this revision are [3, 4].

1.1 The permutation group Sn

The permutation group on n objects is, as the name suggests, the group whose action on an ordered
set {1, 2, . . . , n} is to permute the elements of the set. As an example, the ordered set {1, 2, 3} can
be permuted in the following three ways:

{1, 2, 3} , {2, 1, 3} ,
{3, 1, 2} , {1, 3, 2} ,
{2, 3, 1} , {3, 2, 1} .

(1.1)

Each element of S3, when acting upon the set {1, 2, 3}, will bring forth one of the permutations
given in (3.3).

There are various ways to denote the elements of Sn, the most common ones are the 2-line notation
and the cycle notation: The 2-line notation gives, in the first line, the object on which the particular
group element ρ ∈ Sn is acting, and in the section line the outcome of this action. For example,

ρ1 =

(
1 2 3
3 2 1

)
or ρ2 =

(
1 2 3
2 1 3

)
. (1.2)

In this notation, the top line is the ordered set {1, 2, 3}, and the second line gives the the mapping
of each element i under the group element. Thus, for a general element ρ ∈ Sn acting on an ordered
set {1, 2, . . . , n}, we write

(
1 2 3 . . . n− 1 n
ρ(1) ρ(2) ρ(3) . . . ρ(n− 1) ρ(n)

)
. (1.3)

A more compat notation is the cycle notation. To this end, let us devise the following definition:

Definition 1.1 – Cycle:
Let {1, 2, 3, . . . , n} be an ordered set and let ρ ∈ Sn act on it by permuting the set. A cycle is a
subset (a1a2 . . . ak) {1, 2, 3, . . . , n} such that each ai gets mapped to ai+1 under ρ, and ρ(ak) = a1.
A cycle of length k is referred to as a k-cycle.

Example 1.1:

The two cycles contained in the permutation ρ1 in eq. (1.2) are (13) and (2), since ρ1 maps 1
to 3, 2 to itself and 3 to 1. Similarly, the permutation ρ2 of eq. (1.2) contains the cycles (12)
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and (3). In this cycle notation, all the permutation yielding the sets given in eq. (3.3) are:

(1)(2)(3) : {1, 2, 3} 7→ {1, 2, 3} (12)(3) : {1, 2, 3} 7→ {2, 1, 3}
(123) : {1, 2, 3} 7→ {3, 1, 2} (1)(23) : {1, 2, 3} 7→ {1, 3, 2}
(132) : {1, 2, 3} 7→ {2, 3, 1} (13)(2) : {1, 2, 3} 7→ {3, 2, 1} .

(1.4)

Since a 1-cycle merely maps the element to itself, it can be omitted when giving a perticular
permutation in cycle notation. Hence, we write the elements of S3 as

id3 , (12) , (23) , (13) , (123) and (132) (1.5)

where we adopted the notation idn as the identity permutation of the group Sn.

In this course, we will always assume the cycle notation (when not using birdtrack notation, that
is).

Theorem 1.1 – Disjoint cycle structure is unique:
Let ρ ∈ Sn be a permutation. Then, ρ can uniquely be written as a product of cycles

ρ = σkσk−1 . . . σ2σ1 , each σi is a cycle , (1.6a)

such that, if {σi} denotes the set of numbers appearing in σi, then

{σi} ∩ {σj} = ∅ whenever i 6= j , (1.6b)

up to a reordering of the cycles.

The proof of Theorem 1.1 can be found in any standard textbook, for example [3]. Due to the fact
that each permutation can be written as a product of disjoint cycles in a unique way, we can define
a cycle structure of a permutation:

Definition 1.2 – Cycle structure of a permutation:
Let ρ ∈ Sn be a permutation written as a product of disjoint cycles, including all 1-cycles,

ρ = σkσk−1 . . . σ2σ1 , (1.7a)

and suppose these cycles are arranged such that

|σk| ≥ |σk−1| ≥ . . . ≥ |σ2| ≥ |σ1| . (1.7b)

We define the disjoint cycle structure (or simply cycle structure) of σ to be the vector λσ given by

λσ = (|σk|, |σk−1|, . . . , |σ2|, |σ1|, ) . (1.8)

Example 1.2:

The disjoint cycle structure of the permutation

ρ = (235)(69)(87) ∈ S9 (1.9a)
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is

λρ = (3, 2, 2, 1, 1) (1.9b)

where the two 1’s in λρ are due to the two 1-cycles (1) and (4) jnot explicitly written in (1.9a).

1.2 Birdtracks for the elements of Sn

As already mentioned are birdtracks a grphical way of representing various quantities used in rep-
resentation theory. One of these quantities are the elements of Sn.

Consider a particular permutation ρ ∈ Sn. To obtain the birdtrack of ρ, we write two columns
(1, 2, 3, . . . , n)t next to each other, and then connect the entry i of the right column to the value
of ρ(i) in the left column, marking each line with an arrow from right to left. We then delete the
numbers from the diagram, retaining only the lines. For example,

ρ = (134)(25)
write columns−−−−−−−−−→

1 1
2 2
3 3
4 4
5 5

draw lines−−−−−−→

1
2
3
4
5

1
2
3
4
5

ρ(i) i

retain lines−−−−−−−→
only

; (1.10)

the last image is the birdtrack of ρ. Hence, the birdtracks of the group S3 are given by:

id3 = , (12) = ,

(123) = , (23) = ,

(132) = , (13) = .

(1.11)

Birdtracks ideally lend themselves to be interpreted as linear maps on {1, 2, 3, . . . , n}, for example,

(123)
(
{1, 2, 3}

)
= {3, 1, 2} (1.12)

is written in the birdtrack formalism as

1
2
3

=
3
1
2
, (1.13)

where each element of the ordered set {1, 2, 3} (written as a tower
1
2
3
) can be thought of as being

moved along the lines of in the direction of the arrows.

1.3 Multiplying group elements of Sn

By virtue of Sn being a group, there is a product Sn×Sn → Sn defined on it. When considering the
elements of Sn as maps on the set {1, 2, . . . , n} this product is naturally given by the composition
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of maps, such that, for any two ρ1, ρ2 ∈ Sn,

ρ1ρ2

(
{1, 2, . . . , n}

)
:= ρ1 ◦ ρ2

(
{1, 2, . . . , n}

)
= ρ1

(
ρ2 ({1, 2, . . . , n})

)
. (1.14)

For example, the product of (123) and (13) yields

(13)(123) = (12) . (1.15)

Note 1.1: Multiplying birdtracks

In the birdtrack formalism, multiplication becomes especially easy as one merely has to
connect lines and “straighten them out”. Thus, eq. (1.15) becomes

· = = (1.16)

(we have drawn a dot · to signify the multiplication of the birdtracks).

The reason why we can just multiply birdtracks as described in Note 1.1 is as follows: Instead of
an ordererd set {1, 2, . . . n}, consider instead a tensor v := va1a2...an ∈ V ⊗n, where V is some vector
space. When we then interpret the elements of Sn as linear maps on V ⊗n which act on the element
v by permuting its indices,

ρ(v) := v
aρ−1(1)aρ−1(2)...aρ−1(n) for every ρ ∈ Sn , (1.17)

we may write a permutation ρ ∈ Sn as a product of Kronecker δ’s: For example, the permutation
(13) ∈ S3 may be written as

(13) = δb3a1
δb2a2

δb1a3
, (1.18a)

where the index ai gets mapped to bρ(i) (or, said in another way, the ith index gets moved to

“position” ρ(i)). Then, each δ
bρ(i)

ai in the birdtrack formalism gets represented by a line pointing
from ai to bρ(i), such that

δ
bρ(i)

ai = bρ(i) ai , hence δb3a1
δb2a2

δb1a3
=

b1
b2
b3

a1

a2

a3

bρ(i) ai

(1.18b)

When we form a product of elements of Sn, it is as if we contracted indices of the corresponding
Kronecker δ’s, as in example (1.15),

(13)(123) = δc3b1δ
c2
b2
δc1b3 ·δ

b2
a1
δb3a2

δb1a3
=
(
δc2b2δ

b2
a1

)(
δc1b3δ

b3
a2

)(
δc3b1δ

b1
a3

)
= δc2a1

δc1a2
δc3a3

,

(1.18c)

where the contraction of the b-indices effected a graphical “connecting-and-straightening” procedure.
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Exercise 1.1: Write the multiplication table of the group S3 in birdtrack notation.

Solution: Each element aij in the multiplication table is the product of the element
in the header of the ith row and the header of the jth column.

So far, we have learnt that the birdtrack corresponding to the identity permutation in Sn is given
by n horizontal lines with arrows pointing from left to right,

idn = ...

1
2
3

m

, (1.19)

and we know that multiplication of birtracks occurs via connecting and straightening the index
lines. With these two pieces of information it becomes easy to see how one obtains the inverse of
a particular birdtrack representing a group element ρ of Sn: the birdtrack ρ−1 must be such that,
upon mupliplication with ρ, it yields the identity birdtrack (1.19). Hence, ρ−1 traverses the lines of
ρ in reverse, for example,

ρ = , ρ−1 = . (1.20)

In other words:

Note 1.2: Inverse of Sn elements as birdtracks

For any permutation ρ ∈ Sn written as a birtrack, it’s inverse ρ−1 is found via reflecting ρ
about its vertical axis and reversing the arrows,

reflect−−−−→ reverse arrows−−−−−−−−→ , i.e

( )−1

= . (1.21)

It is important to realize that the procedure of constructing inverses given in Note 1.2 holds only
for elements of Sn (and, as we shall see later, a select set of other birdtracks), but not for general
birdtrack operators. This is especially important to remember when we learn how to form the
Hermitian conjugate of a birdtrack in section 2.2.2.

13



2 Basic definitions in algebra

Let us now review several other algebraic spaces; a good textbook to read up on these is [5]

2.1 Group algebra

Definition 2.1 – Algebra:
An algebra A is a vector space over a field F that has a product ?

? : A×A −→ A (2.1a)

defined on it that is bilinear for every a, b, c ∈ A,

(a+ b) ? c = a ? c+ b ? c

a ? (b+ c) = a ? b+ a ? c .
(2.1b)

A particular algebra we will often come across in this course is the group algebra:

Definition 2.2 – Group algebra:
Let G be a group. This group gives rise to an algebra over F, called the group algebra and denoted
by F[G], by considering the elements of F[G] to be of the form

∑

g∈G
λgg , with λg ∈ F for every g ∈ G , (2.2)

and ? is the group product of G.

In this course, we will usually take F to be the field of complex numbers C unless explicitly stated
otherwise. Furthermore, since the group algebra we will mostly be interested in is C[Sn], the product
? will, unless stated otherwise, always taken to be the product defined in Note 1.1 (and we will thus
supress the ?).

Example 2.1: Group algebra

Let us consider G to be our favourite group Sn — and let us take n = 4. The quantity

− 5 + 2i , (2.3)

for example, is an element of the group algebra C[S4].

2.1.1 Symmetrizers and antisymmetrizers

There are certain elements in the group algebra C[Sn] that we will come across a lot and thus
warrent their own notation:

14



Definition 2.3 – Symmetrizers and antisymmetrizers:
Consider the group algebra over the symmetric group C[Sn], and let {a1, a2, . . . , ak} be a subset of
{1, 2, . . . , n}. The symmetrizer over {a1, a2, . . . , ak}, denoted by Sa1a2...ak is the sum of all permu-
tations σ over the elements in {a1, a2, . . . , ak} with a global prefactor 1

k! ,

Sa1a2...ak :=
1

k!

∑

σ permutes

{a1, a2, . . . , ak}

σ . (2.4a)

The antisymmetrizer over the set {a1, a2, . . . , ak}, Aa1a2...ak , is defined analogous to the symmetrizer
Sa1a2...ak , but each permutation σ in the sum is weighted by its signature sign(σ),

Aa1a2...ak :=
1

k!

∑

σ permutes

{a1, a2, . . . , ak}

sign(σ)σ . (2.4b)

Exercise 2.1: Consider the group S4. Write down the quantities S24, S134 and A1234 in
birdtrack notation.

Solution:

S24 =
1

2

(
+

)
(2.5a)

S134 =
1

6

(
+ + + + +

)
(2.5b)

A1234 =
1

24

(
− − − − −

− + + + + +

+ + + + + +

− − − − − −
)

(2.5c)

What exercise 2.1 has hopefully shown you is that writing down symmetrizers and antisymmetrizers
as sums becomes inconvenient very quickly, even in birdtracks (imagine tensor notation!) — a
shorthand notation for these quantities is desirable:

Definition 2.4:
We will denote a symmetrizer Sa1a2...ak by a white box over the index lines a1, a2, . . . ak of the
corresponding birdtrack. Similarly, we denote the antisymmetrizer Aa1a2...ak by a black box over the
index lines a1, a2, . . . ak. Note that this shorthand notation already includes the prefactors 1

k! .
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Exercise 2.2: Consider the group S4. Write down the quantities S24, S134 and A1234 in
the birdtrack notation introduced in Definition 2.4.

Solution:

S24 = (2.6a)

S134 = (2.6b)

A1234 = (2.6c)

You should notice something else in exercise 2.2: Due to the fact that the index lines 2 and 4 do
not come to stand directly underneath each other, we had to “wiggle” with index line 3 around
the white box symbolizing the symmetrizer S24 — it could not be included in the white box itself
as then we would have drawn the symmetrizer S234 instead. In the birdtrack formalism, this is all
very intuitive, but, in actual fact, what we wrote in eq. 2.2 is the quantity (34)S23(34)−1 (where,
clearly, (34)−1 = (34):

Exercise 2.3: Explicitly check that S24 = (34)S23(34)−1 by writing the quantities on
either side of the equal sign as sums of permutations and comparing the outcome.

Solution: By definition,

S24 =
1

2

(
+

)
. (2.7a)

Furthermore, the quantity (34)S23(34)−1 in birdtrack notation becomes

(34)S23(34)−1 =
1

2

(
+

)

=
1

2

(
+

)

=
1

2

(
+

)
, (2.7b)

where we merely multiplied birdtracks according to Note 1.1. Hence, the two quantities S24

and (34)S23(34)−1 are indeed equal.

What we have seen in exercise (2.3) is not specific to the quantities considered there, but is indeed
a general feature of the elements of Sn. While we will not prove this statement (although it
may be instructive to think about such a proof), we will use it in drawing symmetrizers and
antisymmetrizers.

Symmetrizers and antisymmetrizers have some rather useful properties that are worth discussing:
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Proposition 2.1 – Idempotency and transversality of (anti-)symmetrizers:
Symmetrizers and antisymmetrizers are idempotent, that is

Sa1a2...ak · Sa1a2...ak = Sa1a2...ak (2.8a)

Aa1a2...ak ·Aa1a2...ak = Aa1a2...ak . (2.8b)

Furthermore, if a symmetrizer Sa1a2...ak and an antisymmetrizer Ab1b2...bm intersect at at least two
indices, |{a1, a2, . . . , ak} ∩ {b1, b2, . . . , bm}| ≥ 2, then the product Sa1a2...akAb1b2...bm vanishes.

Proof of Proposition 2.1. Consider the symmetrizer Sa1a2...ak over the set {a1, a2, . . . , ak} ⊂
{1, 2, . . . , n},

Sa1a2...ak =
1

k!

∑

σ

σ . (2.9)

Clearly, the set of all permutations σ appearing in this sum is merely the set of elements of the per-
mutation group Sk (acting on the set {a1, a2, . . . , ak}). Thus, for every σi, σj in the sum constituting
Sa1a2...ak , the product σl := σi · σj also appears in Sa1a2...ak . Therefore the product

Sa1a2...ak · Sa1a2...ak (2.10)

gives rise to a sum of (k!)2 terms with each element of Sk (acting on the set {a1, a2, . . . , ak})
appearing exactly k! times. Collecting the common prefactor k! yields the desired result,

Sa1a2...ak · Sa1a2...ak =
1

(k!)2
k!
∑

σ∈Sk

σ = Sa1a2...ak . (2.11)

Showing that the antisymmetrizer Aa1a2...ak is idempotent as well involves similiar considerations
and is thus left as an exercise to the reader. (Hint: you need to carefully consider what happens to
the weights sign(σ) when multiplying antisymmetrizers, c.f. eq (2.4b); in particular, you need to
show that, for every ρ, σ ∈ Sn, sign(ρ)sign(σ) = sign(ρσ).)

Exercise 2.4: Check, using birdtrack notation, that the antisymmetrizer A123 (acting on
{1, 2, 3}) is idempotent.

Solution: The antisymmetrizer A123 is given by

A123 =
1

6

(
− − − + +

)
, (2.12a)
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such that

A123 ·A123 =
1

36

(
− − − + +

− + + + − −

− + + + − −

− + + + − −

+ − − − + +

+ − − − + +

)

=
6

36

(
− − − + +

)

= A123 . (2.12b)

2.2 Linear maps, scalar product and Hermiticity

We have already defined a product on the birdtracks of the group Sn by merely connecting the index
lines, c.f. Note 1.1. We may also define a scalar product on the space of linear maps as follows:

Definition 2.5 – Scalar product:
Let A,B be linear maps from V ⊗k to itself, that is A,B ∈ Lin

(
V ⊗k

)
. We define a scalar product

〈·|·〉 between these maps as

〈A|B〉 := tr
(
A†B

)
, (2.13)

where A† denotes the Hermitian conjugate (i.e. complex conjugate transpose) of A.

Unless explicitly stated otherwise, we will from now on always assume the product (2.13) whenever
reference to a scalar product is required.

To apply the product (2.13) to operators in the birdtrack formalism, we first need to be able to form
the Hermitian conjugate and take a trace in the birdtack formalism. Let us start with the latter:
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2.2.1 Trace of a birdtrack

Note 2.1: Tracing birdtracks

Let ρ be a birdtrack operator. Its trace tr (ρ) is formed by connecting the index lines on the
same level,

tr

(
...

...

ρ
)

:=
...

...

ρ , (2.14)

and replacing each closed loop by a factor dim(V ) = N (note that loops may self-intersect).a

aNote that no reference has been made with respect to the space on which ρ operates, and no arrows have
been added to the birdtracks in eq. (2.14). The reason for this is that eq. (2.14) does not only define the
trace of operators on V ⊗k, but also on more general product spaces, where each closed loop is replaced by the
dimension of the space on which it acts.

You may wonder why the procedure described in Note 2.1 indeed yields the trace of a birdtrack
operator ρ. Let us motivate this by once again looking at the elements of Sn: When writing these
elements as products of Kronecker δ’s as described in eqns. (1.18) (just after Note 1.1), the trace is
formed by a contraction of indices, for example,

tr

( )
= tr

(
δb1a1

δb3a2
δb2a3

)
index

========
contraction

δb1b1δ
b3
b2
δb2b3 (2.15a)

But how does one contract indices as indicated in eq. (2.15a)? By means of a multiplication with
another Kronecker δ, such that

tr
(
δb1a1

δb3a2
δb2a3

)
=
(
δb1a1

δa1
b1

)(
δb3a2

δa2
b2

)(
δb2a3

δa3
b3

)
= δb1b1δ

b3
b2
δb2b3 , (2.15b)

where we have written the Kronecker δ’s arising from the trace operation in red for visual clarity.
In birdtrack notation, however, we merely denote a Kronecker δ by a line (c.f. eqns. (1.18)), such
that

(
δb1a1

δa1
b1

)(
δb3a2

δa2
b2

)(
δb2a3

δa3
b3

)
= , (2.15c)

where the lines corresponding to the red Kronecker δ’s were also drawn red. Furthermore, if, as in
our case, δba : V → V with dim(V ) = N , then it immediately follows that

tr
(
δba

)
= δaa = dim(V ) = N . (2.16a)

Hence, in the example (2.15b), we have that

tr
(
δb1a1

δb3a2
δb2a3

)
= δb1b1δ

b3
b2
δb2b3 = δb1b1δ

b3
b3

= N2 . (2.16b)

Notice that we used the fact that δa3
a2
δa2

a3
= δa3

a3
, two Kronecker δ’s combined into one as their

indices were contracted. Graphically, this corresponds to two Kronecker δ lines being connected (at
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the point representing the contracted index). This observations warrants the statement that each
closed loop (even if it self-intersects!) of a birdtrack gives rise to a factor N ,

tr
(
δb1a1

δb3a2
δb2a3

)
= tr

( )
= = N2 . (2.16c)

Exercise 2.5: Find the trace of all elements in S3 on V ⊗3.

Solution: Drawing the lines originating from the trace in red for visual clarity, we
have

tr

( )
= = N3 , tr

( )
= = N2 ,

tr

( )
= = N , tr

( )
= = N2 ,

tr

( )
= = N , tr

( )
= = N2 .

(2.17)

Let us now move on to the Hermitian conjugate of birdtracks:

2.2.2 Hermitian conjugate of a birdtrack

Note 2.2: Hermitian Conjugate of birdtracks

Let A be a birdtrack operator. Its Hermitian conjugate with respect to the scalar prod-
uct (2.13) in the birdtrack formalism is formed by flipping the birdtrack about the vertical
axis and reversing the arrowsa; for example,

...
...

A
reflect−−−−→ ...

...
A

reverse arrows−−−−−−−−→ ...
...

A ,

i.e.

(
...

...
A

)†
= ...

...
A .

(2.18)

aAgain, we have not specified the space on which A acts as this procedure is true in general, irrespective
of the space.

We will not prove the statement in Note 2.2 here, but proofs can be found in [1, 6].
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!
Important: Pay close attention to the differences between the procedures de-
scribed in Note 2.2 and in Note 1.2: In Note 2.2, we explained that the Hermitian
conjugate of any birdtrack operator is formed via reflecting the birdtrack about its

vertical axis and reversing the arrows. In comparison, Note 1.2 that one obtains the inverse
only of an element of of Sn via reflecting and reversing arrows — the procedure for taking
the Hermitian conjugate is valid for all birdtrack operators, while the procedure for taking
the inverse holds only for the elements of Sn!

Exercise 2.6: Calculate the following scalar products in the birdtrack formalism:
〈(123)|(13)〉 in S3, 〈S12|(23)〉 in S3, 〈(234)|(13)(24)〉 in S4.

Solution: We have that

〈(123)|(13)〉 = tr

(( )† )
= tr

( )
= tr

( )

= = N2 . (2.19a)

Furthermore,

〈S12|(23)〉 = tr

(( )† )
= tr

( )
=

1

2

(
tr

( )
+ tr

( ))

=
1

2

(
+

)
=

1

2
(N2 +N) . (2.19b)

Lastly,

〈(234)|(13)(24)〉 = tr



( )† 

 = tr

( )

= tr

( )
= N2 . (2.19c)

However, being clear about the different procedures, we immediately arrive at the following result
for the elements of Sn

Corollary 2.1 – Unitarity and Hermiticity of the elements of Sn:
Every single element of Sn is unitary, that is

ρ−1 = ρ† , for all ρ ∈ Sn . (2.20)

Furthermore, the elements of Sn are Hermitian if and only if its corresponding birdtrack is symmetric
under a flip about its vertical axis.1

Another immediate corollary of Note 2.2 is:

1Calling an element of Sn an involution if it is its own inverse, we see that every involution in Sn is Hermitian.
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Corollary 2.2 – Mirror-symmetric birdtracks:
Let A be a birdtrack operator. If A remains unchanged under a flip about its vertical axis (i.e. A
is mirror-symmetric about its vertical axis) then A is Hermitian with respect to the scalar prod-
uct (2.13).

!
Important: The converse statement of Corollary 2.2, namely that a birdtrack
that is not mirror-symmmetric about its vertical axis is not Hermitian, is not true
in general! In fact, at a later stage in this course, we will see explicit examples of

non-mirror-symmetric operators that turn out to be Hermitian.

If a Hermitian projection operator A projects onto a subspace completely contained in the image of
a Hermitian projection operator B, then we denote this as A ⊂ B, transferring the familiar notation
of sets to the associated projection operators. In particular, A ⊂ B if and only if

A ·B = B ·A = A (2.21)

for the following reason: If the subspaces obtained by the consecutive application of the operators
A and B in any order is the same as that obtained by merely applying A, then not only need the
subspaces onto which A and B project overlap (as otherwise A · B = B · A = 0), but the subspace
corresponding to A must be completely contained in the subspace of B — otherwise the last equality
of (2.21) would not hold. Notice that Hermiticity is crucial for these statements — it does not apply
to a general non-Hermitian operator.

A by now familiar example for this situation is the relation between (anti-) symmetrizers of different
length: a symmetrizer SN can be absorbed into a symmetrizer SN ′ , as long as the index set N is
a subset of N ′, and the same statement holds for antisymmetrizer, [1],

SNSN ′ = SN ′ = SN ′SN and ANAN ′ = AN ′ = AN ′AN ; (2.22a)

this can be proven in a similar way as Proposition 2.1 and is therefore left as an exercise to the
reader. What eq. (2.22a) tells us is that the image of SN ′ is contained in the image of SN ,
im(SN ′) ⊂ im(SN ), and similarly for the images of AN ′ and AN . In a slight abuse of notation we
transfer the inclusion of images to the operators, saying that

SN ′ ⊂ SN and AN ′ ⊂ AN whenever N ⊂ N ′ . (2.22b)

Example 2.2:

Considering the symmetrizers S123 and S12, we have

= = ; (2.23a)

we can think of the “smaller” symmetrizer (over less index kegs) as being absorbed by the
larger one. Thus, by the above notation, S123 ⊂ S12,

⊂ . (2.23b)
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Exercise 2.7: Show explicitly that eq. (2.23a) holds.

Solution: By definition, we may write the symmetrizer S12 as a sum of permutations
ass

S12 = =
1

2

(
+

)
. (2.24)

Acting either of the permutations in the sum (2.24) on S123 merely effects a reordering of the
underlying sum of S123, but nothing else, such that

= = and = = . (2.25)

Thus, it immediately follows that eq. (2.23a) must also hold, as required.

2.2.3 Decomposing (anti)-symmetrizers

In the course of this class, we will often find it useful to “extract” to topmost or bottommost line
of a particular (anti-) symmetrizer. That is, we, for example, want to write S123...k as a sum of
quantities only involving the symmetrizer S123...k−1. To this end, the following formula will become
very useful:

Proposition 2.2 – Decomposing (anti-) symmetrizers:
A symmetrizer of length k, S123...k allows for the following decomposition:

S123...k =
...

... =
1

k

(
...

... + (k − 1)
...

...
...

...

)
. (2.26a)

Similarly, an antisymmetrizer of lenght p, A123...p, can be decomposed as

A123...p =
...

... =
1

p

(
...

... − (p− 1)
...

...
...

...

)
. (2.26b)

Proof of Proposition 2.2. We will prove the decomposition of the symmetrizer, eq. (2.26a), and
point out where the proof for the antisymmetrizer differs at the appropriate places in rectangular
brackets.

Consider the symmetrizer S123...k. Due to eq. (2.22a), we may write S123...k as a product
S23...kS123...kS23...k,

...
... =

...
...
...

...
...

... . (2.27)

The longest symmetrizer in eq. (2.27) is merely a sum over the permutations in Sk with an overall
prefactor 1

k!

S123...k =
1

k!

∑

ρ∈Sk

ρ . (2.28)
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[Similarly, A123...p is given by a sum over the permutations in Sp where each permutation is weighted
by its signature.] Since Sk is generated by transpositions of consecutive numbers (this can be proven
by induction on k)

{(12) , (23) , (34) , . . . (k − 2 k − 1) , (k − 1 k)} generate Sk , (2.29)

each permutation appearing in the sum in S123...k may be written as a product of the transpositions
in eq. (2.29). Since the decomposition of a permutation ρ ∈ Sk into transpositions is not unique,
we may distinguish two cases:

1. Suppose ρ leaves the index 1 invariant, that is ρ : 1 7→ 1. Notice that there exist exactly
(k − 1)! such permutations (one may think of them as the transpoistions of Sk−1 embedded
into the larger space). Then ρ may always be represented as a product of transpositions

{(23) , (34) , . . . (k − 2 k − 1) , (k − 1 k)} (2.30)

only; that is, (12) is not contained in ρ. However, every single one of the transpositions
in (2.30) may be absorbed in either of the symmetrizers S23...k in the product (2.27), such
that we have

S23...kρS23...k = S23...kS23...k = S23...k , (2.31)

where the last equality follows from the idempotency of symmetrizers.

[If we were considering antisymmetrizers instead of symmetrizers, the antisymmetrizer A123...p

is also given by a sum of permutations, but each permutation is weighted by its signature
sign(ρ) = ±1. When absorbing the permutations (that leave 1 invariant) into one of the
antisymmetrizers A23...p, we obtain an extra factor sign(ρ), such that

sign(ρ)A23...pρA23...p = sign(ρ)2

︸ ︷︷ ︸
=+1

A23...pA23...p = A23...p , (2.32)

obtaining the same result as for the symmetrizer.]

2. Suppose now that ρ does not leave the number 1 invariant, that is ρ : 1 7→ j for some
j ∈ {2, 3, . . . , k}. Notice that there are exactly k!−(k−1)! = (k−1)·(k−1)! such permutations
in Sk. In this case, we can write ρ as a product of transpositions, such that the transposition
(12) occurs exactly once in ρ,

ρ = τsτs−1 . . . τl+1(12)τlτl−1 . . . τ2τ1 (2.33)

where each τi is a transposition in (2.30). Each of the τi may again be absorbed in the
symmetrizer S23...k, such that

S23...kρS23...k = S23...kτsτs−1 . . . τl+1(12)τlτl−1 . . . τ2τ1S23...k = S23...k(12)S23...k . (2.34)

[If we are considering antisymmetrizers instead of symmetrizers, then absorbing all but one of
the transpositions comprising ρ into the antisymmetrizers A23...p induces a factor −sign(ρ),
such that

sign(ρ)A23...pρA23...p = sign(ρ)A23...pτtτt−1 . . . τl+1(12)τlτl−1 . . . τ2τ1A23...p

= (−sign(ρ)) sign(ρ)︸ ︷︷ ︸
=−1

A23...p(12)A23...p = −A23...p(12)A23...p .] (2.35)
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Therefore, when decomposing the symmetrizer S123...k in eq. (2.27) as a sum of permutations (ac-
cording to (2.28)), we find that (k − 1)! terms merely yield the expression

S23...k =
...

... , (2.36a)

and the remaining (k − 1) · (k − 1)! terms yield

S23...k(12)S23...k =
...

...
...

... . (2.36b)

[Respectively, for the antisymmetrizer, we obtain

(p− 1)! terms of the form A23...p =
...

... (2.37a)

and (p− 1) · (p− 1)! terms of the form −A23...p(12)A23...p = − ...
...
...

... .] (2.37b)

Hence, substituting these findings back into eq. (2.27), we obtain

...
... =

1

k!

(
(k − 1)!

...
... + (k − 1) · (k − 1)!

...
...
...

...

)

=
1

k

(
...

... + (k − 1)
...

...
...

...

)
(2.38)

[and, similarly, for the antisymmetrizer

...
... =

1

p

(
...

... − (p− 1)
...

...
...

...

)
] (2.39)

as required.
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3 Representations of a group

Much of the material of this section follows the presentation given in [7]

Definition 3.1 – Representation of a group:
Let G be a group. A representation ϕ of G is a homomorphism from G to the endomorphism group
of a vector space V over a field F.

ϕ : G −→ End(V ) . (3.1)

The vector space V is said to carry the representation ϕ of G, and is sometimes also referred to as
the carrier space of the representation ϕ. We refer to the dimension of the carrier space dim(V ) as
the dimension of the representation ϕ.

If one wishes to make the carrier space explicit, one also commonly refers to the tuple (ϕ, V ) as
representation of G.

Note that for ϕ to be a homomorphism, it needs to satisfy for all g, h ∈ G

ϕ(gh) = ϕ(g)ϕ(h) (3.2a)

ϕ(idG) = 1V , (3.2b)

where idG is the identity of G and 1V is the identity in EndF(V ).

Example 3.1: Representation of S3 on R3

For the group S3, one can define a map ϕ : S3 → R3 as

ϕ(id3) =




1 0 0
0 1 0
0 0 1


 , ϕ((12)) =




0 1 0
1 0 0
0 0 1


 ,

ϕ((123)) =




0 0 1
1 0 0
0 1 0


 , ϕ((23)) =




1 0 0
0 0 1
0 1 0


 ,

ϕ((132)) =




0 1 0
0 0 1
1 0 0


 , ϕ((23)) =




0 0 1
0 1 0
1 0 0


 .

(3.3)

To see that this map defines a representation of Sn on R3, we need to check whether it is a
group homomorphism: Clearly, the identity id3 gets mapped to the identity in R3, and by
direct calculation it can be verified that property (3.2a) is satisfied as well.

Let ϕ be a representation of a group G, ϕ : G → End(V ). Note that, by eqns. (3.2), we have for
every g ∈ G

ϕ(g)ϕ(g−1) = ϕ(gg−1) = ϕ(idG) = 1v , implying that ϕ(g−1) = [ϕ(g)]−1 . (3.4)

Thus, for every g ∈ G, ϕ(g−1) ∈ End(V ) is the inverse map of ϕ(g) ∈ End(V ).
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!
Important: Since a representation ϕ of a group G sends each of its elements to
End(V ), ϕ(g) is itself a map on V for every g ∈ G, and we have just seen that each
map ϕ(g) has an inverse mapping given by ϕ(g−1) on V .

The maps ϕ(g) ∈ End(V ) (for every g ∈ G) are not to be confused with the map ϕ : G →
End(V ) (i.e. the representation itself), which is clearly not an element of End(V ).

In particular, the map ϕ : G → End(V ) may not have an inverse! An easy example is the
trivial representation t : G→ End(C) which sends each element to 1 ∈ C,

t(g) = 1 for every g ∈ G ; (3.5)

clearly, the map t is a representation of G (check this for yourself), but it is not injective and
therefore does not have an inverse.

3.1 (Left) regular representation

A particular representation that will turn out to be useful is the left regular representation:

Let G be a (finite) group and let Ĝ denote the set of all elements of G in a particular order. For
example, if G = S3, we may impose the following order to obtain

Ŝ3 :=

{
, , , , ,

}
. (3.6)

Definition 3.2:
(Left) regular representation of a group The left action of G on Ĝ defines a representation R of G
to the |G| × |G| matrices,

R : G× Ĝ→ GL(C, |G|) , (3.7)

where, for each g ∈ G, the (i, j)-entry of the matrix R(g) is

(i, j)-entry −→
{

1 if gi = ggj (gi is the ith entry in Ĝ)

0 otherwise .
(3.8)

The map R is called the left regular representation of the group G, and it has dimension |G|.

Example 3.2: Left regular representation of S3

As an example, consider the symmetric group S3, and let the partially ordered set Ŝ3 be
as given in eq. (3.6). Let R be the left regular representation of S3 onto GL(C, 3!). Let us

compute the matrix R ((123)) = R
( )

:
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For each gi ∈ Ŝ3, we have that

· = ⇐⇒ g2 = (123)g1 =⇒ (2, 1)-entry of R ((123)) is 1

· = ⇐⇒ g3 = (123)g2 =⇒ (3, 2)-entry of R ((123)) is 1

· = ⇐⇒ g1 = (123)g3 =⇒ (1, 3)-entry of R ((123)) is 1

· = ⇐⇒ g5 = (123)g4 =⇒ (5, 4)-entry of R ((123)) is 1

· = ⇐⇒ g6 = (123)g5 =⇒ (6, 5)-entry of R ((123)) is 1

· = ⇐⇒ g4 = (123)g6 =⇒ (4, 6)-entry of R ((123)) is 1

(3.9)

The calculation (3.9) gives all non-zero entries of the matrix R ((123)). Thus, R ((123)) is
given by

R ((123)) = R
( )

=




0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0




. (3.10)

Exercise 3.1: Consider the symmetric group S3 and let R : S3 × Ŝ3 → GL(C, 3!) denote
its left regular representation. Calculate the matrices R (id3), R ((123)), R ((132)), R ((12)),
R ((13)) and R ((23))

Solution:

R
( )

=




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




, R
( )

=




0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0




,(3.11a)

R
( )

=




0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0




, R
( )

=




0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1
0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0




,(3.11b)
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R
( )

=




0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0




, R
( )

=




0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0




.(3.11c)

3.2 Irreducible representations of a group

Let G be a group. Let V1 and V2 be two vector spaces such that V1 ∩ V2 = ∅, and let these two
vector spaces carry the representations ϕ1 and ϕ2, respectively, of G. If V := V1⊕V2, we can define
a map ϕ as

ϕ : G→ End(V ) (3.12a)

ϕ(g) := ϕ1(g)⊕ ϕ2(g) for every g ∈ G . (3.12b)

It is readily seen that ϕ yields a representation of G on V . However, this represnetation does not
yield any new information about the group G that was not already present in the representations
ϕ1 and ϕ2. In particular, we only need to study ϕ1 and ϕ2 to learn everything about ϕ.

On the other hand, suppose that G is a group and V carries a representation ϕ of G. Suppose
further that W ⊂ V is such that ϕ(g)(w) ∈W for every g ∈ G and every w ∈W — in other words
the restriction of ϕ onto W , ϕW ,

ϕW : G→ GL(W ) (3.13)

is a subrepresentation of ϕ. If this is the case, we have the following handy theorem:

Theorem 3.1 – Maschke’s Theorem:
Let G be a group and let ϕ : G → End(V ) be a representation of G. Furthermore, suppose that
W ⊂ V carries a subrepresentation of G. Then we can always find a space U ⊂ V such that
V = U ⊕W and

ϕ = ϕU ⊕ ϕW . (3.14)

A representation that can be expressend as the direct sum of two or more subrepresentations (as in
eq. (3.14)) is called a reducible representation.

Before we can give a proof of Maschke’s Theorem, we require the following result:

Proposition 3.1 – Direct sum of the image and the kernel of a map:
Let P : V → V be a map from a space V to itself such that P 2 = P . Then

V = im(P )⊕ ker(P ) . (3.15)

Proof of Proposition 3.1. Let v ∈ V . Since P 2 = P , it follows that

P 2v = P (v) =⇒ P (v − P (v)) = 0 . (3.16)
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What eq (3.16) tells us is that v−P (v) is in the kernel of P , that is v−P (v) = k for some k ∈ ker(P ).
Rewriting this equation as v = P (v) + k, and realising that (obviously) P (v) ∈ im(P ), it follows
that

V = im(P ) + ker(P ) . (3.17)

To turn the sum in eq. (3.17) into a direct sum, it remains to show that im(P ) ∩ ker(P ) = {0} —
let us do just that: Suppose z ∈ im(P )∩ ker(P ). Since z ∈ im(P ), we can write z = P (w) for some
w ∈ V . Applying P to this equation yields

P (z) = P 2(w) . (3.18)

Since z ∈ ker(P ) as well, it follows that P (z) = 0, such that

0
z∈ker(P )

======= P (z)
eq. 3.18

====== P 2(w)
P 2=P

===== P (w)
defn. of z

======= z . (3.19)

Therefore, the only element of im(P ) ∩ ker(P ) is 0,

im(P ) ∩ ker(P ) = {0} (3.20)

Putting eqns. (3.17) and (3.20) together yields the desired result, V = im(P )⊕ ker(P ).

We are now in a position to prove Maschke’s Theorem [8]:

Proof of Theorem 3.1 (Maschke’s Theorem). Let G be a group and ϕ : G → End(V ) be a
representation of G on V . Furthermore, let W ⊂ V carry a subrepresentation of G. Let π : V →W
be a projection of V onto W . We define a map T : V → V as

T (v) =
1

|G|
∑

g∈G
ϕ(g−1) [π (ϕ(g)(v))] , for every v ∈ V . (3.21)

We will prove that the map T fulfills the following properties:

i) T (v) ∈W for every v ∈ V
ii) T 2 = T

iii) T (w) = w for every w ∈W
iv) ϕ(h) (T (v)) = T (ϕ(h)(v)) for every h ∈ G and every v ∈ V .

i) Let v ∈ V . Since ϕ is a representation of G, (i.e. ϕ(g) ∈ End(V ) for every g ∈ G), we must
have that ϕ(g)(v) ∈ V for every g ∈ G. The map π : V → W projects elements from V onto W
by definition, such that π (ϕ(g)(v)) ∈ W . Furthermore, since W carries a sub-representation of G
(that is to say ϕ(W ) = W ), it follows that ϕ(h) [π (ϕ(g)(v))] ∈ W for every h ∈ G; in particular,
ϕ(g−1) [π (ϕ(g)(v))] ∈ W . Lastly, since W is a vector space, linear combinations of its elements
also must lie in W ; in particular, the linear combination 1

|G|
∑

g∈G ϕ(g−1) [π (ϕ(g)(v))] ∈ W . In
summary,

T (v)= 1
|G|
∑
g∈G

ϕ(g−1)

[
π
(
ϕ(g)(v )

)]

∈ V
∈ V (rep.)

∈W (proj.)

∈W (sub-rep.)

∈W (linear comb. of W -elements)

, (3.22)
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showing that im(T ) = W , as required.

ii) Let v ∈ V . In part i) we already showed that T (v) ∈W for every v ∈W . Furthermore, since W
carries a sub-representation of ϕ, we have that ϕ(g) (T (v)) ∈ W for every g ∈ G and every v ∈ V .
Lastly, since π is a projection from V onto W , π(w) = w for every w ∈W , such that

π [ϕ(g) (T (v))] = ϕ(g) (T (v)) (3.23a)

for every g ∈ G and every v ∈ V . Keeping these considerations in mind, we find that

T (T (v)) =
1

|G|
∑

g∈G
ϕ(g−1) [π [ϕ(g) (T (v))]]

=
1

|G|
∑

g∈G
ϕ(g−1) [ϕ(g) (T (v))]

=
1

|G|
∑

g∈G
1V (T (v)) ; (3.23b)

in the last step, we used the fact that ϕ is a group homomorphism, and hence ϕ(g−1)ϕ(g) =
ϕ(g−1g) = ϕ(idG) = 1V , the identity map on V . Notice that T (v) is constant with respect to the
sum

∑
g∈G, and hence the sum

∑
g∈G 1V (T (v)) merely yields |G| copies of T (v),

1

|G|
∑

g∈G
1V (T (v)) =

1

|G| |G|T (v) = T (v) . (3.23c)

Since the element v ∈ V was chosen arbitrarily, it follows that T 2(v) = T (v) for every v ∈ V , indeed
yielding T 2 = T .

iii) Let w ∈W and g ∈ G be arbitrary. Since W carries a subrepresentation of G, we have that

ϕ(g)(w) ∈W . (3.24a)

Furthermore, since π projects from V onto W , it acts as the identity on elements of W such that

π [ϕ(g)(w)] = ϕ(g)(w) . (3.24b)

Then,

ϕ(g−1)π [ϕ(g)(w)] = ϕ(g−1)ϕ(g)(w) = 1V (w) , (3.24c)

where the last equation follows from the fact that ϕ is a homomorphism.2 Therefore, we find that
for every w ∈W ,

T (w) =
1

|G|
∑

g∈G
1V (w) =

1

|G| |G|w = w . (3.24d)

iv) Let h ∈ G and v ∈ V be arbitrary. Let us consider ϕ(h) [T (v)],

ϕ(h) [T (v)] = ϕ(h)


 1

|G|
∑

g∈G
ϕ(g−1) [π (ϕ(g)(v))]


 =

1

|G|
∑

g∈G
ϕ(h)ϕ(g−1) [π (ϕ(g)(v))] (3.25a)

2Since ϕ is a homomorphism, ϕ(g)ϕ(h) = ϕ(gh) for all g, h ∈ G, c.f eq. (3.2a). Hence, ϕ(g−1)ϕ(g) = ϕ(g−1g) =
ϕ(idG) = 1V .
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Since ϕ is a homomorphism, ϕ(h)ϕ(g−1) = ϕ(hg−1). Defining hg−1 =: k−1 ∈ G, we can write g = kh
implying that ϕ(g) = ϕ(k)ϕ(h). Substituting this back into eq. (3.25a) merely effects a reordering
of the sum, yielding the desired result,

ϕ(h) [T (v)] =
1

|G|
∑

k∈G
ϕ(k−1) [π (ϕ(k) (ϕ(h)(v)))] = T [ϕ(h)(v)] . (3.25b)

Combining property ii) and Proposition 3.1, we have that V = im(T )⊕ ker(T ). Furthermore, since
by property i) im(T ) = W , it follows that

V = W ⊕ ker(T ) . (3.26)

It remains to show that ker(T ) carries a subrepresentation of G: Let k ∈ ker(T ), i.e. T (k) = 0.
Then, by property iv), we must have that

T [ϕ(g)(k)] = ϕ(g) [T (k)] = ϕ(g)[0] = 0 , (3.27)

where the last equality again holds since ϕ is a homomorphism. What eq. (3.27) tells us is that ϕ
leaves ker(T ) invariant, implying that ker(T ) indeed carries a subrepresentation of G. Finally, if we
let U = ker(T ), then we can write

V = W ⊕ U , (3.28)

where U carries a subrepresentation of G.

Definition 3.3 – Irreducible representation of a group:
Let G be a group and let ϕ : G → GL(V ) be a representation of G, where V is not the zero-space
{0}. We say that ϕ is irreducible if the only subspaces of V that are invariant under the action of
ϕ(g) for every g ∈ G are {0} and V itself.

For the sake of brevety, we will often shorten “irreducible representation” to “irrep”.

We already encountered the left regular representaion R of a finite group G. This representation is
not irreducible, but it turns out ot contain all irreducible representations of G (without proof):

Theorem 3.2 – Regular representation contains all irreducible representations:
Let G be a finite group and let R denote its (left) regular representation. If {ϕi} is the set of all
irreducible representations ϕi of G, and each irrep has dimension ni, then R contains each ϕi exactly
ni times, that is

R =
⊕

i

niϕi . (3.29)

As was already remarked earlier, studying a reducible representation boils down to studying its
irreducible components. Therefore, for the remainder of this course we will be concerned with
studying the irreducible representations of a group. A convenient way to accomplish this
task is via a little detour of the group algebra, as will be discussed in the following section 4.
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4 Representations of the group algebra

Again, much of the material of this section follows the presentation given in [7].

In analogy to a representation over a group, we can define a representation over an algebra:

Definition 4.1 – Representation of an algebra:
Let A be an algebra over a field F. A representation of A is an algebra homomorphism ϕ

ϕ : A → End(V ) (4.1)

(where End(V ) is the algebra of linear transformations of a vector space V over F to itself) that
maps the identity of A, idA, to the identity map on V ,

ϕ(idA) = 1V . (4.2)

Notice that, if we have a group G with a representation ϕG : G → End(V ), this representation can
immediately be extended to a representation of the group algebra F[G], ϕF[G] : F[G] → End(V ) by
requiring that

ϕF[G]

(∑

i

λigi

)
!

=
∑

i

λiϕG(gi) (4.3)

for every gi ∈ G and λi ∈ F (since ϕG is a group homomorphism, eq. (4.2) is immediately satisfied).
Equivalently, if we have a representation of the group algebra ϕF[G], we immediately obtain a
representation of the group by restricting ϕF[G] onto G. Thus, studying the representation of a group
or studying the representations of the corresponding group algebra are two completely equivalent
notions. As will be explained in the following section (4.1), a representation of a group algebra is
equivalent to the notion of a module of that algebra:

4.1 Modules

Definition 4.2 – Module:
Let F be a field and A be an algebra over F. A left A-module M is a vector space over the field F
together with a function

A×M → M
(a,m) 7→ am , a ∈ A and m ∈M .

(4.4)

For every a, b ∈ A and every m,n ∈M, the function (4.8) must be bilinear,

(a+ b)m = am+ bm

a(m+ n) = am+ an ,
(4.5a)

and must satisfy

(ab)m = a(bm) . (4.5b)

M is said to be unital if, for idA being the multiplicative identity in A,

idAm = m for every m ∈M . (4.6)

(The right A-module is defined in a similarly through right multiplication of elements in A.)
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Unless stated otherwise, we will assume every module to be unital.

Let G be a group and F[G] be its group algebra over the field F. Then F[G] is a module over itself,
and the map F[G]×F[G]→ F[G] is given via the multiplication of the group G: For every g ∈ G, let
λg ∈ F, then


∑

g∈G
λgg



(∑

h∈G
λhh

)
=
∑

g∈G
λg
∑

h∈G
λhgh

=
∑

g∈G
h∈G

λgλh︸︷︷︸
=:λk∈F

gh︸︷︷︸
=:k∈G

=
∑

k∈G
λkk , (4.7)

yielding an element in F[G]. In fact, this module has a special name:

4.1.1 (Left) regular module

Definition 4.3 – Left (right) regular module:
Let A be an algebra over the field F. The left regular A-module is the vector space / algebra A made
into an A-module via the map

A×A → A
(a, b) 7→ ab , a, b ∈ A ,

(4.8)

where ab is defined through the product ? on A ( c.f. Definition 2.1).

!
Important: Let A be an algebra over a field. Through Definition 4.3, we found
that we can view A as a module over itself through the multiplication A × A → A
defined on it. We even gave this module a name, namely the (left) regular module.

However, it is important to note that the (left) regular A-module and the algebra A itself
define the same algebraic object! Keeping this in mind will avoid a lot of confusion later
on.

Let G be a group. We can similarly define a G-module M through a map G ×M → M that is
bilinear and associative, c.f. Definition 4.2. Notice that, if F[G] is the corresponding group algebra
over the field F, then the G-module is the same as the F[G]-module: Let g, h ∈ G, and for every
h ∈ G let λh ∈ F. Then,

g

(∑

h∈G
λhh

)
=
∑

h∈G
λh gh︸︷︷︸

=:k∈G

; (4.9)

defining λk := λh, then eqns. (4.7) and (4.9) are completely identical, indeed showing that the
G-module and the F[G]-module are the same.
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4.1.2 Modules and representations of the algebra

Theorem 4.1 – Modules correspond to representations:
Let A be an algebra over a field F and letM be an A-module (where (·, ·) defines the mapM×A→
M). For each a ∈ A, we define a map φa :M→M as

φa(m ) := (a,m) = am . (4.10)

∈ ∈ ∈

M A ×M M

Then:

1. φa ∈ End(M)

2. The map

φ : A → End(M)

a 7→ φa
(4.11)

is a representation on A.

3. Conversly, given a representation φ : A → End(V ) for some vector space V , then V becomes
an A-module if the required map A× V → V is defined by the rule

(a, v) 7→ φ(a)(v) (4.12)

for every a ∈ A and every v ∈ V .

The proof of Theorem 4.1 is left as an exercise (c.f. Exercise 4.1). However, the message of the
theorem is clear: Given an algebra A, any A-module M carries a representation of A.

Exercise 4.1: Prove Theorem 4.1

Solution: Part 1 is obvious.

Part 2: To show that the map φ : A → End(M) is a representation, we need to show that it is
an algebra homomorphism; that is, we need to show that φ is linear with respect to addition
and scalar multiplication, and that it respects left-multiplication of an m ∈M with elements
in A: Let a, b ∈ A. Then, for an arbitrary element m ∈M, we have that

φ(a+ b)(m) = φa+b(m) = (a+ b)m

= am + bm = φa(m) + φb(m) = φ(a)(m) + φ(b)(m) , (4.13a)

where we used the fact that (a+b)m = am+bm by definition of the moduleM (c.f. eq. (4.5a)
in Definition 4.2). Since m ∈M was chosen arbitrarily, it follows that φ(a+ b) = φ(a) +φ(b).
Let a ∈ A and let λ ∈ F. Again for an arbitrary m ∈M, we have

φ(λa)(m) = φλa(m) = (λa)m = λ(am) = λφa(m) = λφ(a)(m) (4.13b)

by associativity of the map A×M→M, implying that φ(λa) = λφ(a).
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Lastly, let a, b ∈ A and let m ∈M be arbitrary. Then,

φ(ab)(m) = φab(m) = (ab)m = a(bm) = a (φb(m))

= φa (φb(m)) = (φa ◦ φb)(m) = (φ(a) ◦ φ(b))(m) , (4.13c)

where we again used the associative property of the map between A and M, and ◦ denotes
the combination of linear maps (in End(M)). Hence, also φ(ab) = φ(a) ◦ φ(b), showing that
φ is an algebra homomorphism and hence a representation of A.

Part 3: Let φ : A → End(V ) be a representation of the algebra A on a vector space V .
We need to show that the map φ̃ : A × V → V defined by φ̃ ((a, v)) = φ(a)(v) satisfies the
necessary conditions laid out in Definition 4.2 to view V as a module of A: Let a, b ∈ A and
let v, w ∈ V be arbitrary. Then

φ̃ ((a+ b, v)) = φ(a+ b)(v) = φ(a)(v) + φ(b)(v) = φ̃ ((a, v)) + φ̃ ((b, v)) , (4.14a)

where φ(a+ b)(v) = φ(a)(v) + φ(b)(v) holds since φ is a representation of A and hence linear
with respect to addition. Therefore, φ̃ is linear in the first argument. Furthermore

φ̃ ((a, v + w)) = φ(a)(v + w) = φ(a)(v) + φ(a)(w) = φ̃ ((a, v)) + φ̃ ((a,w)) (4.14b)

where we again used the fact that φ is linear by virtue of it being a representation. Hence, φ̃
is also linear in its second argument, showing that it is bilinear.
For a ∈ A, v ∈ V and λ ∈ F, we have that

φ̃ ((λa, v)) = φ(λa)(v) = λφ(a)(v) = λφ̃ ((a, v)) , (4.14c)

where φ(λa) = λφ(a) since φ behaves well with respect to scalar multiplication by virtue of
being a representation.
Lastly, for a, b ∈ A and v ∈ V , we have that

φ̃ ((ab, v)) = φ(ab)(v) = (φ(a) ◦ φ(b)) (v) = φ(a) (φ(b)(v)) = φ(a)
(
φ̃ ((b, v))

)
= φ̃

(
(a, φ̃ ((b, v))

)

(4.14d)

since φ(ab) = φ(a) ◦ φ(b) as φ is a representation. Hence, the map φ̃ fulfills all necessary
criteria to view V , the carrier space of the representation φ, as an A-module.

Let us summarize:

Note 4.1: Representations of a group and its group algebra I

Let G be a group and F[G] be its group algebra over a field F. Any representation over the
group can be extended to a representation of the group algebra, and any representation of
the group algebra can be restricted to become a representation of the group. Thus, we can
study representations of a group on two levels, on the level of the group itself and on the
level of the group algebra — both ways are completely equivalent to each other.

Furthermore, every representation of the group algebra F[G] gives rise to a F[G]-module,
and every F[G]-module carries (and gives rise to) a representation of F[G]. Hence, studying

36



representations of the group G boils down to studying F[G]-modules on the level of the group
algebra. We capture these parallels in the following table:

Representations of a group and its group algebra

representation of G representation of F[G]

representation (homomorphism) ϕG F[G]-module

Table 1: Parallels between the representation theory of a group and the representation theory
of its group algebra.

We will extend this table of correspondences between the two levels at which we can study
group representations as we go along.

4.2 Irreducible representations of the group algebra

As already discussed in Note 4.1, a representation of a group G corresponds to an F[G]-module on
the level of the group algebra. Hence, we expect that an irreducible representation corresponds to
an irreducible F[G]-module — let us clarify what this means:

Definition 4.4 – Submodules and irreducible modules:
Let A be an algebra over a field F and letM be an A-module. N ⊂M is said to be an A-submodule
of M if

(a, n) = an ∈ N for all a ∈ A and for all n ∈ N (4.15)

(where (·, ·) is given through the multiplication on M).

M is called an irreducible module if its only submodules are the zero-module {0} and M itself.

4.2.1 (Left) regular representation

From Definition 3.2, we are already familiar with at least one particular group representation,
namely the (left) regular representation RG. The corresponding notion on the level of the group
algebra is the (left) regular F[G]-module (c.f. Definition 4.3) — this is an immediate consequence of
Theorem 4.1. Note that the two concepts — the (left) regular representation RG and the (left) reg-
ular F[G]-module — are completely equivalent in that they contain the same amount of information
of the group and its representations.

In section 3.1, we stated (without proof!) that the regular representation of a group G, RG, can
be written as the direct sum of all irreducible representations of G (each irrep ϕi occurs with a
weight dim(ϕi)), c.f. Theorem 3.2. The same statement also holds on the level of the group algebra
(without proof):

Theorem 4.2 – (Left) regular module is a sum of irreducible submodules:
Let A be an algebra and let RA be its (left) regular module. Then RA can be written as a direct sum
of all irreducible submodules of A, where each summond is weighted by its dimension (as a vector
space).
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4.2.2 Idempotents and minimal ideals

As was already the case for the representations of a group, it is again useful to study the irreducible
representations of the group algebra F[G]. This is the topic of the present section.

Definition 4.5 – Left (right) ideal and minimal ideals:
Let A be an algebra over a field F. A left ideal I in A is a submodule of the left regular A-module.
In other words, a left ideal I of A is a non-empty subset of A such that

∀x, y ∈ I , x+ y ∈ I (4.16a)

∀x ∈ I and ∀λ ∈ F , λx ∈ I (4.16b)

∀x ∈ I and ∀a ∈ A , ax ∈ I . (4.16c)

I is called a proper ideal if I ( A.

Furthermore, I is said to be minimal if and only if it is not the zero-ideal {0} and its only subideals
are {0} and itself. Hence, a left ideal I is minimal if and only if it is an irreducible submodule of
the left regular A-module.

(Right ideals can be defined in an analogous way).

Note 4.2: Subtle differenence between a module and an ideal

It is worth pointing out the subtle differences between a A-module and an ideal of A: While
both, an A-moduleM and an ideal I of A have a multiplication with elements of A defined
on it,

A×M→M and A×I → I , (4.17)

the difference is that the elements of M are, in general different objects than the elements
of A. Therefore, the multiplication A ×M → M is a generalization of the idea of scalar
multiplication of a vector space, where the elements of A act as the “scalars” and the elements
of M are the “vectors” in this analogy. A special case of this is the (left) regular A-module
RA, in which the elements of RA are the elements of A itself (but this is certainly not the
case for a general A-module).

On the other hand, an ideal I of A is always a sub-module of the (left) regular A-module RA
— i.e. every ideal is an A-module but not every A-module is an ideal. Hence, the elements
of I are always elements of A itself.

This difference between a general A-module and a more specific A-module that is an ideal
brings various consequences with it: for one, by virtue of I being a subset of A (in addition
to the ideal-structure), there is a natural way of multiplying two elements i, j ∈ I inherited
from the algebra muliplication of A. In contrast, there is no well-defined muplitplication map
between elements of a general A-module M. Therefore, I is closed under multiplication,
but there is no such mulitplication-closure-property defined on M. In particular, a homo-
morphism between A-modules only needs to be linear with respect to addition and scalar
multiplication, while a homomorphism between ideals also needs to preserve multiplication.

From Definition 4.5, it follows that studying the irreducible representations of an algebra A amounts
to studying the minimal ideals of the (left) regular A module. It turns out that such ideals can be
studied through idempotent operators (c.f. Definition 4.6):
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Let A be an algebra over a field F and let b ∈ A be a particular element. It is readily seen that the
set Ab defined by

Ab := {ab|a ∈ A} (4.18a)

constitutes an ideal of A (recall that A and the (left) regular A-module are the same algebraic
object). We say that the ideal Ab is generated by the element b ∈ A.

Since A and the (left) regular A-module are the same algebraic object, every ideal I of the (left)
regular A-module consists of elements of A. That is to say, I = {x1, x2, . . .} ⊂ A such that,

∀a ∈ A ∃ xi, xj ∈ I : axi = xj . (4.18b)

By the very definition of an ideal, we have that

AI = I , where AI := {ax|a ∈ A and x ∈ I } , (4.18c)

and we could say that the ideal I is generated by itself. Hence, every ideal of A is generated by
elements of A. This holds in particular also for minimal ideals

Often a proper subset of I , J ( I is sufficient to generate I ,

AJ = I ; (4.18d)

notice that J itself is not an ideal.3 If the subset J is finite, we say that the ideal I is finitely
generated. An example of a finitely generated ideal is the ideal Ab in eq. (4.18a) as it is generated
by the single element b of A.

In the present section, we will see that minimal ideals are generated by a single, very particular
element of A, c.f. Theorem 4.3.

Definition 4.6 – Idempotents and quasi-idempotents:
An operator e is said to be idempotent if it satisfies e · e = e (where e denotes the appropriate
multiplication of such an operator). An operator ẽ is said to be quasi-idempotent if it satisfies
ẽ · ẽ = λẽ for some scalar quantity λ.

An idempotent operator (or simply an idempotent) is also referred to as a projection operator, the
latter being used mostly in the physics literature, and the former in the math literature. We will use
both names interchangeably in this course.

Example 4.1: Symmetrizers and antisymmetrizers

We are already familiar with two kinds of idempotent operators, namely symmetrizers and
antisymmetrizers: We have shown that any symmetrizer Sa1a2...ak and any antisymmetrizer
Aa1a2...ak is idempotent in Proposition 2.1.

Exercise 4.2: Using birdtrack notation, show that the operator S123A14 acting on V ⊗4

is quasi-idempotent: Do this by first writing the operator as a sum of permutations, and
then form the product S123A14 · S123A14. Which constant α is needed to make αS123A14

3Note that J must be a subset of I to generate J : By eq (4.18d), ay ∈ I for every a ∈ A and every y ∈ J .
Since the identity idA is an element of A, it follows that idAy = y ∈ I .
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idempotent?

Solution: There are two ways of tackling this problem, the brute force method and
the more elegant one. Let us discuss the brute force method first: The operator S123A14 in
birdtrack notation is given by

S123A14 =

=
1

6

(
+ + + + +

)
×

× × 1

2

(
−

)
×

=
1

12

(
+ + + + + +

− − − − − −
)
. (4.19)

Multiplying the operator 4.19 by itself, we find that

S123A14 · S123A14 = =
2

3
=

2

3
S123A14 , (4.20)

showing that S123A14 is indeed quasi-idempotent. The necessary constant α needed to make
it idempotent is α = 3

2 ; that is, the operator

3

2
S123A14 =

3

2
(4.21)

is idempotent.
On the other hand, one may show that S123A14 is quasi-idempotent by using the formula

S123...k =
...

... =
1

k

(
...

... + (k − 1)
...

...
...

...

)
, (4.22)

c.f. Proposition 2.2. Consider the product S123A14 · S123A14 and write the middle antisym-
metrizer A14 as a sum of permutations,

S123A14 · S123A14 =

=
1

2

(
−

)

=
1

2

(
−

)
(4.23)

40



where we factored the appropriate permutations out of each S123 to the left and to the right
of (14) to obtain

= = . (4.24)

Using (4.22), we can express the term in eq. (4.24) as,

=
4

3
− 1

3
(4.25)

and substitute this back into eq. (4.23) to obtain

=
1

2

(
−

)

=
1

2

(
−
[

4

3
− 1

3

] )

=
1

2
· 4

3

(
−

)
. (4.26)

Note that the second term in eq. (4.26) vanishes since the symmetrizer S1234 and the anti-
symmetrizer A14 have two legs in common (c.f. Proposition 2.1). Thus, we once again find
that

=
2

3
, (4.27)

showing that S123A14 is quasi-idempotent and 3
2S123A14 is idempotent.

It is no coincidence that the operator 3
2S123A14 in exercise 4.2 is idempotent: In fact, this operator

is called a Young projection operator, as we will discuss in the later section 5.

Definition 4.7 – Orthogonal and primitive idempotents:
Let A be an algebra over a field F, and let {ei}k1 := {e1, e2, . . . , ek} be a subset of A. If

e2
i = ei ∀ei ∈ {ei}k1 (4.28a)

eiej = δij ∀ei, ej ∈ {ei}k1 , (4.28b)

then the set {ei}k1 is said to form a set of orthogonal idempotents of A.

Let e ∈ A be an idempotent element. We say that e is primitive if there exist no two orthogonal
idempotents e1, e2 ∈ A such that e = e1 + e2.

Theorem 4.3 – Primitive idempotents generate irreducible ideals:
Let A be an algebra over a field F and let e ∈ A be an idempotent element. Then

1. Ae is a left ideal of A,

2. e is primitive if and only if Ae is irreducible.
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Before proving this theorem, let us pause and recap:

Note 4.3: Representations of a group and its group algebra II

In Note 4.1, we have already highlighted several parallels between the representations of a
group G and its group algebra F[G]; let us draw attention to even more parallels:

In section 3.2, we motivated that (on the level of the representations of a group) it is sufficient
to study only the irreducible representations of a group. Furthermore, we found that the (left)
regular representation of G (c.f. Definition 3.2) can be written as a direct sum containing all
irreducible representations of G (c.f. c.f. Theorem 3.2).

On the level of the group algebra, the object corresponding to the (left) regular representation
of the group G is the (left) regular F[G]-module (c.f. Definition 4.3). However, we found that
the (left) regular F[G]-module and the group algebra F[G] itself define the exact same algebraic
object. Therefore, if we wish to study the (left) regular representation on the level of the
group, the corresponding object on the level of the group algebra is the algebra F[G] itself.

Hence, an irreducible representation of a group G (on the level of a group) corresponds to an
irreducible module of the algebra F[G] (on the level of the group algebra). In Definition 4.5,
it was stated that each irreducible submodule of an algebra corresponds to minimal ideal of
the algebra, and Theorem 4.3 ensures us that each minimal ideal is generated by a primitive
idempotent element of the algebra. Thus, if we want to study the irreducible representations
of the group G, it suffices to study the primitive idempotents in F[G] on the level of the group
algebra.

With these considerations, let us expand Table 1:

Representations of a group and its group algebra

representation of G representation of F[G]

representation (homomorphism) ϕG F[G]-module

(left) regular representation of G F[G]

irreducible representations of G primitive idempotents in F[G]

Table 2: Parallels between the representation theory of a group and the representation theory
of its group algebra (expanded from Table 1).

Proof of Theorem 4.3. Part 1 (i.e. proving that Ae is a left ideal of A) is simple and thus left as
an exercise to the reader.

Part 2: We will provide a proof by contrapositive of eiher direction of the if an only if (⇔) statement:

⇐) Suppose that e is not primitive, that is e = e1 + e2 for two orthogonal idempotents e1, e2 ∈ A.
Notice that an arbitrary element in Ae is of the form ae for some a ∈ A. Since e = e1 + e2 by
our initial assumption, we have that

ae = a(e1 + e2) = ae1 + ae2 ∈ Ae1 +Ae2 (4.29)

(where we used the distributivity property of the multiplication defined on the algebra).
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Eq. (4.29), therefore, tells us that Ae ⊆ Ae1 +Ae2. On the other hand, notice that

e1 = e1 + 0 = e1 + e1e2 = e2
1 + e1e2 = e1 (e1 + e2)︸ ︷︷ ︸

=e

= e1e , (4.30a)

and similiarly

e2 = e2(e2 + e1) = e2e . (4.30b)

Therefore for an arbitrary element ae1 + be2 ∈ Ae1 +Ae2 (with a, b ∈ A), we have that

ae1 + be2 = ae1e+ be2e = (ae1 + be2)︸ ︷︷ ︸
∈A

e ∈ Ae (4.31)

(where ae1 +be2 since a, b, e1, e2 ∈ A and A is closed under addition and multiplication). From
eq. (4.31), we now also know that Ae1 +Ae2 ⊆ Ae, finally implying that Ae = Ae1 +Ae2.

It remains to show that Ae1∩Ae2 = {0} to obtain the desired result: Firstly, notice that e1 ∈
Aei for i = 1, 2, such that both Ae1 and Ae2 are nonempty and nonzero. Let x ∈ Ae1 ∩Ae2.
Since, in particular, x ∈ Ae1, there exists a1 ∈ A such that x = a1e1. Then,

x = a1e1 = a1e
2
1 = (a1e1)︸ ︷︷ ︸

x

e1 = xe1 . (4.32a)

Similarly, since also x ∈ Ae2, there exists a2 ∈ A such that x = a2e2, and we once again have
that

x = a2e2 = (a2e2)e2 = xe2 . (4.32b)

Substituting the expression for x in (4.32b) into eq. (4.32a) gives

x = xe1 = (xe2)e1 = x (e2e1)︸ ︷︷ ︸
=0

= 0 , (4.33)

since the two idempotents e1 and e2 are assumed to be orthogonal. This shows that Ae1 ∩
Ae2 = {0}, yielding that Ae = Ae1⊕Ae2. Hence, Ae can be decomposed into the direct sum
of two nonzero submodules, implying that Ae is reducible.

⇒) Suppose now that Ae is reducible, that is to say there exist two nonempty, nonzero submodules
I1 and I2 of Ae such that Ae = I1 ⊕I2; note that I1 and I2 are ideals of A by virtue of
being submodules of the ideal Ae. Since e ∈ Ae = I1 ⊕I2, there exist x1 ∈ I1 and x2 ∈ I2

such that e = x1 +x2. It remains to show that x1 and x2 are orthogonal, nonzero idempotents:

• Suppose that x1 = 0. Then e = x1 + x2 = x2 ∈ I2, implying that Ae = Ax2 ⊆ I2 since
I2 is a left ideal. In other words,

Ae = I1 ⊕I2 ⊆ I2 ⇒ I1 = {0} , (4.34)

contadicting the initial assumption that I1 is nonzero. Hence, x1 6= 0. One may similarly
show that also x2 6= 0.

• Since x1 ∈ I1, we, in particular, have that x1 ∈ Ae, and therefore x1 = x1e (this can be
shown using the same method as in eq. (4.32)). Consider the quantity (x1 − 1)x1,

(1− x1)x1 = x1 − x2
1 = x1e− x2

1 = x1(x1 + x2)− x2
1 = x2

1 + x1x2 − x2
1 = x1x2

⇒ (1− x1)x1 = x1x2 . (4.35)
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Since x1 ∈ I1 and I1 is an ideal, the left-hand side of (4.35) lies in I1, (1−x1)x1 ∈ I1.
Similarly, since x2 ∈ I2 and I2 is an ideal as well, the right-hand side of eq. (4.35) lies
in I2, x1x2 ∈ I2. Thus, both sides of eq. (4.35) must lie in the intersection of the two
ideals,

(1− x1)x1 ∈ I1 ∩I2 and x1x2 ∈ I1 ∩I2 . (4.36)

However, since I1 ∩I2 = {0} (otherwise the statement Ae = I1 ⊕I2 would not make
sense), it follows that

(1− x1)x1 = x1 − x2
1 = 0 ⇒ x1 = x2

1 (4.37a)

x1x2 = 0 . (4.37b)

Repeating this argument with x1 and x2 interchanged, it can be shown that also x2 = x2
2

and x2x1. Hence, x1 and x2 are orthogonal idempotents, showing that e = x1 +x2 is not
primitive.

Since

Part ⇐): (e is not primitive ⇒ Ae is reducible) ⇐⇒ (e is primitive ⇐ Ae is irreducible)

and

Part ⇒): (Ae is reducible ⇒ e is not primitive) ⇐⇒ (e is primitive ⇒ Ae is irreducible) ,

this concludes the proof.
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5 Irreducible representations of Sn and C[Sn]

Let us now apply what we have learnt so far to the symmetric group Sn; in this section, we will
closely follow the treatments of the topic given in [4, 9]. Another useful reference are the lecture
notes by Keppeler [10] accompanying the course Group Representations in Physics held at the
University of Tübingen in the winter semester 2017-18.

Let G be a group and let x be a particular element of the group. We define the conjugacy class of
x, denoted by xG to be the set

xG :=
{

g ∈ G
∣∣g = hxh−1 for some h ∈ G

}
(5.1)

For the symmetric group Sn, it can be shown that every element in a particular conjugacy class have
the same cycle structure (c.f. Definition 1.2). Conversely, the if two elements of Sn have the same
cycle structure, they are in the same conjugacy class — these statements are proven in Exercise 5.1.

Exercise 5.1: Show that two elements ρ, φ of Sn are in the same conjugacy class if and
only if they have the same cycle structure.

Solution: We will prove the two directions of the if and only if statement separately:

⇒) Take any pair of letters (i, j) that are adjacent in a particular cycle in a permutation
ρ ∈ Sn; in other words, there exists a cycle (. . . ij . . .) in ρ such that ρ(i) = j. Now,
consider the permutation then φ := σρσ−1 and act it on the element σ(i),

(σρσ−1)(σ(i)) = (σρ)(σ−1σ(i)) = σρ(i) = σ(j) . (5.2)

Thus, for every pair of elements (i, j) that are adjacent in a particular cycle ρ, there
exists a pair of elements (σ(i), σ(j)) that are adjacent in a particular cycle of φ = σρσ−1.
Hence, ρ and σ must have the same cycle structure.

⇐) Consider two permutations ρ, φ ∈ Sn that have the same cycle structure,

ρ = (i11i12 . . . i1r)(i21i22 . . . i2s) . . . (ik1ik2 . . . ikt) (5.3a)

φ = (j11j12 . . . j1r)(j21j22 . . . j2s) . . . (jk1jk2 . . . jkt) . (5.3b)

for letters iab, jcd ∈ {1, 2, . . . n. Define the permutation σ as

σ : imn 7→ jmn (5.4)

for every imn. Then, one the one hand

ρ(imn) = im(n+1) (5.5)

for every imn by the definition of ρ,a but on the other hand

σ−1φσ(imn) = σ−1φ(jmn) = σ−1(jm(n+1)) = im(n+1) (5.6)

for every imn, where we used the fact that φ(jmn) = jm(n+1) by definition of φ for every
jmn (c.f. footnote a). Hence, it follows that

ρ = σ−1φσ ⇐⇒ φ = σρσ , (5.7)

ρ and σ are in the same conjugacy class of Sn.

aIf the mth cycle of ρ has length n, that is imn is in the last position of said cycle, we understand that
im(n+1) = im1.
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Definition 5.1 – Partition of a natural number:
Let n ∈ N, and let λ = (λ1, λ2, . . . , λk) be such that

k∑

i=1

λi = n , and λi ≥ λi+1 for every i = 1, 2, . . . , k − 1 . (5.8)

Then, λ is called a partition of n, and we write λ ` n.

It is readily seen that the cycle structure of any permutation ρ ∈ Sn gives a partition of n, and
conversely, for any partition λ of n, there exists a cycle in Sn with cycle structure λ. Therefore, the
conjugacy classes of Sn correspond uniquely to the partitions of the number n. There is a graphical
tool to help keep track of these partitions:

Definition 5.2 – Young diagram:
Let n ∈ N and let λ = (λ1, λ2, . . . , λk) be a partition of n. The Young diagram Yλ corresponding

to λ is a planar arrangement of n boxes that are left-aligned and top-aligned, such that the ith row
of Yλ contains exactly λi boxes. Furthermore, we say that Yλ has size n.

Example 5.1:

The Young diagrams corresponding to the various cycle structures of permutations in S4 (i.e.
partitions of 4) are

(1, 1, 1, 1) (2, 1, 1) (2, 2) (3, 1) (4)

(5.9)

4 = 1 + 1 + 1 + 1 4 = 2 + 1 + 1 4 = 2 + 2 4 = 3 + 1 4 = 4

It turns out that the partitions of n have a close connection with the irreducible representations of
Sn.

5.1 Equivalent representations & Schur’s Lemma

Recall the definition of a representation, in particular an irreducible representation, from section 3.

Definition 5.3 – Equivalent representations:
Let G be a group and V1 and V2 carry two irreducible representations ϕ1 and ϕ2, respectively, of G,

ϕ1 : G→ End(V1) , and ϕ2 : G→ End(V2) . (5.10)

We say that the representations ϕ1 and ϕ2 are equivalent, if there exists an isomorphism I12 : V2 →
V1 such that

I12 ◦ ϕ2(g) ◦ I−1
12 = ϕ1(g) for every g ∈ G , (5.11)

where ◦ denotes the composition of linear maps. In the literature, the operator (or map) I12 is often
also referred to as an intertwining operator.
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!
Important: From Definition 5.3, it is clear that two representations ϕ1 and ϕ2 of
a group G (and thus also of the group algebra F[G]) if they have the same dimension
— if the two representations have different dimension, we cannot possibly find an

isomorphism between the corresponding carrier spaces. However, the converse is not true, that
is if two representations of a group have the same dimension, it is not guaranteed
that they are equivalent.

Now, we are finally in a position to see how the supposed detour via partitions of natural numbers
connects to the representation theory of Sn:

Theorem 5.1 – Conjugacy classes give inequivalent irreducible representations:
Let G be a finite group. Then the conjugacy classes of G classify all inequivalent irreducible repre-
sentations of G.

In particular, if G is the symmetric group Sn, then the Young diagrams of size n classify all inequiv-
alent irreducible representations of Sn.

This theorem can easiest be proven using group characters (see, e.g. [11]), which are a powerful
tool of group representation theory. However, since in this course we will not be introducing group
characters, we leave Theorem 5.1 without proof, but encourage the interested reader to find out
more about group characters own his/her own. Alternatively, for the group Sn, one can may also
formulate a combinatorial proof as is done in [4].

Note 5.1: Number of inequivalent irreducible representations

Since any finite group G has a finite number of conjugacy classes (this is true since the
conjucacy classes partition the group, or can also be seen using Lagrange’s Theorem), a finite
group can only have a finite number of inequivalent irreducible representations!

In particular, the number of inequivalent irreducible representations of Sn is given by p(n),
where p is called the partition function, counting the number of partitions of n. However,
there is, as of yet, no exact closed form formula for p(n) — finding such a formula is one of
the many outstanding problems in number theory.

Example 5.2:

In Example 5.1, we have seen that there are five Young diagrams of size 4. Therefore, we
know the group S4 has five inequivalent irreducible representations, one corresponding to
each Young diagram.

An important result with regards to equivalent representations that we will need at various places
throughout this course is Schur’s Lemma:

Lemma 5.1 – Schur’s Lemma:
Let M1 and M2 be two irreducible F[G]-modules of a group G. Let I21 : M2 → M1 be a G-
homomorphism. Then

1. I12 is a G-isomorphism if and only if V1 and V2 carry equivalent representations of G, or
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2. I12 is the zero map.

Recall that φ being a G-homomorphism means that it satisfies φ(gm2) = gφ(m2) for every g ∈ G
and every m2 ∈ M2. By the way, if φ is a G-homomorphism, it is immediately a F[G]-homomorphism
by linearity, since G acts as a “basis” of F[G].

Before we can prove this lemma, we require the following intermediate result:

Proposition 5.1 – Image and kernel of a group homomorphism:
LetM1,M2 be two F[G]-modules for a group G and let φ :M2 →M1 be a G-homomorphism. Then

i. ker(φ) is a F[G]-submodule of M2 and

ii. im(φ) is a F[G]-submodule of M1.

Proof of Proposition 5.1. i.) Since φ is linear, we know that ker(φ) is a subspace of M2. Let
m ∈ ker(φ) be arbitrary; then, we have that for all g ∈ G

φ(gm)
φ is G-hom.

========= gφ(m)
m∈ker(φ)

======= 0 . (5.12)

Hence, gm ∈ ker(φ), showing that the action of G leaves ker(φ) invariant. Therefore, ker(φ) is a
F[G]-submodule of M2.

ii.) By linearity of φ, im(φ) is a subspace of M1. Let m′ ∈ im(φ) be arbitrary. Then, there exists
m ∈M2 such that m′ = φ(m). For every g ∈ G, we have that

gm′ = gφ(m)
φ is G-hom.

========= φ(gm) ∈ im(φ) , (5.13)

showing that im(φ) is a F[G]-submodule of M1.

We are now ready to prove Schur’s lemma (following the proof given in [4]):

Proof of Schur’s Lemma 5.1. Since M2 is an irreducible F[G]-module, its only submodules are
{0} and M2 itself. From Proposition 5.1, we know that ker(I21) is an F[G]-submodule of M2, so
we must have that

ker(I21) = {0} or ker(I21) =M2 . (5.14)

By the same reasoning, we have that

im(I21) = {0} or im(I21) =M1 , (5.15)

leaving us with four cases:

• If either ker(I21) =M2 or im(I21) = {0} (three cases), then I21 is the zero map.

• If ker(I21) = {0} and im(I21) =M1 (remaining case), then I21 is a G-isomorphism,

concluding the proof of the lemma.

Note that Lemma 5.1 was stated on the level of the group algebra. Equivalently, on the level of the
group, Schur’s Lemma becomes:
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Lemma 5.2 – Schur’s Lemma (for group representations):
Let ϕ1 : G → End(V1) and ϕ2 : G → End(V2) be two irreducible representations of a group G, and
let T : V2 → V1 be a map satisfying

T ◦ ϕ2(g) = ϕ1(g) ◦ T (5.16)

for every g ∈ G. Then

1. T is invertible or

2. T is the zero map.

5.2 Young projection operators & irreducible representations of Sn

Young diagrams provide a graphical tool to count the inequivalent irreducible representations of Sn.
Granted, Young diagrams are easier to geep track of than partitions of n, but if the story ended here
then Young diagrams would only be of little use to us. Luckily for us, this is not the case: Filling
the boxes of a Young diagram with numbers in n := {1, 2, . . . , n} gives us not only a count of all
irreducible representations of Sn, but, thanks to an algorithm developed by Alfred Young [12], gives
immediate access to the primitive idempotents generating the minimal ideals of C[Sn]. Exactly how
this happens will be the topic of the present section.

Definition 5.4 – Young tableaux:
Let Y be a particular Young diagram of size n. A Young tableau of shape Y is the diagram Y
where each box is filled with a unique number in n = {1, 2, . . . , n} such that the numbers increase
from left to right and from top to bottom in each row and column.

We will denote a particular Young tableau with an upper case Greek letter, usually Θ of Φ, and we
will denote the Young diagram underlying Θ by YΘ. Furthermore, the set of all Young tableaux of
size n (i.e. consisting of n boxes) will be denoted by Yn.

Example 5.3:

The Young tableaux in Y4, together with the Young diagram from which they stem, are given
by:

1 2 3 4
1 3 4

2

1 2 4

3

1 2 3

4

1 3

2 4

1 2

3 4

1 4

2

3

1 3

2

4

1 2

3

4

1

2

3

4

In the literature, the presently defined Young tableau is often also referred to as a standard Young
tableau, where the adjective “standard” refers to the fact that each box is filled with a unique
integer in n, there may not be any repetitions or numbers missing from n. However, unless we want
to emphasize the standardness of the Young tableau, we will simply say Young tableau when we
mean a standard Young tableau.
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Definition 5.5 – (Anti-)symmetrizers of Young tableaux:
Let Θ ∈ N be a Young tableau with rows R1,R2, . . .Rs and columns C1, C2, . . . Ct. Then, we define
the product of symmetrizers corresponding to Θ, SΘ, to be

SΘ := SR1SR2 · · ·SRs . (5.17a)

Similarly, we define the the product of antisymmetrizers corresponding to Θ, AΘ, to be

AΘ := AC1SC2 · · ·SCt . (5.17b)

Since, by the standardness of Young tableaux, each integer of n occurs exactly once in Θ, each of
the symmetrizers SRi in (5.17a) are disjoint, and the same holds true for the antisymmetrizers
ACj in (5.17b). Therefore, we may also refer to SΘ and AΘ merely as the sets of symmetrizers,
respectively, antisymmetrizers corresponding to Θ.

Note 5.2: (Anti-)symmetrizers of Young tableaux in birdtrack notation

Let Θ ∈ Yn be a particular Young tableau. As was stated in Definition 5.5, the symmetrizers
appearing the product SΘ are all disjoint, in that no two symmetrizers in SΘ have common
index legs. Therefore, in birdtrack notation, we may draw all of the symmetrizers in SΘ

underneath each other, yielding SΘ to be a tower of symmetrizers. The same also may be
done with the antisymmetrizers in AΘ.
For example, the Young tableau

1 3 4 6
2 7 8
5
9

(5.18a)

has corresponding sets of symmetrizers and antisymmetrizers

SΘ = and AΘ = . (5.18b)

The sets of symmetrizers and antisymmetrizers corresponding to a particular Young tableau Θ ∈
Yn can be used to create an idempotent operator of C[Sn]. It turns out that the idempotents
constructed from Young tableaux, also referred to as Young projection operators, give all linearly
independent idempotents in C[Sn]. Hence, the Young tableaux in Yn count, and give direct access to,
all irreducible representations of the symmetric group Sn! This is the core message of the following
theorem:

Theorem 5.2 – Young projection operators and irreps of Sn:
Let Θ,Φ ∈ Yn be two Young tableaux. We define the Young operator eΘ to be

eΘ := SΘAΘ . (5.19)

Then the following statments hold:
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1. The Young operators eΘ are quasi-idempotent for every Θ ∈ Yn; that is, there exists a nonzero
constant αΘ ∈ C such that

YΘ := αΘeΘ = αΘSΘAΘ (5.20)

is idempotent. The operator YΘ is referred to as the Young projection operator corresponding
to the tableau Θ.

2. The Young projection operators YΘ are primitive idempotents, thus generating the minimal
ideals of C[Sn].

3. For Θ,Φ ∈ Yn, the irreducible representations generated by YΘ and YΦ are equivalent if and
only if the tableaux Θ and Φ have the same shape.

We will delay the proof of Theorem 5.2 to section 5.2.3. For now, let us ponder on what this theorem
actually says: As already alluded to previously, Theorem 5.2 states that each Young tableau in Yn
gives rise to a primitive idempotent YΘ := αΘSΘAΘ of C[Sn], where αΘ ∈ C and αΘ 6= 0. Thus,
the Young tableaux of Yn give direct access to the irreducible representations of Sn.

Furthermore, from Theorem 5.1 we know that all inequivalent irreducible representations of Sn are
indexed by Young diagrams; part 3 of Theorem 5.2 confirms this by stating that two Young projec-
tors YΘ and YΦ corresponding to the Young tableaux Θ,Φ ∈ Yn generate equivalent representations
of Sn if and only if Θ and Φ have the same shape — i.e. if and only if Θ and Φ have the same
underlying Young diagram, YΘ = YΦ.

5.2.1 Structure of Young projection operators & vanishing operators

Let Θ ∈ Yn be a Young tableau. By definition, each number in n occurs exactly once in the tableau.
Therefore, each symmetrizer in SΘ has at most one leg in common with each antisymmetrizer in
AΘ.

Let c1 be the first row in Θ.Tautologically, the elements in c1 are in the first place in each row, and
hence the index lines in the Young projection operator YΘ exiting the topmost (first) antisymmetrizer
(corresponding to the column c1) enter the |c1| symmetrizers in the first place. Similarly, for ri being
the ith row in Θ, the index lines of YΘ exiting the ith antisymmetrizer enter the top |ci| symmetrizers
in the ith place.4 For example,

YΘ = −→ ρΘ σΘ , (5.21)

where the exact form of the permutations ρΘ and σΘ depend on the filling of the Young tableau
(i.e. the exact arrangement of numbers in Θ), while the lengths of the symmetrizers and antisym-
metrizers, as well as the way in which the index lines connect AΘ to SΘ depends only on the shape
YΘ of Θ.

A valid question to ask now is “Can a Young projection operator ever be zero”? To answer this
question, let us be more precise on what we mean for an operator two be zero. In particular, we
distinguish the following cases:

4Note that, if this ordering were not already naturally imposed on us, one could always reorder the index lines, as
one may factor any permutation out of a symmetrizer at no cost.
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Definition 5.6 – Identically and dimensionally zero operators:
Let O be an operator acting linearly on aspace V. We say that

1. O is identically zero if O = 0, the additive identity in End(V), and

2. O is dimensionally zero if ker(O) = V.

Note 5.3: Identically zero and dimensionally zero operators

Note that condition 1 of Definition 5.6 is stronger than condition 2 in that every identically
zero operator is dimensionally zero, but there may exist operators whose kernel is the entire
space, that are not themselves the additive identity in End(V).

As an example, consider the two operators defined as

S12A12 = =
1

4

(
+

)(
−

)

=
1

4

(
+ − −

)
= 0 (5.22a)

A12 = =
1

2

(
−

)
. (5.22b)

As we have just seen, the operator S12A12 is 0, and hence we say that S12A12 is identically
zero. On the other hand, A12 6= 0, but if we consider the action of A12 on V ⊗2 where
dim(V ) = N < 2, every element of V ⊗2 gets mapped to zero, such that ker(A12) = V ⊗2.
Hence, the operator A12 is dimensionally zero but not identically zero.

Notice that the nomenclature dimensionally zero is inspired by the fact that the space on
which the operator O acts is not large enough to support the action: As we have seen in
the example (5.22), A12 is only dimensionally zero if it acts on V ⊗2 with dim(V ) = N < 2.
If dim(V ) = N ≥ 2 then A12 is no longer dimensionally zero! In contrast, the operator
S12A12 = 0 on V ⊗2, and hence ker(S12A12) = V ⊗2, irrespective of the dimension of V .

With the considerations in Note 5.3, we can give an alternative definition of identically and dimen-
sionally zero operators in C[Sn]:

Definition 5.7 – Identically and dimensionally zero operators in C[Sn]:
Let O ∈ C[Sn]. Then, we can write O as

O =
∑

σ∈Sn

λσσ , λσ ∈ C for every σ ∈ Sn . (5.23)

We say that

1. O is identically zero if λσ = 0 for every σ ∈ Sn, and

2. O is dimensionally zero if ker(O) = V and there exists at least one σ ∈ Sn such that λσ 6= 0.
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5.2.2 Hook length formula

Something that has not been explicitly mentioned in this Theorem is how to find the constant
αΘ ∈ C \ {0} such that operator YΘ = αΘeΘ is idempotent. Luckily however, there exists an easy
formula utilizing the hook rule to compute αΘ:

Definition 5.8 – Hook rule & hook length:
Let Θ ∈ Yn be a particular Young tableau. Its hook length HΘ is computed using the following
hook rule:

Take the Young diagram underlying the tableau Θ, YΘ, and fill each box with the number of boxes
lying to the right and underneath it (i.e. the length of the hook whose corner is the cell in question),
e.g.

YΘ = −→
7 4 3 1

5 2 1

2

1

. (5.24)

The hook length of the tableau Θ is given by the product of all numbers appearing in the resulting
tableau; for the example given in eq. (5.24), we have that HΘ = 7 · 5 · 4 · 3 · 22 = 1680.

The hook length of a Young diagram is defined in an analogous way — one merely foregoes the
first step of “deleting the entries” as a Young diagram has no entries in its boxes to begin with.
Furthermore, from Definition 5.8, it immeadiately follows that two Young tableaux with the same
shape have the same hook lengths.

Theorem 5.3 – Number of Young tableaux of certain shape & normalization constant αΘ:
Let Y be a particular Young diagram of size n. Then, the number of Young tableaux with shape Y
is given by

n!

HY
. (5.25)

Let Θ ∈ Yn be a Young tableau, and denote the length of the ith row by ri, and the length of the
jth column by cj. Then, the normalization constant αΘ needed to render YΘ = αΘeΘ idempotent is
given by

αΘ =

∏
i ri! ·

∏
j cj !

HY
(5.26)

Theorem 5.3 will be left without proof, but a nice combinatorial proof can be found in [4].

Exercise 5.2: Write down all Young diagrams of size 6 (i.e. consisting of six boxes).
Compute the Hook length of each diagram. With this information, find the number of Young
tableaux of size 6, i.e. compute |Y6|.
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Solution: There are, in total, 11 Young diagrams of size 6, namely

, , , , ,

, , , , , .

(5.27)

The hook length of each diagram is calculated according to Definition 5.8, for example.

hook lengths−−−−−−−−→
5 3 1

3 1

1

−→ H = 5 · 3 · 1 · 3 · 1 · 1 = 45 (5.28a)

hook lengths−−−−−−−−→
4 3

3 2

2 1

−→ H = 4 · 3 · 3 · 2 · 2 · 1 = 144 . (5.28b)

Continuing in this fashion, we see that the Hook lengths of all diagrams in (5.27) are given
by

H = 6! = 720 , H = 144 , H = 72 ,

H = 80 , H = 72 , H = 45 , H = 144 ,

H = 144 , H = 80 , H = 144 , H = 6! = 720 .

(5.29)

Theorem 5.3 tells us that the number of Young tableaux corresponding to a particular Young
diagram Y (i.e. tableaux of shape Y) is given by n!

HY
, where n is the size of the diagram Y.

Hence, to find the number of all Young tableaux of size 6, we have to form a sum of the Hook
lengths over the Young diagrams of size 6,

|Y6| =
∑

Y size 6

6!

HY
. (5.30a)

Hence, we find that

|Y6| =
6!

6!
+

6!

144
+

6!

48
+

6!

80
+

6!

48
+

6!

45
+

6!

144
+

6!

144
+

6!

80
+

6!

144
+

6!

6!
= 1 + 5 + 10 + 9 + 10 + 16 + 5 + 5 + 9 + 5 + 1

= 76 . (5.30b)

Hence, there are 76 Young tableaux of size 6.

Notice that, if you were only interested in the number of Young tableaux of size n, going this route
via the Young diagrams and the hook lengths is not the easiest/quickest way to go, since there is
not closed form exact formula for the number of Young diagrams of a certain size (recall Note 5.1).
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Luckily however, there exists a closed form formula for the number of Young tableaux, but that is
a story for another day....

Exercise 5.3: Compute all Young projection operators of C[S3] (acting on V ⊗3).

Solution: It is readily seen that the Young diagrams of size 3 are given by

, and , (5.31a)

with corresponding hook lengths

H = 3! , H = 3 and H = 3! . (5.31b)

From Theorem 5.3 we know that the first and last Young diagram in eq. (5.31a) give rise
to one Young tableau each, while the middle Young diagram produces two Young tableaux.
These tableaux are

1 2 3
1 2

3

1 3

2

1

2

3

. (5.32)

Using the definition of the Young operators eΘ = SΘAΘ given in Theorem 5.2, we find, for
every Θ ∈ Y3,

e 1 2 3 = , e 1 2
3

= , e 1 3
2

= , e 1
2
3

= . (5.33)

To turn each quasi-idempotent eΘ into an idempotent YΘ = αΘeΘ, we compute the normal-
ization constants αΘ for each Θ ∈ Y3 using Theorem 5.3:

α 1 2 3 =
3!

H
= 1 , α 1 2

3

= α 1 3
2

=
2!2!

H
=

4

3
and α 1

2
3

=
3!

H
= 1 . (5.34)

Therefore, the Young projection operators YΘ = αΘeΘ for every Θ ∈ Y3 are given by

Y 1 2 3 = , Y 1 2
3

=
4

3
, Y 1 3

2

=
4

3
, Y 1

2
3

= . (5.35)

5.2.3 Proving that Young projecection operators generate minimal idempotents of Sn
(Theorem 5.2)

This proof follows [10], as well as [13]:
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Proof of Theorem 5.2. Part 1: Consider the product

eΘeΘ = SΘAΘSΘAΘ (5.36)

Notice that the product AΘSΘ is an element of the group algebra C[Sn] and can therefore be written
as a sum

AΘSΘ =
∑

σ∈Sn

aσσ ; (5.37)

the constant aσ ∈ C is of the form crσ, where c ∈ C is a σ-independent constant depending on the
lengths of the symmtrizers in SΘ and the antisymmetrizer in AΘ, and rσ = ±1 takes care of the
relative signs of the permutations σ in the sum. Hence, we have that

eΘeΘ = SΘ

(∑

σ∈Sn

aσσ

)
AΘ = c

∑

σ∈Sn

rσ (SΘσAΘ) (5.38)

For each permutation σ ∈ Sn, the product SΘσAΘ is equal to

• SΘAΘ, if the permutation σ only exchanges lines attached to the symmetrizers or swaps (via
transpositions) lines attached to the same antisymmetrizer in a way that cancels the relative
sign rσ,

• −SΘAΘ, if σ swaps (via transposition) lines within symmetrizers or antisymmetrizers that,
together withe the relative sign rσ, produces a factor −1,

• 0 if it connects more than two legs of a symmetrizer to the same antisymmetrizer.

Therefore, the product eΘeΘ becomes

eΘeΘ = c
∑

σ∈Sn

(bσSΘAΘ) , with bσ =





1

−1

0

(5.39a)

yielding

eΘeΘ = SΘAΘSΘAΘ = cη′
∑

σ∈Sn

(SΘAΘ) = ηeΘ (5.39b)

for some natural number η. It remains to show that η 6= 0 to obtain eΘeΘ = η′eΘ for 0 6= η′ ∈ C.
However, we will not prove this here, but rather rely on Theorem 5.3 (without proof!) to give us
the exact value of η in terms of the hook length of Θ, which clearly yields η 6= 0. (A proof, however,
can be found in [13].

Part 2: Let us show that YΘ is primitive by contradiction: Suppose there exist two orthogonal
idempotents e1, e2 such that YΘ = e1 + e2; we wish to show that either e1 = 0 or e2 = 0. Then, we
have that

e1 = e2
1 + e1e2 = e1(e1 + e2) = e1YΘ = (e2

1 + e2e1)YΘ = (e1 + e2)e1YΘ = YΘe1YΘ . (5.40)

In the proof of part 1, we reasoned that

YΘρYΘ = λρYΘYΘ = λρYΘ (5.41)
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for every ρ ∈ C[Sn] and some (possibly zero) λ ∈ C. This is in particular true for ρ = e1, so we
must have that

e1 = λYΘ for some λ ∈ C . (5.42)

Since both e1 and YΘ are idempotent, it follows that

λYΘ = e1 = e1e1 = λ2YΘYΘ = λ2YΘ ⇒ λ2 = λ . (5.43)

This implies that λ = 0 or λ = 1. If λ = 0, then e1 = 0, and hence

YΘ = e1 + e2 = λYΘ + e2 = e2 , (5.44a)

and if λ = 1, we have that

YΘ = e1 + e2 = λYΘ + e2 = YΘ + e2 ⇒ e2 = 0 . (5.44b)

In both cases, we find that YΘ cannot be written as a sum of two orthogonal idempotents, contra-
dicting our original assumption. Hence, YΘ must be primitive.

Part 3:

⇒) Let Θ,Φ ∈ Yn be two tableaux with the same shape, that is YΘ = YΦ. Then, there exists a
permutation in ρ ∈ Sn that, when acted upon Θ, yields Φ. Therefore,

ρYΘρ
−1 = YΦ ⇔ ρYΘ = YΦρ . (5.45)

Hence, ρ acts as an intertwining operator, and it follows that YΘ and YΦ generate equivalent
ideals.

⇐) Suppose Θ,Φ ∈ Yn are two tableaux with different shapes, that is YΘ 6= YΦ, and consider
the product

YΘρYΦ (5.46)

for some ρ ∈ C[Sn]. Let cΘ
i denote the ith column in Θ and cΦ

i denote the ith column in Φ.
Since YΘ 6= YΦ, there exists an j such that cΘ

j > cΦ
j , e.g.

YΘ = , YΦ = ⇒ cΘ
2 > cΦ

2 . (5.47)

Then, at least two lines of the same antisymmetrizer in AΘ have to be connected to the
same symmetrizer in SΦ. However, from Proposition 2.1, we know that such a combination of
symmetrizers and antisymmetrizers yields the operator zero, and hence YΘρYΦ = 0. By Schur’s
Lemma 5.1, it then follows that YΘ and YΦ generate inequivalent irreducible representations
of Sn.
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6 Representation theory of the special unitary group SU(N)

6.1 Schur-Weyl duality — an overview

The Schur-Weyl duality is a powerful tool in representation theory that allows one to put the
irreducible representations of the general linear group GL(N) (c.f. Definition 6.1) a vector space
V ⊗n with dimV = N into 1-to1 correspondence to the irreducible representations of the group Sn
on V ⊗n. In particular, it turns out that V ⊗n decomposes as

V ⊗n =
⊕

λ

Vλ ⊗ Sλ , λ ` n , (6.1)

where Vλ are the irreducible submodules of GL(N) on V ⊗n, and Sλ are the so-called Specht modules,
which describe the irreducible representations of Sn (c.f., e.g., [4] and other standard textbooks).
The underlying reason for this is that the actions of GL(N) and Sn on V ⊗n commute and, even
more, the elements of GL(N) are a complete set of actions that commute with those of Sn and vice
versa (c.f. section 6.3).

In its full generality, the Schur-Weyl duality is a fascinating topic in algebra and is excellently
treated in a book by Goodman and Wallach entitled Symmetry, Representations and Invariants [14].
Furthermore, I highly recommend the online blog Annoying Precision [15], in particular the articles
Four flavors of Schur-Weyl duality and The double commutant theorem.

In these lectures, we will go through the main points of the Schur-Weyl duality, paying particular
attention to the role the Young projection operators play in the representation theory of GL(N).
The treatment given in this section is inspired by the lecture notes accompanying the course Group
Representations in Physics (held by S. Keppeler in the winter semester 2017-18 in Tübingen, [10]).

• We will begin be defining the general linear group GL(N) in section 6.2.

• We will then define what we mean by an invariant of GL(N), and show that these invariants are
given by the elements of Sn, section 6.3. In fact, Sn spans the algebra of invariants of GL(N).
An important ingredient to seeing this the double commutant theorem, c.f. section 6.3.1.

• Let v ∈ V ⊗n be arbitrary. We will show that, for every Θ ∈ Yn, the subspace

YΘv (6.2)

is invariant and irreducible under the action of Sn. Hence, YΘv is an irreducible C[Sn]-
submodule and therefore corresponds to an irreducible representation of Sn on V ⊗n, c.f.
section 6.4.

• Thereafter, we will show that, for every Θ ∈ Yn, the subspace

YΘV
⊗n (6.3)

is invariant and irreducible under the action of GL(N) — the main ingredient to showing
this is the fact that Sn spans the algebra of invariants of GL(N) on V ⊗n. This shows that
the Young projection operators YΘ generate the irreducible ideals (and hence the irreducible
representations) of GL(N) on V ⊗n, section 6.5.

• Finally, in section 6.6, we will argue that the irreducible representations of GL(N) on V ⊗n

are precicely those of the special unitary group SU(N) on V ⊗n. In other words, the Young
projection operators on V ⊗n give rise to all the irreducible ideals of SU(N) on V ⊗n.

• We will end with an example, constructing the irreducible representations of GL(N) (hence
also SU(N)) and Sn on V ⊗n for n = N = 3, in section 6.7.
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6.2 Basic definitions

Definition 6.1 – General linear group GL(V ) (or GL(N)):
Let V be a vector space of dimension N (N not necessarily finite). Consider the subset of End(V )
of all invertible endomorphisms of V . This set forms a group called the general linear group on V ,
and we denote this group by GL(V ) or sometimes only GL(N) if the vector space V is clear and we
want to make the dimension of V explicit.

Exercise 6.1: Show that GL(V ) is indeed a group.

Solution: By the definition of GL(V ), it contains all invertible endomorphisms on V .
Since the identity endomorphism on V is (trivially) invertible, it lies in GL(V ). Furthermore,
by the very definition of GL(V ), g−1 ∈ GL(V ) for every g ∈ GL(V ). Lastly, let g, h ∈ GL(V )
and consider the product g ◦ h; it remains to show that this product lies in GL(V ): Since
g, h ∈ GL(V ) ⊂ End(V ), their composition g ◦ h lies in EndV . To show that g ◦ h is also an
element of GL(V ) we need to show that it has an inverse. By definition of GL(V ), g−1, h−1 ∈
GL(V ) since g, h ∈ GL(V ). However,

(g ◦ h) ◦ (h−1 ◦ g−1) = 1 = (h−1 ◦ g−1) ◦ (g ◦ h) , (6.4)

showing that (h−1 ◦ g−1) is the inverse of g ◦ h and hence g ◦ h lies in GL(V ).

Example 6.1:

For a finite dimensional vector space V , dim(V ) = N < ∞, a vector v ∈ V has components
vi with i ∈ {1, 2, . . . , N}. We can write an element g ∈ GL(V ) in index notation as gji acting
on vi as

gjiv
i := wj , w ∈ V . (6.5)

Then, we may interpret gji as an N ×N matrix.

Definition 6.2 – Defining/fundamental representation of GL(V ):
Let GL(V ) be the general linear group acting on a vector space V . We can define a representation
γ as

γ : GL(V ) → End(V )

γ(g) 7→ g
(6.6)

since there is a well-defined action of GL(V ) on V . The representation γ is referred to as the
defining representation of GL(V ) and has dimension dimV = N .

6.3 Invariants of GL(N)

Through the defining representation γ of GL(V ) on V , we can define a representation of GL(V ) on
V ⊗n via

g (v1 ⊗ v2 ⊗ · · · ⊗ vn) := γ(g)v1 ⊗ γ(g)v2 ⊗ · · · ⊗ γ(g)vn = gv1 ⊗ gv2 ⊗ · · · ⊗ gvn (6.7a)
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for every v1 ⊗ v2 ⊗ · · · ⊗ vn ∈ V ⊗n. Recall that we defined the action of ρ ∈ Sn on a vector
v1 ⊗ v2 ⊗ · · · ⊗ vn ∈ V ⊗n as

ρ (v1 ⊗ v2 ⊗ · · · ⊗ vn) = vρ−1(1) ⊗ vρ−1(2) ⊗ · · · ⊗ vρ−1(n) . (6.7b)

It is readily seen that the actions of Sn and GL(N) (for dim(V ) = N) commute on the tensor
product space V ⊗n. However, it is not obvious that the elements of Sn are the only elements that
commute with GL(N) and vice versa — showing this will requires the double commutant theorem,
c.f. the following section 6.3.1.

6.3.1 Two kinds of double commutant theorems

Definition 6.3 – Commutant:
Let A be a set of operators on a vector space V , that is A ⊂ End(V ). We define the commutant of
A to be the set of all endomorphisms on V that commute with all of the elements in A,

Comm(A) = A′ := {s ∈ End(V )|sb = bs , b ∈ A} . (6.8)

We will use both notations, Comm(A) and A′, to denote the commutant of A.

If A ⊂ End(V ) for some vector space V , we may not only consider the commutant Comm(A), but
also the double commutant Comm(Comm(A)) = A′′. Clearly, by the definition of the commutant,
all elements of A commute with the elements of Comm(A), such that A ⊂ A′′. However, there may
be endomorphisms that commute with the elements of A′ that are not in A. In that sense, the
double commutant acts like a closure operator of A:5

End(V ) End(V ) End(V )

A AA′

A′′

Comm Comm

Figure 1: The double commutant of an algebra A contains A — it acts as a closure operator on A.

Theorem 6.1 – Double commutant theorem:
Let A ⊂ End (V ) be an associative algebra with identity 1V , for some vector space V over a field F.
Set B = Comm(A). If V is a completely reducible A-module, then

Comm(B) = A , (6.9)

i.e. A is its own double commutant.

The proof of this theorem follows the treatment given in [14]

5In fact, the double commutant also satisfies several other useful properties of closure operators, but we will not
go into this any further here.
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Proof of Theorem 6.1. Let A and B be as described in the theorem. From Figure 1, it is clear that
A ⊂ Comm(B), so we merely need to show that also Comm(B) ⊂ A. Our strategy to accomplish
this will be to pick an arbitrary T ∈ Comm(B) and show that T ∈ A as well:

First, notice that since V is a vector space of dimension dim(V ) = N , one may find a basis
{v1, v2, . . . vN}, and a general vector v ∈ V can be written as

v =

N∑

i=1

λivi , λi ∈ F . (6.10a)

Since the vi form a basis, they are linearly independent, and the spaces Fvi := span(vi) only intersect
at 0,

Fvi ∩ Fvj = {0} for every i 6= j . (6.10b)

Combining eqns. (6.10a) and (6.10b) therefore allows us to write V as a direct sum of the spans of
the basis vectors,

V =
N⊕

i=1

Fvi . (6.11)

Clearly, the dimension of the space Fvi is 1 for each basis vector i, so it can only contain one
proper subspace, namely {0}. Thus, Fvi is an irreducible subspace of V . Hence, V is a (completely)
reducible A-module, implying that we can find an A-invariant proper subspace of V :

Take the vector w := v1 ⊕ v2 ⊕ . . . ⊕ vN ∈ V , and consider the module Aw; clearly, this is an
invariant A-submodule of V . Then, by Maschke’s Theorem 3.1, we can decompose V as

V = Aw ⊕ U , (6.12)

where U is also an invariant A-submodule of V . Let us define a projection P : V → Aw.

Let T be a particular element in Comm(B),

T ∈ Comm(B) = Comm
(
Comm(A)

)
. (6.13)

For a general vector v ∈ V , due to eq. (6.12), we have that

v = bw + u , with b ∈ A and u ∈ U . (6.14)

If a ∈ A is arbitrary, then

P
(
a(v)

)
= P (abw + au) = abw and a

(
P (v)

)
= a

(
P (bw + u)

)
= a(bw) = abw ; (6.15)

thus, the projection P commutes with every a ∈ A, implying that P ∈ Comm(A). Since we fixed
T ∈ Comm

(
Comm(A)

)
, it follows that T commutes with P on V . Therefore, we have that

P
(
T (v1 ⊕ v2 ⊕ . . .⊕ vN )︸ ︷︷ ︸
∈V since T∈End(V )

)
= T

(
P (v1 ⊕ v2 ⊕ . . .⊕ vN )︸ ︷︷ ︸
∈Aw since P :V→Aw

)
= T (v1 ⊕ v2 ⊕ . . .⊕ vN )

⇒ P
(
T (w)

)
︸ ︷︷ ︸
∈Aw

= T (w) ; (6.16)
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i.e., since P is a projection from V onto Aw, it follows that T (w) ∈ Aw. Thus, by definition of Aw,
there exists an s ∈ A such that

T (w) = Tw = sw ⇒ T = s ∈ A ⇒ T ∈ A . (6.17)

Therefore, we showed that Comm
(
Comm(A)

)
= A, as required.

Let A be the symmetric group Sn, and let B be the general linear group GL(N). Both these groups
have a well-defined action on the vector space V ⊗n (with dimV = N), and therefore both Sn and
GL(N) are subgroups of End (V ⊗n). Furthermore, we have seen in the beginning of section 6.3 that
the actions of Sn and GL(N) commute on V ⊗n, such that

A = Sn ⊂ (GL(N))′ = B′ and B = GL(N) ⊂ S′n = A′
⇒ A ⊂ B′ and B ⊂ A′ . (6.18)

It follows directly from Maschke’s Theorem 3.1 that V ⊗n is a completely reducible Sn-module. That
V ⊗n is also a completely reducible GL(N)-module follows from the Peter-Weyl Theorem [16] (which
we will state without proof):

Note 6.1: Peter-Weyl Theorem

As we will explain in Note 6.2, GL(N) is a Lie group, which means that, in particular, it is
a differentiable manifold. A manifold is said to be compact if it is compact as a topological
space, that is every open cover has a finite subcover, c.f., e.g., [17]. (Very losely speaking, you
may think of a cover of a manifold M as another manifold M ′ enclosing it. The requirement
that every subcover is finite can be thought of that every submanifold N ′ ⊂ M ′ that is also
a cover for M is finite, implying that M was finite to start off with. As an example, the
unit sphere is a compact manifold, but an infinite plane would not be.) It turns out that the
representations of such compact Lie groups are completely reducible:

Theorem 6.2 – Reducible carrier spaces of compact groups (Peter-Weyl [16]):
Let ϕ be a unitary representation of a compact group G on a complex Hilbert space H. Then H
splits into an orthogonal direct sum of irreducible finite-dimensional unitary representations
of G.

Now, the group GL(N) is not compact (as a manifold). However, as we will see in the
later section 6.6, its subgroup SU(N) is compact. Furthermore, as we will argue in section
section 6.6, the irreducible representations of GL(N) are precicely those of SU(N) and vice
versa (c.f. Theorem 6.5) by means of the so-called unitarian trick, it follows that the Peter-
Weyl Theorem 6.2 does indeed apply to the group GL(N) as well.

If all the things said in this note do not quite make sense to you yet, try re-reading this note
after you have read section 6.6 — this should clear things up for you.

Therefore V ⊗n is completely reducible as an Sn-module, as well as as a GL(N)-module. Therefore,
the Double commutant theorem 6.1 asserts that

A = Sn = A′′ and B = GL(N) = B′′
⇒ A = A′′ and B = B′′ . (6.19)
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We require one more result, namely von Neumann’s double commutant theorem (not to be confused
with the double commutant theorem we stated earlier in this section!). This is a rather general result
from topology, but we will state the particular version pertaining to our situation here without proof
(c.f., e.g., [18]):

Theorem 6.3 – von Neumann’s double commutant theorem:
Let V be a vector space over F and A be an algebra over this vector space. Then A is it’s own
double commutant, A = A′′ if and only if there exists and algebra B over A such that A = B′ and
B = A′.

For A = GL(N) and B = Sn, we have argued that A = A′′ and B = B′′ (eq. (6.19)). Furthermore,
we showed that A ⊂ B′ and B ⊂ A′ (eq. (6.18)). Then, using von Neumann’s double commu-
tant theorem 6.3, it can be shown that A is not only a subset of B′ but A = B′ and vice versa — if
you are unclear about why the last statement is true, have a look at the article Introduction to von
Neumann algebras contained in the blog [19]. Hence, we have arrived at the desired result:

Theorem 6.4 – Invariants of GL(N) and Sn:
The elements of Sn span the space of linear invariants of GL(N) on V ⊗n and vice versa.

We shall, therefore, refer to the elements of Sn as the primitive invariants of GL(N), and to the
group algebra C[Sn] as the algebra of primitive invariants,

API
(
GL(N), V ⊗n

)
= C[Sn] . (6.20)

6.4 Young projectors and Sn-invariant subspaces of V ⊗n

Let Θ ∈ Yn be a particular Young tableau. Then, the space LΘ defined by

LΘ := C[Sn]YΘ = {aYΘ|a ∈ C[Sn]} (6.21)

is an irreducible C[Sn]-module by Theorem 5.2. Furthermore, if v is a particular vector in V ⊗n, we
define the space Lv

Θ to be

Lv
Θ := C[Sn]YΘv = {aYΘv|a ∈ C[Sn]} (6.22)

Proposition 6.1 – Invariant space under the action of Sn:
Let Lv

Θ be as described in eq. (6.22). Then

1. Lv
Θ is invariant and irreducible under the action of Sn, and

2. the irreducible representation carried by Lv
Θ is the same irreducible representation as that

induced from the ideal LΘ.

Proof of Proposition 6.1. Part 1: Let l ∈ Lv
Θ. Then, there exists an a ∈ C[Sn] such that

l = aYΘv (6.23a)

Notice that for every a ∈ C[Sn], we have that ρa ∈ C[Sn] for every ρ ∈ Sn. Therefore,

ρl = ρaYΘv ∈ C[Sn]YΘv = Lv
Θ (6.23b)

for every ρ ∈ Sn. Hence, Lv
Θ is invariant under the action of Sn.
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Part 2: Let Θ ∈ Yn be an arbitrary Young tableau and let r ∈ LΘ (i.e. r is of the form aYΘ for
some a ∈ C[Sn]). Since we can act every element ρ in Sn on an element aYΘ of LΘ,

ρaYΘ = bYΘ , where b := ρa ∈ C[Sn] , (6.24)

we can define a representation ΓΘ : Sn → End (LΘ) through

(ΓΘ(ρ)) (r) = ρr for every ρ ∈ Sn and every r ∈ LΘ . (6.25)

Now, let v be a particular vector in V ⊗n. Similarly as for LΘ, we can define a representation Γ̃Θ of
Sn on Lv

Θ := LΘv via

(
Γ̃Θ(ρ)

)
(rv) =

[
(ΓΘ(ρ)) (r)

]
(v) (6.26)

for every ρ ∈ Sn and every r ∈ LΘ (and hence rv ∈ Lv
Θ).

To show that the two maps ΓΘ and Γ̃Θ produce the same irreducible C[Sn]-submodules, we need
to show that there exists an isomorphism T : LΘ → Lv

Θ satisfying

Γ̃Θ(ρ) = T ◦ ΓΘ(ρ) ◦ T−1 for every ρ ∈ Sn . (6.27)

Consider the map

T ′ : LΘ → Lv
Θ

r 7→ rv ;
(6.28)

we now strive to show that T ′ is the desired map T of eq. (6.27). T ′ is clearly surjective, since for
every l ∈ Lv

Θ, there exists an r ∈ LΘ such that l = rv by definition of Lv
Θ. To show that T ′ is also

injective, assume the opposite:

Suppose there exist r, r′ ∈ LΘ, r 6= r′, such that rv = r′v. Then, for every ρ ∈ Sn, we have that

[
(ΓΘ(ρ)) (r)

]
(v) =

(
Γ̃Θ(ρ)

)
(rv)

rv=r′v
======

(
Γ̃Θ(ρ)

)
(r′v) =

[
(ΓΘ(ρ)) (r′)

]
(v) . (6.29)

Since the vector v ∈ V ⊗n is arbitrary, eq. (6.29) implies that

[
(ΓΘ(ρ)) (r)

]
=
[

(ΓΘ(ρ)) (r)
]

⇒ ρr = ρr′ (6.30)

by the definition (6.25) of ΓΘ. In particular, since ρr = ρr′ excluding either r or r′ from LΘ leaves
the remaining space invariant under the action of Sn,

LΘ \ {r} is Sn-invariant . (6.31)

Hence, the space LΘ \ {r} is a proper Sn-invariant subspace of LΘ. However, this poses a contra-
diction, since LΘ was shown to be irreducible under the action of Sn (c.f. Theorem 5.2). Thus, we
conclude that T ′ is also injective, making it a bijection.

Lastly, for an arbitrary ρ ∈ Sn, consider the composition of maps T ′ ◦ ΓΘ(ρ) ◦ T ′−1. For every
r ∈ LΘ, we have that

T ′ ◦ ΓΘ(ρ) ◦ T ′−1(r) = T ′
(

ΓΘ(ρ)
(
T ′−1(rv)

))
= T ′

(
ΓΘ(ρ)(r)

)
= T ′(ρr) = ρrv . (6.32)

Similarly, for every r ∈ LΘ, we have that
(

Γ̃Θ(ρ)
)

(rv) =
[

(ΓΘ(ρ)) (r)
]
(v) = [ρr](v) = ρrv . (6.33)
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This shows that the maps T ′ ◦ΓΘ(ρ) ◦T ′−1 and Γ̃Θ(ρ) act exactly the same (for every ρ ∈ Sn, since
ρ was taken to be arbitrary), thus they must be the same,

Γ̃Θ(ρ) = T ′ ◦ ΓΘ(ρ) ◦ T ′−1 for every ρ ∈ Sn . (6.34)

Therefore, the representations Γ̃Θ and ΓΘ(ρ) of Sn on the spaces Lv
Θ and LΘ, respectively, are the

same.

6.5 Young projectors and GL(N)-invariant subspaces of V ⊗n

Proposition 6.2 – Invariant space under the action of GL(N):
Let Θ ∈ Yn and let YΘ be the corresponding Young projection operator. Then, the space

YΘV
⊗n , (6.35)

for dim(V ) = N , is invariant and irreducible under the action of GL(N).

Proof of Proposition 6.2. Let g ∈ GL(N) be arbitrary. Then, since YΘ is an element of C[Sn], the
algebra of invariants of GL(N) (c.f. Theorem 6.4), the actions of g and YΘ on V ⊗n commute, such
that

gYΘv = YΘgv for every v ∈ V ⊗n . (6.36a)

Since GL(N) ⊂ End (V ⊗n), gv ∈ V ⊗n, and hence

gYΘV
⊗n ⊂ YΘV

⊗n for every g ∈ GL(N) . (6.36b)

Thus, the space YΘV
⊗n is indeed invariant under the action of GL(N).

To prove that YΘV
⊗n is also irreducible under the action of GL(N), assume the opposite: Then, we

can write

YΘV
⊗n = I1 ⊕I2 (6.37a)

for some nonzero I1,I2 satisfying I1 ∩I2 = {0}. Notice that the action of a matrix of the form

(
λ11I1 0

0 λ21I2

)
, (6.37b)

where 1Ij is the identity matrix of size dim Ij and the constants λ1, λ2 ∈ C are nonzero and
distinct, on the space I1 ⊕ I2 commutes with that of GL(N). However, since λ1 6= λ2, (6.37b)
is not a matrix representation of a (linear combination of) permutation(s) in Sn and therefore an
additional invariant of GL(N). However, since we know that Sn spans the space of linear invariants
of GL(N) by Theorem 6.4), this poses a contradiction. Therefore, YΘV

⊗n is irreducible under the
action of GL(N).
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6.5.1 Dimension of an irreducible representation of SU(N)

Let Yn be the set of all Young tableaux consisting of n boxes, and let YΘ be the Young projection
operator corresponding to Θ ∈ Yn. Consider the direct sum of all Young projection operators

⊕

Θ∈Yn

YΘ , (6.38a)

which acts on the whole space V ⊗n and can therefore be visualized as a matrix of size

dim(V ⊗n)× dim(V ⊗n) = Nn ×Nn . (6.38b)

In lectures, we discussed that the Young projection operators generate the irreducible representa-
tions of SU(N) on V ⊗n. That is, each Young projector YΘ projects onto an irreducible subspace of
V ⊗n. Thus, the matrix (6.38a) block-diagonalizes, and each block corresponding to a particular YΘ

is of size dim(YΘ)× dim(YΘ). We can choose a particular basis on V ⊗n such that the block corre-
sponding to YΘ for a particular Θ ∈ Yn is given by the identity matrix of size dim(YΘ)× dim(YΘ)
(this is due to the fact that YΘ acts as the identiy on the subspace onto which it projects). Thus,
the dimension of the representation corresponding to YΘ is merely given by tr (YΘ),

tr (YΘ) = tr







1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1




︸ ︷︷ ︸
dim(YΘ)×dim(YΘ)


 =

dim(YΘ)∑

i=1

1 = dim(YΘ) . (6.39)

However, since the trace of a matrix does not depend on the choice of basis, it follows that, in
general

tr (YΘ) = dim(YΘ) . (6.40)

6.6 The unitarian trick: irreducible representations of SU(N) from GL(N)

Having established the connection between the irreducible representations of Sn and the irreducible
representations of GL(N) on V ⊗n,

Definition 6.4 – Special unitary group SU(N):
Let GL(N) be the general linear group on a vector space V with dim(V ) = N . We define SU(N) to
be the subset of matrices in GL(N) that are unitary (with respect to the canonical scalar product on
V ) and have determinant 1,

SU(N) =
{
U ∈ GL(N)

∣∣∣UU † = 1 and detU = 1
}
. (6.41)

It can be shown that SU(N) is in fact a group ( c.f. ) and we call it the special unitary group on V .

(The term special refers to the fact that the elements of SU(N) are unimodular, i.e. have determi-
nant 1, and unitary referes to the property that UU † = 1 for every U ∈ SU(N).)
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Exercise 6.2: Show that SU(N) is a group.

Solution: One could go through all the group axioms to show that SU(N) does indeed
fulfill them, but a cleverer way than just showing that SU(N) is a group is to show that it is
in fact a subgroup of GL(N): We already know that GL(N) is a group, and so is the field of
complex numbers C with respect to multiplication (by definition). Consider the determinant
map det defined by

det : GL(N) → C

g 7→ det(g) .
(6.42a)

Since the determinant map distributes over multiplication,

det(gh) = det(g) det(h) for all g, h ∈ GL(N) . (6.42b)

it is a group homomorphism. The kernel of a group homomorphism is a subgroup of
its domain, such that ker(det(GL(N))) is a subgroup of GL(N). However, the kernel
ker(det(GL(N))) is precisely the set of matrices in GL(N) that have determinant 1 (since
1 is the multiplicative identity of C), showing that the set of matrices of GL(N) with determi-
nant 1 forms a subgroup of GL(N). This group is also referred to as the special linear group
on V , SL(N).
Then, to show that SU(N) is a subgroup of SL(N), we only need to show closure with respect
to multiplication. That is, for every U, Ũ ∈ SU(N), we need to show that UŨ ∈ SU(N). Now(
UŨ

)†
= Ũ †U †, and since U and Ũ are unitary, it follows that

(
UŨ

)†
UŨ = Ũ † U †U︸︷︷︸

=1

Ũ = Ũ †Ũ︸︷︷︸
=1

= 1 . (6.43)

Thus, UŨ is also unitary and hence UŨ ∈ SU(N).

The following intermediate result will turn out to be quite useful when establishing the correspon-
dence between the irreducible representations of GL(N) and the irreducible representations of SU(N)
on V ⊗n:

Proposition 6.3 – Square matrix decomposition:
Let Mn×n be the space of all n×n matrices with entries in C, and let Hn×n and An×n be the spaces
of all Hermitian, respectively, anti-Hermitian n× n matrices with entries in C. Then,

Mn×n = Hn×n ⊕An×n . (6.44)

Proof of Proposition 6.3. It is clear that Hn×n + An×n ⊂ Mn×n since a sum of a Hermitian and
an anti-Hermtitian n× n matrix will still yield an n× n matrix. Conversely, let m ∈Mn×n. Then,
we can write

m =
1

2
(m+m†)
︸ ︷︷ ︸

=:m+

+
1

2
(m−m†)
︸ ︷︷ ︸

=:m−

, (6.45)
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where m† is the Hermitian conjugate of m. Notice that m+ is Hermitian and m− is anti-Hermitian.
Thus, we also hace that Mn×n ⊂ Hn×n +An×n, implying that

Mn×n = Hn×n +An×n (6.46)

It remains to show thatHn×n∩An×n = {0} to obtain the desired result: Letm ∈ Hn×n∩An×n. Since
m ∈ Hn×n, m is Hermitian. Furthermore, since also m ∈ An×n, m is anti-Hermitian. Therefore,

m
m∈Hn×n

======= m†
m∈An×n

======= −m ⇒ m = −m . (6.47)

However, since all entries in m are elements of C, m = −m only holds for m being the zero matrix.
Therefore, Hn×n ∩An×n = {0}, yielding

Mn×n = Hn×n ⊕An×n , (6.48)

as required.

Note 6.2: Generators of a Lie group

Without explicitly saying it, both GL(N) and SU(N) are Lie groups, which is to say that they
are differentiable manifolds that also have a group structure defined on them. As differentiable
manifolds, they have a tangent space at the identity called the Lie algebra. (The Lie algebras
of the general linear group GL(N) and the special unitary group SU(N) are denoted as gl(N)
and su(N), respectively.) One can define a map, called the exponential map from the Lie
algebra g to the Lie group G as

exp : g → G

X 7→ eiX
(6.49)

(the i in the exponent is physics convention). It can be shown that, for certain Lie groups
(including GL(N) and SU(N), but not SL(N)) this exponential map is surjective, implying
that every element of the Lie group can be written as an exponential of the corresponding
element in the Lie alebra! The Lie algebra is a linear space, and in particular it has a basis
{T1, T2, . . . , Tdim(g)} such that every X ∈ g can be written as a direct sum of these basis
vectors. Thus, each element g of the Lie group G can be written as an exponential of a
weighted sum of the basis vectors T1, T2, . . . , Tdim(g),

g = ei
∑
j ωjTj , (6.50)

where the ωj are scalars. Hence, the Lie group G is generated by the elements in
{T1, T2, . . . , Tdim(g)} and we call the T1, T2, . . . , Tdim(g) the generators of the Lie group G.

For this course, we will not discuss any differential geometry, we will merely use the fact that
any element G of a Lie group can be written as an exponential G = ei

∑
j ωjTj where the Tj

are the generators of the group. Readers, however, are encouraged to explore the topic more
on their own, for example by reading through [17].

Now, notice that both GL(N) and SU(N) are matrix groups, and hence the exponential map is
given by matrix exponentials. In other words, the generators of both GL(N) and SU(N) are square
matrices.
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By definition of SU(N), each U ∈ SU(N) is unitary, UU † = 1. Writing U = eiX for some X ∈ su(N),
we thus have that

1
!

= UU † = eiX
(
eiX
)†

= eiXe−iX
†

= ei(X−X
†) ⇒ X −X† = 0 . (6.51)

Hence, X is Hermitian, and therefore the generators of SU(N) must all be Hermitian. In fact,
eq. (6.51) shows that any Hermitian matrix, when exponentiated, produces an element of SU(N).
Thus, the subset of generators of GL(N) that is Hermitian are the generators of SU(N).

As we have seen in Proposition 6.3, every square matrix can be written as a sum of a Hermitian
and an anti-Hermitian matrix. Notice that any Hermitian matrix can be made anti-Hermitian by
multiplying it with i (and, obviously, any anti-Hermitian matrix with complex entries can be written
as i times a Hermitian matrix). Therefore, the generators of GL(N) are precicely the generators of
SU(N) plus i times the generators of SU(N)

Therefore, if ϕ : GL(N) → End (W ) is an irreducible representation of GL(N) on W ⊂ V ⊗n (with
dimV = N ≥ n), and we restrict this representation to the subgroup SU(N) ⊂ GL(N), we merely
only act ϕ on half of the generators of GL(N).6 This clearly yields a representation of SU(N)

Suppose now that the resetriction of ϕ on SU(N), ϕ
∣∣
SU(N)

: SU(N) → End (W ) is not irreducible

as a representation of SU(N). Then one may decompose the carrier space W as a direct sum
W = W1 ⊕W2, where each Wi is irreducible under the action of SU(N). Hence, any U ∈ SU(N)
can be written in the form

U :=

(
UW1 0

0 UW2

)
, (6.52)

where UWi is of size dim(Wi) × dim(Wi), leaves the space W = W1 ⊕W2 invariant. Since this is
true for every U ∈ SU(N), the generators T1, T2, . . . Tdim(su(N)) must block-diagonalize the matrices
of SU(N) on the space W . However, since we just reasoned that the Tj form a complete set of
generators of GL(N), it follows that every g ∈ GL(N) can be block-diagonalized on W , yielding W
to be reducible. This is a contraditiction as ϕ : GL(N)→W is known to be irreducible, and hence
the restriction ϕ

∣∣
SU(N)

: SU(N)→ End (W ) must be an irreducible representation of SU(N) as well.

On the other hand, suppose ϕ̃ : SU(N) → End(W̃ ) is an irreducible representation of SU(N) on

W̃ ⊂ V ⊗n. This representation can be extended to a representation of GL(N), ϕ̃
∣∣GL(N)

: GL(N)→
End(W̃ ), by including the action on i times the generators. Going through a similar chain of

arguments as in the previous paragraph, it can be shown that ϕ̃
∣∣GL(N)

is an irreducible representation
of GL(N). Therefore, we have:

Theorem 6.5 – Irreducible representations of SU(N) and GL(N):
Any irreducible representation of GL(N) is an irreducible representation of SU(N) and vice versa.

!
Important: Note that Theorem 6.5 is very particular for the groups GL(N) and
SU(N). If one were to restrict an irreducible representation of GL(N) to either the
orthogonal group O(N) or the special orthogonal group SO(N) (both are subgroups

of GL(N)), then the restricted representation is, in general, no longer irreducible. The reason
for this is that both O(N) and SO(N) have additional invariants to GL(N) on V ⊗n, therefore

6I’m being very sloppy with my language and merely say “act ϕ on the generators” when I mean “act ϕ on a
matrix exponential of the generators”.
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allowing for a finer decomposition of V ⊗n into irreducible submodules.

Note 6.3: Invariants of SU(N)

The discussion thus far not only shows that the irreducible representations of SU(N) are
precicely those of GL(N), but further implies that also the linear invariants of SU(N) are
those of GL(N),

API
(
GL(N), V ⊗n

)
= API

(
SU(N), V ⊗n

)
= C[Sn] . (6.53)

Furthermore, the Young projection operators YΘ corresponding to the Young tableaux Θ ∈ Yn
generate the irreducible representations of SU(N) on V ⊗n.

6.7 Example: The irreducible representations of S3 and SU(3) on V ⊗3

Consider a 3-dimensional vector space V with basis {v1, v2, v3}. Forming the tensor product space
V ⊗3, the basis of V induces a basis on V ⊗3, where each basis vector of V ⊗3 is of the form

vi ⊗ vj ⊗ vk for i, j, k ∈ {1, 2, 3} ; (6.54a)

clearly, this basis has size 33 = 27. (In general, if dim(V ) = N , the tensor product space V ⊗n has
dimension Nn.) Introducing the shorthand notation

|ijk〉 := vi ⊗ vj ⊗ vk , (6.54b)

the basis vectors of V ⊗3 are given by

|111〉 , |112〉 , |121〉 , |211〉 , |122〉 , |221〉 , |212〉 ,
|222〉 , |113〉 , |131〉 , |311〉 , |133〉 , |331〉 , |313〉 ,
|333〉 , |223〉 , |232〉 , |322〉 , |233〉 , |332〉 , |323〉 ,
|123〉 , |132〉 , |213〉 , |231〉 , |312〉 , |321〉 .

(6.55)

As usual, the action of a permutation ρ in S3 on a (basis) vector in V ⊗3 is realized through the
permutation of its tensor indices, for example

(123) |123〉 =
1
2
3

=
3
1
2

= |312〉 , (6.56a)

and the action of any U ∈ SU(3) on |ijk〉 yields

U |ijk〉 = |U(i)U(j)U(k)〉 . (6.56b)

Let us now study the irreducible representations of S3 and SU(3) on V ⊗3:

As we have seen in this section, the irreducible representations of Sn and SU(N) on V ⊗n are
generated by the Young projection operators corresponding to the Young tableaux in Yn. Here, for
n = 3, we have that

Y3 =



 1 2 3 ,

1 2
3

,
1 3
2

,
1
2
3



 . (6.57)
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First, let us consider the two Young tableaux of shape ,

Θ =
1 2
3

and Φ =
1 3
2

. (6.58)

According to Theorem 5.2, the Young projection operators YΘ and YΦ produce an equivalent 2-
dimensional irreducible representations of S3 on V ⊗3. Let us see this explicitly:

First, we need to consider the action of both YΘ and YΦ on the basis vectors (6.55) of V ⊗3. For the
Young projection operator corresponding to the tableau Θ

YΘ =
4

3
=

1

3

(
− + −

)
, (6.59)

notice that, for (13) ∈ S3,

YΘ(13) =
4

3
=

4

3
= − 4

3
= −YΘ , (6.60a)

such that, for each vector |ijk〉, we have that

YΘ |ijk〉 = −YΘ(13) |ijk〉 = −YΘ |kji〉 , and hence YΘ |iji〉 = 0 . (6.60b)

Therefore, acting YΘ on the basis vectors of V ⊗3 given in eq. (6.55) yields the following 8 nonzero,
linearly independent vectors:

YΘ |112〉 = −YΘ |211〉 =
1

3
(2 |112〉 − |211〉 − |121〉) (6.61a)

YΘ |113〉 = −YΘ |311〉 =
1

3
(2 |113〉 − |311〉 − |131〉) (6.61b)

YΘ |223〉 = −YΘ |322〉 =
1

3
(2 |223〉 − |322〉 − |232〉) (6.61c)

YΘ |221〉 = −YΘ |122〉 =
1

3
(2 |221〉 − |122〉 − |212〉) (6.61d)

YΘ |331〉 = −YΘ |133〉 =
1

3
(2 |331〉 − |133〉 − |313〉) (6.61e)

YΘ |332〉 = −YΘ |233〉 =
1

3
(2 |332〉 − |233〉 − |323〉) (6.61f)

YΘ |123〉 = −YΘ |321〉 =
1

3
(|123〉 − |321〉+ |213〉 − |231〉) (6.61g)

YΘ |132〉 = −YΘ |231〉 =
1

3
(|132〉 − |231〉+ |312〉 − |321〉) , (6.61h)

where

YΘ |213〉 = −YΘ |312〉 = YΘ |123〉 − YΘ |132〉 . (6.62)

Similarly, for the Young projection operator YΘ, we notice the following symmetry

YΦ(12) =
4

3
= − 4

3
= −YΦ , (6.63a)

such that, for each vector |ijk〉, we have that

YΦ |ijk〉 = −YΦ(12) |ijk〉 = −YΦ |jik〉 , and hence YΦ |iij〉 = 0 . (6.63b)
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Hence,

YΦ |121〉 = −YΦ |211〉 =
1

3
(2 |121〉 − |211〉 − |112〉) (6.64a)

YΦ |131〉 = −YΦ |311〉 =
1

3
(2 |131〉 − |311〉 − |113〉) (6.64b)

YΦ |232〉 = −YΦ |322〉 =
1

3
(2 |232〉 − |322〉 − |223〉) (6.64c)

YΦ |212〉 = −YΦ |122〉 =
1

3
(2 |212〉 − |122〉 − |221〉) (6.64d)

YΦ |313〉 = −YΦ |133〉 =
1

3
(2 |313〉 − |133〉 − |331〉) (6.64e)

YΦ |323〉 = −YΦ |233〉 =
1

3
(2 |323〉 − |233〉 − |332〉) (6.64f)

YΦ |123〉 = −YΦ |213〉 =
1

3
(|123〉 − |213〉+ |321〉 − |312〉) (6.64g)

YΦ |132〉 = −YΦ |312〉 =
1

3
(|132〉 − |312〉+ |231〉 − |213〉) , (6.64h)

and again

YΦ |231〉 = −YΦ |321〉 = −YΦ |123〉 − YΦ |132〉 . (6.65)

Consider now the irreducible representation of S3 generated by YΘ. If we define and operator TΦΘ

as

TΦΘ := (23)YΘ = , (6.66)

then we have that, for all ρ ∈ S3,

ρYΘ = c1YΘ + c2TΦΘ , where c1, c2 ∈ C , (6.67)

which is to say that YΘ generates a 2-dimensional submodule of V ⊗3. Explicitely:

id3YΘ =
4

3
· =

4

3
= YΘ (6.68a)

(12)YΘ =
4

3
· =

4

3
= YΘ (6.68b)

(23)YΘ =
4

3
· =

4

3
= TΦΘ (6.68c)

(13)YΘ =
4

3
· = −4

3
− 4

3
= −YΘ − TΦΘ (6.68d)

(123)YΘ =
4

3
· = −4

3
− 4

3
= −YΘ − TΦΘ (6.68e)

(132)YΘ =
4

3
· =

4

3
= TΦΘ ; (6.68f)
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eq. (6.68d) can be easiest seen as follows:

(13)YΘ =
4

3
· = −4

3
= −4

3

= −4

3
= −2

1

2

4

3

(
+

︸ ︷︷ ︸
=0

)
= −2

4

3

= −2
1

2

4

3

(
+

)
= −YΘ − TΦΘ , (6.69)

and eq. (6.68e) follows from

(123)YΘ =
4

3
· =

4

3
=

4

3
= (13)YΘ . (6.70)

Hence, YΘ indeed generates a 2-dimensional S3-submodule YΘv of V ⊗3, as claimed in eq. (6.67).
Since there exist 8 linearly independent vectors YΘv, this representation is contained 8 times within
the regular representation of S3, and we say that the 2-dimensional S3-module generated by YΘ has
multiplicity 8.

We will show that the tableau Φ given in eq. (6.58) also gives rise to a 2-dimensional S3 module
with multiplicity 8, which will be shown to be completely equivalent to that generated by YΘ: The
Young projection operator YΦ is given by

YΦ =
4

3
=

1

3

(
− + −

)
. (6.71)

Defining

TΦΘ := (23)YΘ =
4

3
, (6.72)

one may again show that YΦ generates a 2-dimensional submodule of V ⊗3 as

ρYΦ = k1YΦ + k2TΘΦ , for every ρ ∈ S3, where c1, c2 ∈ C . (6.73)

In particular,

id3YΘ =
4

3
· =

4

3
= YΘ (6.74a)

(12)YΘ =
4

3
· = −4

3
− 4

3
= −YΘ − TΦΘ (6.74b)

(23)YΘ =
4

3
· =

4

3
= TΦΘ (6.74c)

(13)YΘ =
4

3
· =

4

3
= YΘ (6.74d)

(123)YΘ =
4

3
· =

4

3
= TΦΘ (6.74e)

(132)YΘ =
4

3
· = −4

3
− 4

3
= −YΘ − TΦΘ . (6.74f)

To show that the representations generated by YΘ and YΦ are equivalent for each vector v ∈ V ⊗3,
we need to find a change of basis between ρYΘv and ρYΦv. It turns out that this change of basis is
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furnished by the elements TΘΦ and TΦΘ: Consider

(c1YΘ + c2TΦΘ)(TΘΦ + TΦΘ) = c1(YΘTΘΦ + YΘTΦΘ) + c2(TΦΘTΘΦ + TΦΘTΦΘ)

= c1(YΘ(23)YΦ + YΘ(23)YΘ)

+c2((23)YΘ(23)YΦ + (23)YΘ(23)YΘ) . (6.75)

One can easily verify (by explicit calculation) that

(23)YΘ(23)† = (23)YΘ(23) = YΦ and (23)YΦ(23)† = (23)YΦ(23) = YΘ , (6.76)

where we used the fact that (23)† = (23). Using these relations, eq. (6.75) becomes

c1(YΘ(23)YΦ + YΘ(23)YΘ) + c2((23)YΘ(23)YΦ + (23)YΘ(23)YΘ)

= c1((23)(23)︸ ︷︷ ︸
=id3

YΘ(23)YΦ + (23)(23)︸ ︷︷ ︸
=id3

YΘ(23)YΘ) + c2(YΦYΦ︸ ︷︷ ︸
=YΦ

+YΦYΘ︸ ︷︷ ︸
=0

)

= c1((23)YΦYΦ︸ ︷︷ ︸
=YΦ

+(23)YΦYΘ︸ ︷︷ ︸
=0

) + c2YΦ

= c1TΘΦ + c2YΦ . (6.77)

Thus, for any vector v ∈ V ⊗3, the subspace generated by YΘ, YΘv can be translated into the
corresponding (equivalent) subspace generated by YΦ by means of the map TΘΦ + TΦΘ,

YΘv = YΦv
′ , where v′ := (TΘΦ + TΦΘ)v . (6.78)

On the other hand, consider the action of SU(3) on a vector of the form YΘv: For every U ∈ SU(3),
we know that the the action of U commutes with that of YΘ on V ⊗3, so we have

UYΘv = YΘ(Uv) = YΘv
′ with v′ ∈ V ⊗3 , (6.79)

and the same holds true for YΦ. In particular, UYΘv ∈ YΘV
⊗3 and UYΦv ∈ YΦV

⊗3 for every
v ∈ V ⊗3, but the two subspaces YΘV

⊗3 and YΦV
⊗3. Notice that there are 8 distinct basis vectors

in each space YΘV
⊗3 and YΦV

⊗3. Therefore, each of the spaces YΘV
⊗3 and YΦV

⊗3 defines an
8-dimensional representation of SU(3). Furthermore, we know that the spaces generated by YΘ

and YΦ must be equivalent by virtue of Θ and Φ having the same shape. Hence, we say that the
8-dimensional representation of SU(3) on V ⊗3 occurs with multiplicity 2.

Notice that this agrees with the dimension formula for the irreducible representations of GL(N)
(hence, also SU(N)) given in section 6.5.1, as

dimYΘ = tr

(
4

3

)
=

4

3

N(N2 − 1)

4

N=3
===== 8 (6.80a)

dimYΦ = tr

(
4

3

)
=

4

3

N(N2 − 1)

4

N=3
===== 8 . (6.80b)

One can perform a similar analysis for the remaining two tableaux in (6.57). For example, for

Ψ = 1 2 3 , (6.81)

the corresponding Young projection operator YΨ is given by

YΨ = ⇒ tr

( )
=
N(N + 1)(N + 2)

6

N=3
===== 10 . (6.82)
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Since Ψ is the unique Young tableau of shape , Ψ gives rise to 10 equivalent 1-dimensional
irreducible representations of Sn on V ⊗3, and a unique 10-dimensional irreducible representation of
SU(N) on V ⊗3.

Lastly, for the tableay

Ξ =
1
2
3
, (6.83)

the corresponding Young projection operator YΞ is given by

YΞ = ⇒ tr

( )
=
N(N − 1)(N − 2)

6

N=3
===== 1 . (6.84)

Since Ξ again is the unique Young tableau of shape , Ξ gives rise one more 1-dimensional

irreducible representations of Sn, which is inequivalent to the 1-dimensional representations obtained
from Ψ! Furthermore, YΞ a unique 1-dimensional irreducible representation of SU(N) on V ⊗3 — a
1-dimensional representation of SU(N) is also called a singlet representation.

Notice, however, that for dim(V ) = N ≤ 2, tr (YΞ) = 0, and the tableau Ξ does not give rise to
any representations of S3 or SU(N) on V ⊗3. In fact, for N ≤ 2, the Young projection operator YΞ

becomes dimensionally zero, c.f. Note 5.3.

Note 6.4: Multiplicities and dimensions of the irreducible representations of
SU(N) and Sn on V ⊗n

Let ϕ : G → End (V ) be a particular irreducible representations of a group G. Then, if this
representation exists m times within the regular representation, we say that ϕ has multiplicity
m. As we have already stated in Definition 3.1, the dimension of the representation ϕ is given
by the dimension of V .

In the example given in this section (where we calculated the irreducible representations of
S3 and SU(3) on V ⊗3), we have seen that the dimension and multiplicity change roles when
switching between representations of SU(3) and S3. This is no mere coincidence, but actually
a general feature (which we will not prove here):

In section 6.5.1, we discussed that the dimension of the irreducible representation of GL(N)
(and hence also SU(N)) corresponding to a particular Young projection operator YΘ is given
by tr (YΘ). On the other hand, the irreducible representation of Sn generated by YΘ is given
by n!

HΘ
, the number of Young tableaux of shape YΘ. The multiplicities of the irreducible

dimensions of Sn and SU(N) play the complementary role, such that:

irred. reps. of Sn on V ⊗n irred. reps. of SU(N) on V ⊗n

generated by YΘ, Θ ∈ Yn generated by YΘ, Θ ∈ Yn
dimension: n!

HΘ
dimension: tr (YΘ)

multiplicity: tr (YΘ) multipolicity: n!
HΘ

Table 3: Dimensions and multiplicities of the irreducible representations of SU(N) and Sn
on V ⊗n.
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Part II

Hermitian Young projection operators
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7 Hermitian Young projection operators: the KS algortithm

7.1 The need for Hermitian Young projection operators

So far, we have spent a fair amount of time discussing the Young projection operators and the role
they play in generating the irreducible representations of SU(N) on V ⊗n. And while these Young
projection operators are already a very powerful tool by themselves, they are found to be lacking in
a variety of practical applications as they do not fulfill certain desirable properties. Some of these
properties are:

1. Young projection operators are not orthogonal as projectors, that is to say that the kernel
ker(YΘ) and the image im(YΘ) are not orthogonal with respect to the canonical scalar product
on V ⊗n.

2. The Young projection operators YΘ for Θ ∈ Yn are no longer pairwise transversal for n ≥ 5;
this is to say, the equation

YΘYΦ = δΘΦYΘ (7.1)

holds for all tableaux ΘΦ ∈ Yn if and only if n < 5. A particular example of this are the
Young projection operators

Y 1 2 3
4 5

= 2 and Y 1 3 5
2 4

= 2 , (7.2a)

which satisfy

Y 1 2 3
4 5

Y 1 3 5
2 4

= 4 = −4 = −2 6= 0 (7.2b)

(the last step of the simplification can be verified either via direct calculation or by applying
the simplification rules discussed in section 8).

3. Since all Young tableaux in Yn can be obtained from the tableaux in Yn−1 by adding the box
n at all places that preserver the top- and left-alignedness and the ordering of the tableau,

Young tableaux fulfill a natural ancestry relation. In particular, if, for every Θ ∈ Yn−1, we
define

{
Θ⊗ n

}
to be the set of all tableaux in Yn that are obtained from Θ by adding the

box n , we would like the corresponding projectors to fulfill the analogous nested hierarchy
property

YΘ
?
=

∑

Φ∈{Θ⊗ n }
YΦ . (7.3)

However, this relation is false for Young projection operators already for n = 3.

We will now discuss each of the desired properties in more detail. In the course this will motivate
that a Hermitian version of Young projection operators should in fact fulfill all the properties that
the standard Young projectors are lacking
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7.1.1 Orthogonality as projectors

It turns out that property 1 is immediately satisfied if we can construct a Hermitian version of the
Young projection operators:

Proposition 7.1 – Hermitian projectors project orthogonally:
Let P : V → V be a linear projection operator (that is P 2 = P ), V is a vector space over C, and
let 〈·|·〉 be a scalar product defined on V . Then the kernel and the image of P are orthogonal with
respect to 〈·|·〉 if and only if P is Hermitian with respect to 〈·|·〉,

〈x|y〉 = 0 ∀x ∈ ker(P ), y ∈ im(P ) ⇐⇒ P † = P . (7.4)

Proof of Proposition 7.1.

⇐) Suppose P is Hermitian. Then, for every u,w ∈ V , we have that 〈v|P (v′)〉 =
〈
P †(u)

∣∣w
〉

=
〈P (u)|w〉. Let x ∈ ker(P ) and y ∈ im(P ) be arbitrary, and consider their inner product 〈x|y〉.
Since y ∈ im(P ), there exists a v ∈ V such that y = P (v). Therefore,

〈x|y〉 y=P (v)
====== 〈x|P (v)〉 P †=P

===== 〈P (x)|v〉 x∈ker(P )
======= 〈0|v〉 = 0 . (7.5)

Since x and y are arbitrary, it follows that 〈x|y〉 = 0 for every x ∈ ker(P ) and every y ∈ im(P ),
showing that im(P ) ⊥ ker(P ).

⇒) Suppose that im(P ) ⊥ ker(P ), that is 〈x|y〉 = 0 for every x ∈ ker(P ) and every y ∈ im(P ).
Let xK , yK ∈ ker(P ) and xI , yI ∈ im(P ) be arbitrary. Since im(P ) ⊥ ker(P ), we have that

〈xK |yI〉 = 0 = 〈xI |yK〉 . (7.6)

Adding 〈xI |yI〉 to both sides of the equation and using the linearity of the scalar product
yields

〈xK |yI〉 = 〈xI |yK〉 ⇐⇒ 〈xK |yI〉+ 〈xI |yI〉 = 〈xI |yK〉+ 〈xI |yI〉
⇐⇒ 〈xK + xI |yI〉 = 〈xI |yK + yI〉 . (7.7)

Since xK , yK ∈ ker(P ), P (xK) = 0 = P (yK), such that

xI = xI + P (xK) and yI = yI + P (yK) . (7.8)

Furthermore, since xI , yI ∈ im(P ) ⊂ V and P is a projection, we have that P (xI) = xI and
P (yI) = yI , such that

xI = xI + P (xK) = P (xI) + P (xK) and yI = yI + P (yK) = P (yI) + P (yK) . (7.9)

Therefore, by linearity of P , we obtain

〈xK + xI |yI〉 = 〈xI |yK + yI〉
⇐⇒ 〈xK + xI |P (yK + yI)〉 = 〈P (xK + xI)|yK + yI〉 . (7.10)

In Proposition 3.1 we showed that, for a projection operator P : V → V , V splits into a direct
sum of im(P ) and ker(P ), V = im(P ) ⊕ ker(P ). Since xK , yK ∈ ker(P ) and xI , yI ∈ im(P )
are arbitrary, eq. (7.10) implies that for every v, w ∈ V

〈v|P (v)〉 = 〈P (v)|w〉 , (7.11)

which is exactly the definition of a self-adjoint (Hermitian) operator. hence, we showed that
P † = P , as required.
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7.1.2 Pairwise transversality

Let us have a closer look at products of Young projection operators, and criteria, which make these
products transversal. Consider two Young tableaux Θ and Φ in Yn. Then the product of their
corresponding Young projection operators is given by

YΘYΦ = αΘαΦ · SΘAΘSΦAΦ . (7.12)

Clearly, if the product AΘSΦ vanishes, then so does the product of the Young projectors, but if
AΘSΦ 6= 0, then YΘYΦ 6= 0 in general,

YΘYΦ = αΘαΦ· SΘ AΘ SΦ AΦ =⇒ YΘYΦ 6= 0 in general .
6= 0 6= 0

6= 0

. (7.13)

For AΘSΦ to vanish indentically, we require a particular antisymmetrizer Ai ∈ AΘ to have more
than one leg in common with a symmetrizer Sj ∈ SΦ. This happens exactly when a pair of boxes
( k , l ) appears in the same column of Θ and in the same row of Φ

If the tableaux Θ and Φ have different shapes, then we have already shown that YΘYΦ = 0, c.f.
Theorem 5.2 part 3.

If the two tableaux Θ and Φ have the same shape, one must work harder: To see when a pair of
boxes ( k , l ) appears in the same column in Θ and in the same row in Φ, we need to introduce
an order relation between tableaux of the same shape:

Definition 7.1 – order relation amongst tableaux of the same shape:
Let Θ and Φ be two Young tableaux and let θij be the entry in the ith row and jth column of Θ, and
similarly for the entry φij in Φ. We define the row-words of Θ and Φ, RΘ and RΦ respectively, to
be the row-vectors

RΘ = (θ11, θ12, . . . , θ21, . . .) and RΦ = (φ11, φ12, . . . , φ21, . . .) . (7.14)

We say that Θ precedes Φ and write Θ ≺ Φ if θij < φij for the leftmost ij where θij ∈ RΘ and
φij ∈ RΦ differ.7

For example, the Young tableaux of shape can be ordered as

1 2 3
4 5
︸ ︷︷ ︸

RΘ=(1,2,3,4,5)

≺ 1 2 4
3 5
︸ ︷︷ ︸

RΘ=(1,2,4,3,5)

≺ 1 2 5
3 4
︸ ︷︷ ︸

RΘ=(1,2,5,3,4)

≺ 1 3 4
2 5
︸ ︷︷ ︸

RΘ=(1,3,4,2,5)

≺ 1 3 5
2 4
︸ ︷︷ ︸

RΘ=(1,3,5,2,4)

. (7.15)

It turns out that this order relation defines exactly when a pair of boxes ( k , l ) appearing in the
same column of a tableau Θ appear in the same row of a tableau Φ, forcing the product AΘSΦ to
vanish [20, section 5.3, Theorem V]. We repeat the proof given by [20]:

Let Θ and Φ be two Young tableaux of the same shape and let Θ ≺ Φ. Then, the first entry
θij ∈ RΘ distinct from φij ∈ RΦ satisfies θij < φij . Thus, the entry φkl ∈ RΦ such that θij = φkl

7In words, we order a set of tableaux according to the relative lexical order of their associated row-words. This
concept is not to be confused with the lexical order within a tableau, also cold MOLD, which will be introduced in
section 9.
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must appear in a row below row i, but, by definition of Young tableaux, must be in a column to
the left of column j,

θij = φkl with l < j and k > i . (7.16)

Since l < j, the entries θil and φil must be equal (we assumed that the entries θij and φij were
the first distinct entries appearing in the respective row-words), θil = φil. Thus, the pair of entries
(θij = φkl, θil = φil) appears in the same row in Θ (the ith row) and in the same column in Φ (the
lth column), yielding AΦSΘ = 0. Thus, we can say that

Θ ≺ Φ ⇒ YΦYΘ = 0 , (7.17)

as required.

As we have already see in the example (7.2), eq. (7.17) does not necessarily hold for the reverse
ordering of the Young projectors,

Θ ≺ Φ 6⇒ YΘYΦ = 0 . (7.18)

Suppose we could find a Hermitian version of the Young projection operators that shares their
one-sided transversality property. That is, suppose PΘ, PΦ satisfy

Θ ≺ Φ ⇒ PΦPΘ = 0 . (7.19)

Then, since PΘ and PΦ are both Hermitian, taking the Hermitian conjugate of eq. (7.19) yields

0 = 0† = (PΦPΘ)† = P †ΘP
†
Φ = PΘPΦ , (7.20)

showing that such Hermitian Young projection operators are truely transversal,

PΘPΦ = δΘΦPΘ . (7.21)

This again motivates us to look for Hermitian Young projection operators as a solution to the
transversality problem.

7.1.3 Summation to parent operator

The set
{

Θ⊗ n
}

obtained from a particular tableau Θ ∈ Yn−1 by adding the box n in the

appropriate places shall be called the child set of Θ. Clearly, adding the box n does not yield a
map from Yn−1 to Yn in the mathematical sense as it does not yield a unique result; instead, we
obtain a map from Yn−1 to the power set (the set of all subsets) of Yn, P(Yn). As an example, the

Young tableau Θ = 1 2 3
4

generates the subset {Θ⊗ 5 } of Y5,

Θ =
1 2 3

4
∈ Y4

1 2 3

4

5

1 2 3

4 5

1 2 3 5

4
∈
{

Θ⊗ 5
}
⊂ Y5

(7.22)
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However, the inverse operation (i.e. removing the box with the highes entry) does give rise to a
unique tableau and therefore is a map from Yn to Yn−1: Let us denote this map by π. π can then
repeatedly be applied to the resulting tableau,

1 3 6
2 5
4

π−−→
1 3
2 5
4

π−−→
1 3
2
4

π−−→ 1 3
2

. (7.23)

Definition 7.2 – parent map and ancestor tableaux:
Let Θ ∈ Yn be a Young tableau. We define its parent tableau Θ(1) ∈ Yn−1 to be the tableau obtained

from Θ by removing the box n of Θ.8 Furthermore, we will define a parent map π from Yn to
Yn−1, for a particular n,

π : Yn → Yn−1, (7.24a)

which acts on Θ by removing the box n from Θ,

π : Θ 7→ Θ(1). (7.24b)

In general, we define the successive action of the parent map π by

Yn π−−→ Yn−1
π−−→ Yn−2

π−−→ . . .
π−−→ Yn−m, (7.25a)

and denote it by πm,

πm : Yn → Yn−m, πm := Yn π−−→ Yn−1
π−−→ Yn−2

π−−→ . . .
π−−→ Yn−m . (7.25b)

We will further denote the unique tableau obtained from Θ by applying the map π m times, πm(Θ),
by Θ(m), and refer to it as the ancestor tableau of Θ m generations back,

πm : Θ 7→ Θ(m) . (7.25c)

Any operator O ∈ Lin (V ⊗n) can be embedded into Lin (V ⊗m) for m > n in several ways, simply
by letting the embedding act as the identity on (m − n) of the factors; how to select these factors
is a matter of what one plans to achieve. The most useful convention for our purposes is:

Definition 7.3 – Canonical embedding:
Let O ∈ Lin (V ⊗n) and consider an embedding into the space Lin

(
V ⊗(m+n)

)
in which O act on the

first n factors and the identity acts on the remaining (last) (m − n) factors. We will call this the
canonical embedding.

On the level of birdtracks, this amounts to letting the index lines of O coincide with the top n index
lines of Lin (V ⊗m), and the bottom (m− n) lines of the embedded operator constitute the identity
birdtrack of size (m− n). For example, the operator Y 1 2

3
is canonically embedded into Lin

(
V ⊗5

)

as

4

3
↪→ 4

3
. (7.26)

8We note that the tableau Θ(1) is always a Young tableau if Θ was a Young tableau, since removing the box with
the highest entry cannot possibly destroy the properties of Θ (and thus Θ(1)) that make it a Young tableau.
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Furthermore, we will use the same symbol O for the operator as well as for its embedded counterpart.
Thus, Y 1 2

3
shall denote both the operator on the left as well as on the right hand side of the

embedding (7.26).

With these definitions in mind, we want may rewrite condition 3 as follows: Let {Θ⊗ n} be the
subset of all tableaux in Y that have Θ ∈ Yn−1 as their parent tableau. We require the Hermitian
Young projection operators PΦ to satisfy

PΘ =
∑

Φ∈{Θ⊗n}
PΦ , (7.27)

where PΘ is understood to be canonically embedded into Lin (V ⊗n). That eq. (7.27) cannot hold
for Young projection operators can already be seen for n = 3:

Example 7.1:

Consider the Young projection operators Y 1 2 and Y 1
2

canonically embedded in Lin
(
V ⊗3

)
,

Y 1 2 = and Y 1
2

= . (7.28)

Clearly, these two operators are mutually transversal and add up to unity,

Y 1 2 Y 1
2

= 0 = Y 1
2
Y 1 2 and Y 1 2 + Y 1

2
= , (7.29a)

such that V ⊗3 can be written as a direct sum of the two modules generated by Y 1 2 and Y 1
2

respectively,

V ⊗3 = Y 1 2 V
⊗3 ⊕ Y 1

2
V ⊗3 . (7.29b)

In other words, the space V ⊗3 splits into two subspaces which can be indexed by Y 1 2 and
Y 1

2

V ⊗n

−→ Y 1 2
Y 1

2

V ⊗n

; (7.30)

for a schematic representation. It can be shown that analogous relations to eqns. (7.29) also
hold for the Young projectors YΘ where Θ ∈ Y3, that is

YΘYΦ = δΘΦYΘ for all Θ,Φ ∈ Y3

and Y 1 2 3 + Y 1 2
3

+ Y 1 3
2

+ Y 1
2
3

= , (7.31a)

such that

V ⊗3 = Y 1 2 3 V
⊗3 ⊕ Y 1 2

3
V ⊗3 ⊕ Y 1 3

2
V ⊗3 ⊕ Y 1

2
3

V ⊗3 . (7.31b)
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Since 1 2 3 and 1 2
3 have the same parent tableau, and since also 1 3

2 and
1
2
3

have the same

parent tableau,

1 2

1 2 3
1 2

3

⊗ 3 ⊗ 3
and

1

2

1 3

2

1

2

3

⊗ 3 ⊗ 3 , (7.32)

one expects the subspaces corresponding to the former two tableaux to be contained in
Y 1 2 V

⊗3, and the subspaces of the latter two tableaux to be contained in Y 1
2
V ⊗3. However,

as can be verified via direct calculation,

Y 1 2 3 + Y 1 2
3
6= Y 1 2 and Y 1 3

2
+ Y 1

2
3

6= Y 1
2

+
4

3
6= 4

3
+ 6= ,

(7.33)

such that

Y 1 2 3 V
⊗3 ⊕ Y 1 2

3
V ⊗3

��∼= Y 1 2 V
⊗3 and Y 1 3

2
V ⊗3 ⊕ Y 1

2
3

V ⊗3
��∼= Y 1

2
V ⊗3 . (7.34)

In particular, we find

= = ⇒ Y 1 2 3 V
⊗3 ⊂ Y 1 2 V

⊗3 (7.35a)

= = ⇒ Y 1
2
3

V ⊗3 ⊂ Y 1
2
V ⊗3 , (7.35b)

but

4

3
=

4

3
6= 4

3
⇒ Y 1 2

3
V ⊗3 ��⊂ Y 1 2 V

⊗3 (7.35c)

4

3
6= 4

3
=

4

3
⇒ Y 1 3

2
V ⊗3 ��⊂ Y 1

2
V ⊗3 . (7.35d)

Therefore, the Young projectors YΘ with Θ ∈ Y3 decompose the space V ⊗3 as

Y 1 2
Y 1

2

V ⊗n

−→ Y 1 2 3

Y 1 2
3

Y 1 3
2

Y 1
2
3

V ⊗n

. (7.36)

On the other hand, let us look again at eqns (7.33) and rearrange them as

Y 1 2
3
6= Y 1 2 − Y 1 2 3 and Y 1

2
3

6= Y 1
2
− Y 1 3

2

4

3
6= − 4

3
6= − ;

(7.37)
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notice that the right hand side of each of these equations is Hermitian. This makes us hopeful
that a Hermitian version of the Young projection operators does indeed satisfy the nested
hierarchy property we require,

V ⊗n

−→ P 1 2
P 1

2

V ⊗n

−→
P 1 2 3

P 1 2
3

P 1 3
2

P 1
2
3

V ⊗n

, (7.38)

where the PΘ are Hermitian projectors corresponding to the tableaux Θ.

7.2 The KS algorithm

We follow the article Hermitian Young Operators by Keppeler and Sjödahl (KS) [21].

From now on, we will always denote the Young projection operator corresponding to a particular
Young tableau Θ ∈ Yn by YΘ, and the Hermitian Young projection operator corresponding to Θ
by PΘ.

Theorem 7.1 – KS Hermitian Young projectors [21]:
Let Θ ∈ Yn be a Young tableau. If n ≤ 2, then the Hermitian Young projection operator PΘ

corresponding to the tableau Θ is given by

PΘ := YΘ. (7.39)

This provides a termination criterion for an iterative process that obtains PΘ from PΘ(1)
via

PΘ := PΘ(1)
YΘ PΘ(1)

, (7.40)

once n > 2. In (7.40) PΘ(1)
is understood to be canonically embedded into Lin (V ⊗n). Thus, PΘ is

recursively obtained from the full chain of its ancestor operators PΘ(m)
.

The projection operators constructed in this way fulfill the following properties for all n:

Idempotency: PΘ · PΘ = PΘ (7.41a)

Transversality: PΘ · PΦ = δΘΦPΘ (7.41b)

Dimension: tr (PΘ) = tr (YΘ) (7.41c)

Completeness:
∑

Θ∈Yn

PΘ = 1n (7.41d)

Nestedness: PΘ(m)
PΘ = PΘ = PΘPΘ(m)

and
∑

Ψ∈{Θ⊗n}
PΨ = PΘ (7.41e)

Hermiticity: P †Θ = PΘ . (7.41f)

Before proving this theorem, let us see it applied in action:
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Exercise 7.1: Construct the Hermitian Young projection operator corresponding to the

Young tableau 1 2 4

3 5
accoding to the KS algorithm described in Theorem 7.1 in the birdtrack

formalism.

Solution: Consider the Young tableau Θ ∈ Y5 given by

Θ =
1 2 4
3 5

. (7.42)

Its ancestor tableaux are

Θ(1) =
1 2 4
3

, Θ(2) =
1 2
3

and Θ(3) = 1 2 ; (7.43)

note that we do not have to consider the ancestor Θ(4), since Θ(3) ∈ Y2 and thus terminates the
recursion (7.40). When constructing the Hermitian Young projection operator PΘ according
to the KS Theorem 7.1, we first have to find PΘ(3)

, PΘ(2)
and PΘ(1)

. According to the Theorem,
PΘ(3)

= YΘ(3)
, since Θ(3) ∈ Y2. Then, following the iterative procedure of the KS Theorem,

PΘ(2)
and PΘ(1)

are given by

PΘ(2)
= PΘ(3)

YΘ(2)
PΘ(3)

= YΘ(3)
YΘ(2)

YΘ(3)
(7.44a)

PΘ(1)
= PΘ(2)

YΘ(1)
PΘ(2)

= YΘ(3)
YΘ(2)

YΘ(3)︸ ︷︷ ︸
=PΘ(2)

YΘ(1)
YΘ(3)

YΘ(2)
YΘ(3)︸ ︷︷ ︸

=PΘ(2)

. (7.44b)

Then, the desired operator PΘ is

PΘ = PΘ(1)
YΘPΘ(1)

= YΘ(3)
YΘ(2)

YΘ(3)
YΘ(1)

YΘ(3)
YΘ(2)

YΘ(3)︸ ︷︷ ︸
=PΘ(1)

YΘ YΘ(3)
YΘ(2)

YΘ(3)
YΘ(1)

YΘ(3)
YΘ(2)

YΘ(3)︸ ︷︷ ︸
=PΘ(1)

.(7.44c)

As a birdtrack, PΘ can be written as

PΘ =
128

9
·
︸︷︷︸
ȲΘ(3)

︸ ︷︷ ︸
ȲΘ(2)

︸︷︷︸
ȲΘ(3)

︸ ︷︷ ︸
ȲΘ(1)

︸︷︷︸
ȲΘ(3)

︸ ︷︷ ︸
ȲΘ(2)

︸︷︷︸
ȲΘ(3)︸ ︷︷ ︸

P̄Θ(1)

︸ ︷︷ ︸
ȲΘ

︸︷︷︸
ȲΘ(3)

︸ ︷︷ ︸
ȲΘ(2)

︸︷︷︸
ȲΘ(3)

︸ ︷︷ ︸
ȲΘ(1)

︸︷︷︸
ȲΘ(3)

︸ ︷︷ ︸
ȲΘ(2)

︸︷︷︸
ȲΘ(3)︸ ︷︷ ︸

P̄Θ(1)

=
128

9
· , (7.45)

where we used the idempotency property (Proposition 2.1) and the absorption property
(eq. (2.22a)) of (anti-) symmetrizers in the last step, and

128

9
=
(
αΘ(3)

)8 (
αΘ(2)

)4 (
αΘ(1)

)2
αΘ (7.46)

is the appropriate normalization constant arising from the KS algorithm.

We will now reproduce the proof of Theorem 7.1 given in [21], filling in a few more details (especially
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regarding the nestedness property) that were not explicitly stated there.

Proof of Theorem 7.1. Consider a Young tableau Θ ∈ Yn and construct the KS projector PΘ

according to the Theorem. We will prove that PΘ indeed satisfies all properties listed in eqns. (7.41)
by induction on n:

Base Step: For n = 2, the PΘ = YΘ, so property (7.41c) is trivially satisfied. The remaining
equations are easily checked to hold via direct calculation.

Induction Step: Assume that eqns. (7.41) hold for all Young projection operators corresponding
to tableaux in Ym with m ≤ n− 1.

• Idempotency PΘPΘ = PΘ, eq. (7.41a): This part is easiest shown using the simplification
rules that will be discussed in section 8. Therefore, we will postpone this part of the proof to
section 8.1.1.

• Transversality PΘPΦ = δΘΦPΘ, eq. (7.41b): We already proved this equation for Θ = Φ. We
distinguish two cases:

If Θ and Φ have the same shape, then their ancestors must be different. By the induction
hypothesis, it then follows that PΘ(1)

PΦ(1)
= 0, such that

PΘPΦ = PΘ(1)
YΘPΘ(1)

PΦ(1)
YΦPΦ(1)

= 0 , (7.47)

and similarly for PΦPΘ.

If Θ and Φ have different shapes, then we notice that PΘ(1)
PΦ(1)

is merely an element ρ of the

algebra of invariants C[Sn] = API (SU(N), V ⊗n),

PΘPΦ = PΘ(1)
YΘPΘ(1)

PΦ(1)
YΦPΦ(1)

= PΘ(1)
YΘρYΦPΦ(1)

, (7.48)

and we already know that YΘρYΦ must vanish if Θ and Φ have different shapes from Theo-
rem 5.2.

• Dimension tr (PΘ) = tr (YΘ), eq. (7.41c): this is left as an exercise (see [21]).

• Completeness
∑

Θ∈Yn PΘ = 1n, eq. (7.41d): Define an operator P as

P :=
∑

Θ∈Yn

PΘ . (7.49)

Due to the transversality (eq. (7.41b)) of the PΘ, it follows that

P 2 = P . (7.50a)

P 2 = P . Furthermore, since the trace of each PΘ is the same as that of YΘ (eq. (7.41c)), we
have that

tr (P ) = tr

(∑

Θ∈Yn

PΘ

)
=
∑

Θ∈Yn

tr (PΘ) =
∑

Θ∈Yn

tr (YΘ) = Nn , (7.50b)

where N = dim(V ). The unique operator that satisfies both eqns. (7.50) is 1n, and we
conclude that P = 1n, as required.
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• Nestedness PΘ(m)
PΘ = PΘ = PΘPΘ(m)

and
∑

Ψ∈{Θ⊗n} PΨ = PΘ, eq. (7.41e): The first

property is easiest shown using the simplification rules of section 8, so the proof will be
postponed to section 8.1.1.

Let us now prove the summation property
∑

Ψ∈{Θ⊗n} PΨ = PΘ: By the completeness relation

of the PΘ, eq. (7.41d), we have

∑

Θ∈Yn−1

PΘ = 1n−1 , (7.51)

where 1k is the identity operator on the space V ⊗k. Eq. (7.51) can be canonically embedded
into the space V ⊗n; in order to make the embedding of the operator PΘ explicit, we will — for
this part of the proof only — make the identity operator on the last factor explicitly visible
in the birdtrack spirit and denote the embedded operator by the symbol PΘ.9 The embedded
equation (7.51) thus is

∑

Θ∈Yn−1

PΘ = 1n−1 = 1n . (7.52)

Even though (7.52) is a decomposition of unity, a finer decomposition of 1n (also using only
transversal objects) is obtained with KS projection operators corresponding to Young tableaux
in Yn again by completenedss (eq. (7.41d)),

∑

Φ∈Yn

PΦ = 1n . (7.53)

Since clearly Yn is the union of all the sets {Θ⊗ n }, for all Θ ∈ Yn−1, the sum (7.53) can be
split into

∑

Φ∈Yn

PΦ =
∑

Θ∈Yn−1


 ∑

Ψ∈{Θ⊗n}

PΨ


 = 1n . (7.54)

Since both (7.52) and (7.54) are a decomposition of 1n, they must be equal to each other,
yielding

∑

Θ∈Yn−1

PΘ =
∑

Θ∈Yn−1


 ∑

Ψ∈{Θ⊗n}

PΨ


 . (7.55)

Let us now multiply the above equation with a particular operator PΘ′ on V ⊗n, where Θ′ is a
particular tableau in Yn−1. Due to the transversality property (eq. (7.41b)) and the inclusion
property (PΘ(m)

PΘ = PΘ = PΘPΘ(m)
) of the KS projectors,10 it finally follows that

∑

Θ∈Yn−1

δΘΘ′PΘ =
∑

Θ∈Yn−1


δΘΘ′

∑

Ψ∈{Θ⊗n}

PΨ


 (7.56)

PΘ′ =
∑

Ψ∈{Θ′⊗n}

PΨ . (7.57)

9In birdtrack notation, the canonically embedded operator PΘ will be PΘ with an extra index line on the bottom,
making the notation PΘ intuitive.

10This is where the proof would break down for the standard Young projection operators even for n ≤ 4, as they
explicitly do not satisfy this image inclusion property, c.f. [6, Appendix B].
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• Hermiticity P †Θ = PΘ, eq. (7.41f): Let Θ ∈ Yn be a particular Young tableau. We already know
that the corresponding Young projection operator YΘ projects onto a subspace UΘ ⊂ V ⊗n

carrying an irreducible representation ΓΘ of SU(N). Furthermore, by the induction hypothesis,
PΘ(1)

: V ⊗n → V ⊗n is a Hermitian projection operator (canonically embedded into V ⊗n)

projecting orthogonally onto an SU(N)-invariant subspace WΘ(1)
⊂ V ⊗n. This subspace can

be written as a direct sum

im(PΘ(1)
) = WΘ(1)

=
⊕

i

Ũi (7.58)

where each Ũi carries an irreducible representation of SU(N) corresponding to one of the
tableaux in

{
Θ(1) ⊗ n

}
(since the projectors PΘ fulfill the nestedness property eq. (7.41e),

as was already shown). Clearly, all tableaux in
{

Θ(1) ⊗ n
}

have a different shape (as Φ and
Ψ having the same parent and the same shape implies Φ = Ψ). Since two representations
are equivalent if and only if the corresponding Young tableaux have the same shape, all
representations generated by the tableaux in

{
Θ(1) ⊗ n

}
are inequivalent. Without loss of

generality, assume that Ũ1 is the subspace corresponding to Θ ∈
{

Θ(1) ⊗ n
}

. Then, we write

im(PΘ(1)
) = WΘ(1)

= Ũ1 ⊗ Ũ⊥1 , (7.59)

where Ũ⊥1 is also an SU(N)-invariant subspace of WΘ(1)
(by Maschke’s Theorem 3.1) and Ũ1

obviously carries a representation equivalent to that carried by U , as both these representations
are generated through the same tableau Θ.

From Proposition 3.1, we know that for any projection operator P : V → V , we may write
V = im(P )⊕ ker(P ). Since PΘ(1)

: V ⊗n → V ⊗n is a projection operator, we have that

V ⊗n = im(PΘ(1)
)⊕ ker(PΘ(1)

) = Ũ1 ⊗ Ũ⊥1 ⊕ ker(PΘ(1)
) , (7.60)

where we decomposed im(PΘ(1)
) further according to eq. (7.59). Therefore, we may write any

vector v ∈ V ⊗n as

v = u1 ⊕ u2 ⊕ k =



u1

u2

k


 , where u1 ∈ Ũ1 , u2 ∈ Ũ⊥1 and k ∈ ker(PΘ(1)

) . (7.61)

Since PΘ(1)
is a projection operator and u1, u2 ∈ im(PΘ(1)

), PΘ(1)
(u1) = u1 and PΘ(1)

(u2) = u2.
Furthermore, since k ∈ ker(PΘ(1)

), PΘ(1)
(k) = 0. Therefore, in this basis, one may write PΘ(1)

as

PΘ(1)
=




1Ũ1
0 0

0 1Ũ⊥1
0

0 0 0ker(PΘ(1)
)


 , (7.62)

where the subscripts indicate the dimension of the square matrices 1 and 0. Let us also try
to write YΘ as a matrix: As already mentioned, YΘ : V ⊗n → V ⊗n projects onto the SU(N)-
invariant irreducible subspace U which carries a representation equivalent to that carried by
Ũ⊥1 . Therefore, the top left block of YΘ of dimension dim(Ũ1), denote this block by Y11 is non-
zero. In particular, by Schur’s Lemma 5.2, this block must be proportional to the unit matrix,
Y11 ∝ 1Ũ1

. Since the space Ũ⊥1 only contains irreducible subspaces that are inequivalent to
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U , the the corresponding blocks of YΘ must, by Schur’s Lemma 5.2, be zero. However, since
ker(PΘ(1)

) may contain subspaces equivalent to U , we must allow for YΘ to have nonzero

entries in places that mix Ũ⊥1 and ker(PΘ(1)
). In other words, YΘ has the block structure

YΘ =



Y11 0 Y12

0 0Ũ⊥1
0

Y21 0 Y22


 . (7.63)

Consider now the product PΘ = PΘ(1)
YΘPΘ(1)

. Since we already showed that tr (PΘ) = tr (YΘ),
PΘ 6= 0. By direct calculation, we find that

PΘ = PΘ(1)
YΘPΘ(1)

=



Y11 0 0
0 0Ũ⊥1

0

0 0 0ker(PΘ(1)
)


 ∝




1Ũ1
0 0

0 0Ũ⊥1
0

0 0 0ker(PΘ(1)
)


 . (7.64)

Hence, PΘ is proportional to the projection onto the irreducible orthogonal subspace corre-
sponding to Θ. Since, by eq. (7.41a), PΘ itself is a projection and hence this proportionality

constant must be 1, it follows that PΘ is a orthogonal projection, P †Θ = PΘ.

This concludes the proof of the theorem.

89



8 Simplification rules for birdtrack operators

We closely follow [22]

8.1 Cancellation of wedged Young projectors

We begin by presenting two main cancellation rules, Theorem 8.1 and Corollary 8.1. The benefit
of these rules is that they can be used to shorten the birdtrack-expressions of certain operators
(sometimes inducing a constant factor), and thus make the resulting expression more useful for
practical calculations.

Theorem 8.1 – Cancellation of wedged Young projectors:
Consider an operator O consisting of an alternating product of altogether four symmetrizers and
anti-symmetrizers, with the middle pair being proportional to a Young projection operator

O = AΦ1 SΘ AΘ SΦ2 = AΦ1 eΘ SΦ2 (8.1)

such that SΘ ⊃ SΦ2 and AΘ ⊃ AΦ1 i.e. SΘSΦ2 = SΦ2 = SΦ2SΘ and AΘAΦ1 = AΦ1 = AΦ1AΘ

(c.f. eq. (2.21)). Then, we can drop ȲΘ while acquiring a scalar factor 1/αΘ:

AΦ1 eΘ SΦ2 =
1

αΘ
AΦ1 SΦ2 . (8.2)

Corresponding cancellations apply if all symmetrizers are exchanged for antisymmetrizers and vice
versa.

Using YΘ instead ȲΘ removes the constant. The form presented here is that usually encountered in
practical calculations.

Before looking at a general proof for this statement, we will develop the strategy for it through an
example:

Example 8.1:

Consider the operator O defined as

O =

︸ ︷︷ ︸
AΦ1

︸︷︷︸
SΘ

︸ ︷︷ ︸
AΘ

︸ ︷︷ ︸
SΦ2

. (8.3)

The central sets of symmetrizers and antisymmetrizers correspond to the Young tableau

Θ =
1 2
3

, (8.4)

embedded into Lin
(
V ⊗5

)
. The inclusion criterion can be verified in multiple ways:

• Thinking in terms of image inclusions we note that SΘ ⊃ SΦ2 (since SΘ = {S12} ⊃
{S125} = SΦ2) and

and AΘ ⊃ AΦ1 (since AΘ = {A13} ⊃ {A13,A24} = AΦ1)
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• Equivalently, in terms of birdtracks we see that

︸ ︷︷ ︸
SΘ

︸ ︷︷ ︸
SΦ2

=

︸ ︷︷ ︸
SΦ2

=

︸ ︷︷ ︸
SΦ2

︸ ︷︷ ︸
SΘ

(8.5a)

︸ ︷︷ ︸
AΦ1

︸ ︷︷ ︸
AΘ

=

︸ ︷︷ ︸
AΦ1

=

︸ ︷︷ ︸
AΘ

︸ ︷︷ ︸
AΦ1

. (8.5b)

Let us explore how the cancellation of eq. (8.2) comes about in example (8.3): First note that
due to eq. (8.5) we may rewrite O as

O =

︸ ︷︷ ︸
AΦ1

︸︷︷︸
SΘ

︸ ︷︷ ︸
AΘ

︸ ︷︷ ︸
SΦ2

eq.
====
(8.5)

AΦ1
→ AΦ1

AΘ SΦ2
→ SΘSΦ2

=

( )

︸ ︷︷ ︸
e†Θ

( )

︸ ︷︷ ︸
e†Θ

. (8.6)

Idempotency of YΘ implies e†Θe
†
Θ = 1

αΘ
e†Θ so that

O = 1
αΘ
· eq.

====
(8.5)

1
αΘ
·
︸ ︷︷ ︸

AΦ1

︸ ︷︷ ︸
SΦ2

.

AΦ1
AΘ → AΦ1

SΘSΦ2
→ SΦ2

(8.7)

Example 8.1 exhibits a clear three step pattern that immediately furnishes the general proof:

Proof of Theorem 8.1. Firstly, let us factor SΘ from SΦ2 and AΘ from AΦ1 to generate e†Θe
†
Θ (this

is possible since SΘ ⊃ SΦ2 and AΘ ⊃ AΦ1 as required by the Theorem)

O = AΦ1 AΘ SΘ AΘ SΘ SΦ2 ,

AΦ1
→ AΦ1

AΘ SΦ2
→ SΘSΦ2

e†Θ e†Θ

(8.8)

Secondly, we use idempotency of YΘ so simplify e†Θe
†
Θ = 1/αΘe

†
Θ

O = 1
αΘ
·AΦ1 AΘ SΘ SΦ2 ,

e†Θ

(8.9)
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Thirdly, we reabsorb SΘ into SΦ2 and AΘ into AΦ1

O = 1
αΘ
·AΦ1 ��AΘ ��SΘ SΦ2 = 1

αΘ
·AΦ1 SΦ2 .

AΦ1
AΘ → AΦ1

SΘSΦ2
→ SΦ2

(8.10)

8.1.1 Proving idempotency and nestedness of the KS operators

The KS-algorithm (Theorem 7.1) containts the ingredients of Theorem Theorem 8.1 embedded into
chains of Young projectors; we thus explicitly formulate the following Corollary:

Corollary 8.1 – cancellation of wedged ancestor-operators:
Consider two Young tableaux Θ and Φ such that they have a common ancestor tableau Γ. Let YΘ, YΦ

and YΓ be their respective Young projection operators, all embedded in an algebra that encompasses
all three. Then

YΘYΓYΦ = YΘYΦ . (8.11)

This Corollary immediately follows from Theorem 8.1 since the product YΘYΓYΦ will be of the form

YΘYΓYΦ = αΘαΓαΦ · SΘ AΘ SΓ AΓ SΦ︸ ︷︷ ︸
O

AΦ , (8.12)

where the marked factor constitutes O as defined in equation (8.1) in Theorem 8.1.

Corollary 8.1 allows for the following compactification of the KS operators:

Corollary 8.2 – Compact KS operators:
Let Θ ∈ Yn be a Young tableau. Then, the corresponding Hermitian Young projection operator PΘ

is given by

PΘ = YΘ(n−2)
YΘ(n−3)

YΘ(n−4)
. . . YΘ(2)

YΘ(1)
YΘ YΘ(1)

YΘ(2)
. . . YΘ(n−4)

YΘ(n−3)
YΘ(n−2)

. (8.13)

Exercise 8.1: Construct the Hermitian Young projection operator corresponding to the

Young tableau 1 2 4

3 5
accoding to the compact KS algorithm described in Corollary 8.2 in the

birdtrack formalism.

Solution: Consider the Young tableau Θ ∈ Y5 given by

Θ =
1 2 4
3 5

. (8.14)
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This tableau has the following ancestor tree

1 2 4
3 5
︸ ︷︷ ︸

Θ

π−−→ 1 2 4
3
︸ ︷︷ ︸

Θ(1)

π−−→ 1 2
3
︸ ︷︷ ︸

Θ(2)

π−−→ 1 2
︸ ︷︷ ︸

Θ(3)

. (8.15)

Using Corollary 8.2, the Hermitian Young projection operator corresponding to the tableau
Θ is given by

PΘ = 8 ·
︸︷︷︸
eΘ(3)

︸ ︷︷ ︸
eΘ(2)

︸ ︷︷ ︸
eΘ(1)

︸ ︷︷ ︸
eΘ

︸ ︷︷ ︸
eΘ(1)

︸ ︷︷ ︸
eΘ(2)

︸︷︷︸
eΘ(3)

, (8.16a)

where

8 =
(
αΘ(3)

αΘ(2)
αΘ(1)

)2
αΘ . (8.16b)

Note that the expression (8.16a) for PΘ is considerably shorter than the expression given in
eq. (7.45). However, as we will see in section 9, there exists an even more compact form of
PΘ

Proof of Theorem 7.1 (continued). Let us now prove that the KS- projectors are idempotent and
satisfy the required nestedness property:

• Idempotency PΘPΘ = PΘ, eq. (7.41a): Let PΘ be constructed according to Corollary 8.2,

PΘ = YΘ(n−2)
YΘ(n−3)

· · ·YΘ(1)
YΘ YΘ(1)

· · ·YΘ(n−3)
YΘ(n−2)

. (8.17)

Squaring the operator PΘ allows for the cancellation of wedged ancestor operators due to
Corollary 8.1,

PΘPΘ =

=
(
YΘ(n−2)

· · ·YΘ(1)
YΘ YΘ(1)

· · ·YΘ(n−2)

)(
YΘ(n−2)

· · ·YΘ(1)
YΘ︸ ︷︷ ︸

= YΘ

YΘ(1)
· · ·YΘ(n−2)

)

= YΘ(n−2)
YΘ(n−3)

· · ·YΘ(1)
YΘ YΘ(1)

· · ·YΘ(n−3)
YΘ(n−2)

= PΘ , (8.18)

showing that PΘ is indeed idempotent.

• Nestedness PΘ(m)
PΘ = PΘ = PΘPΘ(m)

, eq. (7.41e): According to Corollary 8.2, the Hermitian
Young projection operators PΘ and PΘ(m)

are given by

PΘ = YΘ(n−2)
· · ·YΘ(m+1)

YΘ(m)
· · ·YΘ(1)

YΘ YΘ(1)
· · · YΘ(m)

YΘ(m+1)
· · ·YΘ(n−2)

(8.19a)

PΘ(m)
= YΘ(n−2)

· · ·YΘ(m+1)
YΘ(m)

YΘ(m+1)
· · ·YΘ(n−2)

. (8.19b)
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When forming the product PΘPΘ(m)
, we see a lot of cancellation of wedged ancestor operators

due to Corollary 8.1,

PΘPΘ(m)
=

=
(
YΘ(n−2)

· · · YΘ(m)
· · ·YΘ(1)

YΘ YΘ(1)
· · · YΘ(m)

· · ·YΘ(n−2)

)(
YΘ(n−2)

· · · YΘ(m)

︸ ︷︷ ︸
= YΘ(m)

· · ·YΘ(n−2)

)

= YΘ(n−2)
· · · YΘ(m)

· · ·YΘ(1)
YΘ YΘ(1)

· · · YΘ(m)
· · ·YΘ(n−2)

. (8.20)

The operator (8.20) can easily be identified as PΘ, yielding the first equality PΘPΘ(m)
= PΘ.

The second equality can similarly be shown, leading to the desired result.

We thus proved the remaining properties of the KS projectors

8.2 Cancellation of factors between bracketing sets

We follow [22, section 3.2].

After this interlude introducing the hook lenght of a Young tableau, we are almost in a position to
prove Theorem 5.2. However, we first need the concept of horizontal and vertical permutations of
a Young tableau:

Definition 8.1 – horizontal and vertical permutations:
Let Θ ∈ Yn be a Young tableau. Then, we define the horizontal permutations of Θ, hΘ, to be
the subset of all permutations in Sn that only operate within the rows of Θ, i.e. those that do not
swap numbers acrossrowa. Similarly, we define the set of vertical permutations of Θ, vΘ, to be the
subset of permutations in Sn that only operate within the columns of Θ, i.e. those that do not swap
numbers across columns.

Note that, by definition of Young tableaux (which requires each integer to appear at most once
within the tableau Θ), it is clear that

hΘ ∩ vΘ = {idn} , (8.21)

where idn is the identity permutation in Sn. Furthermore, hΘ and vΘ are subgroups of Sn for every
Θ ∈ Yn (convince yourself of this fact).
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Example 8.2:

For the tableau Θ given by

Θ =
1 3
2 5
4

, (8.22a)

we have that

hΘ =
{

id, (13), (25), (13)(25)
}

(8.22b)

and

vΘ =
{

id, (12), (14), (24), (124), (142),

(35), (12)(35), (14)(35), (24)(35), (124)(35), (142)(35)
}
. (8.22c)

With these definitions, we restate a lemma attributed to von Neumann in [23] (we use the more
modern notation of this lemma given in [13, Lemma IV.5]):

Lemma 8.1 – von Neumann’s Lemma:
Let Θ ∈ Yn be a Young tableau and let ρ ∈ C[Sn]. If ρ satisfies

hΘρvΘ = sign(vΘ)ρ (8.23)

for all hΘ ∈ hΘ and for all vΘ ∈ vΘ, then ρ is proportional to the Young projection operator
corresponding to Θ,

ρ = λ · YΘ. (8.24)

Furthermore, if we write ρ as a sum of permutations,

ρ =
∑

σ∈Sn

aσσ , aσ ∈ C and σ ∈ Sn , (8.25)

constants, then the constant λ in eq. (8.24) is given by

λ =
aidn

αΘ
, (8.26)

where αΘ is the normalization constant rendering YΘ = αΘeΘ idempotent ( c.f. Theorem 5.3).

Corollary 8.3 – Cancellation of parts of the operator:
Let Θ ∈ Yn be a Young tableau and M an element of the algebra of primitive invariants ∈
API (SU(N), V ⊗n). Then, there exists a (possibly vanishing) constant λ such that

O := SΘ M AΘ = λ · YΘ . (8.27)

If furthermore the operator O is non-zero, then λ 6= 0.

Imagine that M is exclusively constructed as a product of symmetrizers and antisymmetrizers as
will be the case in our applications. Then Θ ∈ Yn and M ∈ API (SU(N), V ⊗n) ensures that AΘ
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is (in birdtrack parlance) the longest set of antisymmetrizers in O, and SΘ is the longest set of
symmetrizers in O. This is illustrated by the following example:

O :=

︸ ︷︷ ︸
SΘ

︸ ︷︷ ︸
M

︸ ︷︷ ︸
AΘ

where Θ :=
1 2 5
3 4

. (8.28)

This observation is a key element in recognizing where eq. (8.27) is applicable.

Proof of Corollary 8.3: From the definition of horizontal and vertical permutations (Definition 8.1)
it is clear that

hΘSΘ = SΘ for all hΘ ∈ hΘ

AΘvΘ = sign(vΘ)AΘ for all vΘ ∈ vΘ ,

where sign(ρ) denotes the signature of the permutation ρ.11 Since O := SΘ M AΘ (eq. (8.27)), it
immediately follows that, for all hΘ ∈ hΘ and all vΘ ∈ vΘ

hΘO = vΘ SΘ M AΘ

SΘ

OvΘ = SΘ M AΘ vΘ

sign(vΘ)AΘ

= SΘ M AΘ = sign(vΘ) SΘ M AΘ

= O = sign(vΘ)O .

More compactly, these conditions become

hΘOvΘ = sign(vΘ)O for all hΘ ∈ hΘ and vΘ ∈ vΘ. (8.29)

However, according to Lemma 8.1, relation (8.29) holds if and only if O is proportional to the
Young projection operator YΘ; that is, there exists a constant λ such that

O = λ · YΘ . (8.30)

From this, it follows immediately that λ 6= 0 if and only if O 6= 0, thus establishing our claim.

One of the main cases of interest is a situation where the structure of O (and thus M) is such that
we know from the outset that it is nonzero. One such condition is that none of the antisymmetrizers
contained in O may exceed the length N – if this occurs we refer to it as a dimensional zero. We
will re-visit this scenario at the end of this section.

Two further conditions ensuring O 6= 0 are presented below, conditions 8.1 and 8.2 (condition 8.3
is a combination of condition 8.1 and 8.2). We do not claim that the conditions given in this
section represent an exhaustive list of cases yielding O 6= 0, but rather that these cases occur most
commonly in practical examples, as we will see in sections 9 and 10.

Condition 8.1 – inclusion of (anti-) symmetrizers:
Let O be of the form (8.27), O = SΘ M AΘ, and M be given by

M = AΦ1 SΦ2 AΦ3 SΦ4 · · · AΦk−1
SΦk , (8.31)

such that AΦi ⊃ AΘ for every i ∈ {1, 3, . . . k− 1} and SΦj ⊃ SΘ for every j ∈ {2, 4, . . . k}. Then O
is a non-zero element of API (SU(N), V ⊗n) ⊂ Lin (V ⊗n).

11sign(ρ) is ±1 depending on whether ρ decomposes into an even or odd number of transpositions. Tung in [13]
means the same when he writes (−1)sign(ρ).
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Proof: The operator O = SΘ M AΘ with M given in (8.31) is defined to be a product of alter-
nating symmetrizers and antisymmetrizers. In particular, the outermost sets of symmetrizers and
antisymmetrizers, SΘ and AΘ respectively, correspond to a Young tableau Θ. By the definition of
Young tableaux, this implies that each symmetrizer in SΘ has at most one common leg with each
antisymmetrizer in AΘ (this is the underlying reason why ȲΘ = SΘAΘ 6= 0). Furthermore, since
SΦj ⊃ SΘ for every j ∈ {2, 4, . . . k} and AΦi ⊃ AΘ for every i ∈ {1, 3, . . . k − 1}, the same applies
for every other (not necessarily neighbouring) pair SΞi and AΞj occurring in O. This guarantees
that the operator O as defined in (8.31) is non-zero.

Example 8.3:

As an example of condition 8.1 consider the operator

O =

︸ ︷︷ ︸
SΘ

︸ ︷︷ ︸
AΦ1

︸︷︷︸
SΦ2

︸ ︷︷ ︸
AΘ

. (8.32)

In O, the sets SΘ and AΘ correspond to the Young tableau

Θ :=
1 2 5
3 4

. (8.33)

The inclusion conditions are AΦ1 = {A13} ⊃ {A13,A24} = AΘ and SΦ2 = {S12,S34} ⊃
{S125,S34} = SΘ.a Then, according to Corollary 8.3, we may cancel the wedged sets AΦ1

and SΦ2 at the cost of a non-zero constant κ,

Q = κ ·
︸ ︷︷ ︸

SΘ

︸ ︷︷ ︸
AΘ

= κ · eΘ . (8.34)

The simplification is noteable and nontrivial. It is useful in all situations where the end
result is simple enough and we have an external criterion to constrain the product of any
of the unknown proportionality factors κ acquired in the possible repeated application of
Corollary 8.3.

aIn this particular case, one can even notice that the set AΦ2 corresponds to the ancestor tableau Θ(2) and
the set SΦ3 corresponds to the ancestor tableau Θ(1) of Θ. Hence, Q can be written as Q = SΘAΘ(2)

SΘ(1)
AΘ.

A second way of constructing non-zero operators is by relating symmetrizers and antisymmetrizers
of different Young tableaux with a permutation. To this end, we require the following definition.

Definition 8.2 – tableau permutation:
Consider two Young tableaux Θ,Φ ∈ Yn with the same shape. Then, Φ can be obtained from Θ by
permuting the numbers of Θ; clearly, the permutation needed to obtain Φ from Θ is unique. Denote
this permutation by ρΘΦ,

Θ = ρΘΦ(Φ) ⇐⇒ Φ = ρ−1
ΘΦ(Θ) = ρΦΘ(Θ) . (8.35)

To construct ρΘΦ explicitly, write the Young tableau Θ and Φ next to each other such that Θ is to
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the left of Φ and then connect the boxes in the corresponding position of the two diagrams, such as

Θ→ ← Φ. (8.36)

Write two columns of numbers from 1 to n next to each other in descending order; the left column
represents the entries of Θ and the right column represents the entries of Φ. Connect the entries
in the left and the right column in correspondence to (8.36). The resulting tangle of lines is the
birdtrack corresponding to ρΘΦ and thus determines the permutation.

Example 8.4: Tableau permutation for Y3

The permutation ρΘΦ between the tableaux

Θ =
1 2
3

and Φ =
1 3
2

(8.37)

is given by

Θ→ 1 2

3

1 3

2
← Φ =⇒ ρΘΦ = . (8.38)

Let Θ and Φ be two Young tableaux of the same shape and construct the permutation ρΘΦ. Fur-
thermore, consider a general operator KΘ comprised of sets of (anti-) symmetrizers which can be
absorbed into SΘ and AΘ respectively, and let HΦ be an operator comprised of sets of (anti-) sym-
metrizers which can be absorbed into SΦ and AΦ respectively. Except for isolated examples, the
product KΘ ·HΦ vanishes.12 However, it turns out that

HΦ · ρ−1
ΘΦ︸︷︷︸
ρΦΘ

KΘρΘΦ 6= 0 for all Θ,Φ ∈ Yn for all n . (8.39)

To better understand this, we accompany the general argument with an example: Consider the
Young tableaux

Θ =
1 3 5
2 4
6

and Φ =
1 2 6
3 5
4

. (8.40)

The permutation ρΘΦ as defined in Definition 8.2 is given by

ρΘΦ = . (8.41)

12This is true since the product of (most!) Young projection operators corresponding to different Young tableaux
of the same shape in Yn vanishes [13, 20].
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For a general Young tableau Ψ ∈ Yn, we denote the irregular tableau that is obtained from Ψ by
deleting the boxes with entries a1 up to am (m ≤ n) by Ψ\{a1, . . . am}. Even though Ψ\{a1, . . . am}
is not a Young tableau in general, it remains semi-standard. Thus, the (anti-) symmetrizers in
the sets SΨ\{a1,...am} and AΨ\{a1,...am} are disjoint and the sets themselves individually remain
Hermitian projection operators. These sets can further be absorbed into SΨ and AΨ respectively
since SΨ\{a1,...am} is merely the set of symmetrizers SΨ with the legs a1 up to am deleted, and
similarly for AΨ\{a1,...am}. Thus, they satisfy the absorbtion relations

SΨ\{a1,...am}SΨ = SΨ = SΨSΨ\{a1,...am} and AΨ\{a1,...am}AΨ = AΨ = AΨAΨ\{a1,...am} ,

(8.42)

this is easiest seen via the birdtracks corresponding to the semi-standard irregular tableau Ψ \
{a1, . . . am}.

Example 8.5:

A quick look at our example elucidates how equation (8.42) comes about in general: In (8.40),
we may remove boxes from Θ at will – consider for example

Θ Θ Θ︷ ︸︸ ︷
1 3 5
2 4
6

︷ ︸︸ ︷
1 3 5
2 4
6

︷ ︸︸ ︷
1 3 5
2 4
6

1 5
2 4
︸ ︷︷ ︸

1 3
2
︸ ︷︷ ︸

1 3 5
4

6
︸ ︷︷ ︸

. (8.43)

Θ \ {3, 6} Θ \ {4, 5, 6} Θ \ {2}

It is clear from this list that only some of the resulting tableaux will be Young tableaux,
most will not. Using the tableaux (8.43), we construct an operator KΘ consisting of (anti-)
symmetrizers which can be absorbed into SΘ and AΘ,

KΘ := SΘ\{3,6}AΘ\{2}SΘAΘSΘ\{2}AΘ\{3,6}SΘ\{4,5,6}

= . (8.44)

Conjugating the operator KΘ by the permutation ρΘΦ yields

︸ ︷︷ ︸
ρΦΘ

︸ ︷︷ ︸
KΘ

︸ ︷︷ ︸
ρΘΦ

. (8.45)
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Each of the sets of (anti-) symmetrizers in (8.45) corresponds to one of the tableaux

Φ Φ Φ︷ ︸︸ ︷
1 2 6
3 5
4

︷ ︸︸ ︷
1 2 6
3 5
4

︷ ︸︸ ︷
1 2 6
3 5
4

1 6
3 5
︸ ︷︷ ︸

1 2
3
︸ ︷︷ ︸

1 2 6
5

4
︸ ︷︷ ︸

. (8.46)

Φ \ {2, 4} Φ \ {4, 5, 6} Φ \ {3}

The tableaux in (8.46) are obtained by superimposing the tableaux in (8.43) on Φ in a cookie
cutter fashion. By construction, all the SΦ\{b1,...bm} (resp. AΦ\{b1,...bm}) can be absorbed into
SΦ (resp. AΦ), as claimed in eq. (8.42).

The pattern is completely general and in no way restricted to the particular example used to
demonstrate it. Let us summarize:

Condition 8.2 – relating (anti-) symmetrizers across tableaux:
Let O be of the form O = SΘ M AΘ, eq. (8.27). Let Θ,Φ ∈ Yn be two Young tableaux with the same
shape and construct the permutation ρΘΦ between the two tableaux according to Definition 8.2.
Furthermore, let DΘ be a product of symmetrizers and antisymmetrizers, each of which can be
absorbed into SΘ and AΘ respectively. If M is of the form

M = ρΦΘDΘ ρΘΦ , (8.47)

then the operator O is non-zero.

It immediately follows that a combination of conditions 8.1 and 8.2 also renders the operator O
non-zero:

Condition 8.3 – combining conditions 8.1 and 8.2:
Let O be an operator of the form O = SΘ M AΘ and let M be given by

M = M (1) M (2) · · ·M (l), (8.48)

such that for each M (i) either condition 8.1 or condition 8.2 holds; this implies that each (anti-)
symmetrizer in M can be absorbed into SΘ or AΘ respectively. Then O is nonzero.

Dimensional zeroes: Let us conclude this section with a short discussion on how the operator
O becomes dimensionally zero. Since in either of the three conditions presented in this section all
sets of antisymmetrizers in M can be absorbed into AΘ,

AjAΘ = AΘ = AΘAj , (8.49)

for every Aj in M , it follows immediately that the antisymmetrizer in O that contains the most legs
(i.e. the “longest” antisymmetrizer in O) must be part of the set AΘ, as otherwise eq. (8.49) could
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not hold. Thus, O is not dimensionally zero if AΘ is not dimensionally zero. Furthermore, since
YΘ ∝ SΘAΘ, it suffices to require that N is large enough for the Young projection operator YΘ to
be non-zero to ensure that the operator O in any of the conditions 8.1 and 8.3 is not dimensionally
zero. Thus, in cancelling parts of the operator O (to give it the structural form of YΘ), one does not
remove any indication of it being dimensionally zero: dimensional zeroes of O occur exactly when
YΘ is zero.

Note 8.1: Cancellation rules — Summary

Let us summarize the most important points of the cancellation rules that we need for this
course:

Let Θ ∈ Yn be a Young tableau. If O is an operator of the form

O = SΦ1AΘSΘAΦ2 (8.50a)

such that SΦ1 ⊂ SΘ and AΦ2 ⊂ AΘ, then

O =
1

αΘ
SΦ1AΦ2 . (8.50b)

Similarly if O is of the form

O = SΘMAΘ (8.51a)

where M is a product of symmetrizers and antisymmetrizers containing in SΘ and AΘ,
respectively, then there exists a nonzero constant λ such that

O = λYΘ . (8.51b)

8.3 Propagation Rules

Consider the operator

P := , (8.52)

which satisfies all conditions posed in the Propagation Theorem 8.2. It thus immediately follows
from the theorem that

= = . (8.53)

We would however like to show how this comes about explicitly, thus alluding to the strategy used
in the proof of Theorem 8.2. In particular, we will use a trick originally used by Keppeler and
Sjödahl in the appendix of [21].

We begin by factoring a transposition out of each symmetrizer on the left; this will not alter the
operator P in any way since

= = . (8.54)
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We thus have that

1

P = = , (8.55)

2

where we have marked the top and bottom antisymmetrizer in P as 1 and 2 respectively. It is
important to notice that these two antisymmetrizers would be indistinguishable if it weren’t for the
labelling. We may thus exchange them (paying close attention to which line enters and exits which
antisymmetrizer), without changing the operator P,

1 2

1 ↔ 2
======= . (8.56)

2 1

We have thus effectively commuted the transpositions marked in red through the set of antisym-
metrizers from the left to the right. We may now absorb the transposition on top into the right
symmetrizer,

= . (8.57)

We therefore showed that

P = = . (8.58)

It now remains to add up the two different expressions of P found in (8.58), and multiply this sum
by a factor 1/2,

1

2

(
+

)

︸ ︷︷ ︸
= = P

=
1

2

(
+

)
. (8.59)

However, since

1

2

(
+

)
= , (8.60)

equation (8.59) simply becomes

P = . (8.61)

Performing the above process in reverse then yields

P = = = , (8.62)
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as desired.

As a second example, consider the operator O given by

O := . (8.63)

We can apply a similar strategy as we did with the operator P if we first factor a symmetrizer of
length 2 out of each symmetrizer on the left,

O = = .

=: Õ

factor factor

(8.64)

The part marked Õ in (8.64) can now be dealt with exactly as in the previous example, allowing
one to commute the symmetrizer S67 from the left to the right. It remains to reabsorb the extra
symmetrizers to obtain the desired result (8.78),

O = = = .

absorb absorb

(8.65)

To put our finger on exactly which properties a particular operator must fulfill in order to “complete”
a set of (anti-)symmetrizers as demonstrated so far, we require the notion of an amputated tableau:

Definition 8.3 – Amputated tableaux:
Let Θ be a Young tableau. Furthermore, let R be a particular row in Θ and C be a particular
column in Θ. Then, we form the column-amputated tableau of Θ according to the row R, ��Θc [R],
by removing all columns of Θ which do not overlap with the row R. Similarly, we form the row-
amputated tableau of Θ according to the column C, ��Θr [C], by removing all rows of Θ which do not
overlap with the column C.

It should be noted that if Θ is semi-standard, then ��Θc [R] and ��Θr [C] will also be semi-standard.

Example 8.6:

Consider the semi-standard irregular tableau

Θ =

1 2 5 6 8
3 7 9
4 10
11

, (8.66)

where we have shaded the row R := (3, 7, 9) and hatched the column C := (5, 9)t. Then, the
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column- and row-amputated tableaux according to R and C respectively are given by

��Θc [R] =

1 2 5
3 7 9
4 10
11

, (8.67a)

where the columns (6)t and (8)t were removed since they do not have an overlap with the
row R = (3, 7, 9),a

(3, 7, 9) ∩
{

(6)t ∪ (8)t
}

= ∅ , (8.67b)

and

��Θr [C] =
1 2 5 6 8
3 7 9

, (8.68a)

where the rows (4, 10) and (11) were removed from Θ, as they do not have an overlap with
the column C = (5, 9)t

(5, 9)t ∩ {(4, 10) ∪ (11)} = ∅ . (8.68b)

aWhere we transferred the familiar set-notation to rows of tableaux.

Using the notion of amputated tableaux, we may formulate the following theorem:

Theorem 8.2 – Propagation of (anti-) symmetrizers:
Let Θ be a Young tableau and O be a birdtrack operator of the form

O = SΘ AΘ SΘ\R, (8.69)

in which the symmtrizer set SΘ\R arises from SΘ by removing precisely one symmetrizer SR. By
definition SR corresponds to a row R in Θ such that

SΘ = SΘ\RSR = SRSΘ\R . (8.70)

If the column-amputated tableau of Θ according to the row R, ��Θc [R], is rectangular, then the
symmetrizer SR may be propagated through the set AΘ from the left to the right, yielding

O = SΘ AΘ SΘ\R = SΘ\R AΘ SΘ , (8.71)

which implies that O is Hermitian.13 We may think of this procedure as moving the missing sym-
metrizer SR through the intervening antisymmetrizer set AΘ. Eq. (8.70) immediately allows us to
augment this statement to

SΘ AΘ SΘ\R = SΘ\R AΘ SΘ = SΘ AΘ SΘ . (8.72)

If the roles of symmetrizers and antisymmetrizers are exchanged, we need to verify that the row-
amputated tableau ��Θr [C] with respect to a column C is rectangular to guarantee that

AΘ SΘ AΘ\C = AΘ\C SΘ AΘ = AΘ SΘ AΘ . (8.73)

This amounts to moving the missing antisymmetrizer AC through the intervening symmetrizer set
SΘ.

13Recall the Hermiticity of (sets of) (anti-) symmetrizers, eq. (??).
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!
Important: Connecting the propagation criterion on the underlying tableau rather
than the explicit lengths of the symmetrizers and antisymmetrizers in the operator
may seem arbitrary and even unnecessary at this point. However, in the following

section 9, we will introduce an alternative compact construction algorithm for Hermitian
Young projection operators that heavily utilizes the structure of the underlying Young tableau.
Therefore, in the proof of the main Theorem REF, the criterion based on the amputated
tableau is more useful than one based on lengths of (anti-)symmetrizers.

Note that this Theorem holds also for more general types of tableaux as is discussed in [22]. However,
for the purposes of this course it suffices to consider Θ to be a Young tableau

Example 8.7:

Going back to the operator O defined in eq. (8.63), we indeed see the structure

O :=

︸ ︷︷ ︸
SΘ

︸ ︷︷ ︸
AΘ

︸ ︷︷ ︸
SΘ\R

, (8.74)

where the Young tableau Θ is

Θ =
1 2 3
4 5
6 7

. (8.75)

The operator (8.74) meets the conditions laid out in Theorem 8.2: The sets SΘ and SΘ\R
differ only by one symmetrizer, namely SR = S67, which corresponds to the row (6, 7) of the
tableau Θ. Indeed, we find that the amputated tableau ��Θc [(6, 7)] is rectangular,

��Θc [(6, 7)] =
1 2
4 5
6 7

, (8.76)

where we have highlighted the row corresponding to the symmetrizer S67 in blue. We therefore
may commute the symmetrizer S67 from the left of O to the right in accordance with the
Propagation-Theorem 8.2,

O := = . (8.77)

Furthermore, if we factor the symmetrizer S67 out of the set SΘ (i.e. if we write SΘ = S67SΘ)
before commuting it through, we obtain

O := =

Thm. 8.2
====== = . (8.78)
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We thus kept S67 on both sides of the operator, making the Hermiticity of O explicit.

8.4 Proof of Theorem 8.2 (propagation rules)

This section is taken from [22, section 4].

In this section, we provide a proof for eq. (8.72) of the Propagation Theorem 8.2,

O = SΘ AΘ SΘ\R = SΘ AΘ SΘ = SΘ\R AΘ SΘ . (8.79)

The proof of eq. (8.73) (i.e. where the operator O is of the form O := AΘ SΘ AΘ\C) only changes
in minor ways; these differences are discussed in section 8.4.4.

The steps of the proof given in the present section can become rather abstract; we therefore chose
to accompany them with several schematic drawings for clarification.

The strategy of this proof will be as follows:

• We start by understanding what the conditions posed in Theorem 8.2 (in particular the re-
quirement that the amputated tableau be rectangular) imply for the operator O.

• Then, we use the same trick as in section 8.3 to propagate the constituent permutations of
the symmetrizer SR through the set AΘ to the right of O; this trick was originally given in
the appendix of [21].

• Recall that each symmetrizer is by definition the sum of its constituent permutations,

SR =
1

length(SR)!

∑

ρ

ρ , (8.80)

where ρ are the constituent permutations of SR, for example

︸︷︷︸
S123

=
1

3!

(

︸︷︷︸
id

+

︸︷︷︸
(12)

+

︸︷︷︸
(13)

+

︸︷︷︸
(23)

+

︸︷︷︸
(123)

+

︸︷︷︸
(132)

)
. (8.81)

The operators resulting from this propagation-process will then be summed up in the ap-
propriate manner (analogous to what was done in the example (8.59)) to recombine to the
symmetrizer SR on the right hand side of O, yielding the desired result.

Let us thus begin:

Let O := SΘAΘSΘ\R be an operator as stated in Theorem 8.2, and let the sets SΘ and SΘ\R only
differ by one symmetrizer, SR, with SR corresponding to the row R in the Young tableau Θ. We
will represent O schematically as

O =
...

...

...

...
...

SΘ\R

SSSR

AΘ
SΘ\R

, (8.82)

where we used the fact that SΘ = SΘ\RSR (c.f. eq. (8.70)).
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8.4.1 Unpacking the theorem conditions:

For the amputated tableau ��Θc [R] to be rectangular, we clearly require all columns that overlap
with the row R to have the same length. However, this is equivalent to saying that every row other
than row R in Θ has to have length greater than or equal to length(R): Suppose R′ is a row in Θ
with length(R′) < length(R). Hence, by definition of Young tableaux, the row R′ is situated below
the row R. Furthermore, by the left-alignedness of Young tableaux, this means that all the columns
that overlap with R′ also overlap with R; let us denote this set of columns overlapping with the
row R′ by CR′ . In addition, there will be at least one column that overlaps with R but does not
overlap with R′, since length(R) > length(R′); let us denote this column by C. Schematically, this
situation can be depicted as

︸ ︷︷ ︸
CR ′

R
R ′

C

. (8.83)

It then follows by the top-alignedness of Young tableaux that C is strictly shorter than the columns
in the set CR′ , as is indicated in (8.83). This poses a contradiction, as we need all columns that
overlap with R to be of the same length for the tableau ��Θc [R] to be rectangular. Hence, there
cannot be a row in Θ whose length is strictly less than the length of R.

Let CR denote the set of columns overlapping with the row R. Since R is established to be (one
of) the shortest row(s) in Θ, the top-alignedness and left-alignedness conditions of Young tableaux
imply that every other row in Θ also overlaps with every column in CR.

In the language of symmetrizers, the discussion given above can be formulated as:

1. SR (corresponding to the row R of Θ) is (one of) the shortest symmetrizer(s) in the set SΘ.

2. Each leg of SR enters an antisymmetrizer in AΘ of equal length; let us denote this subset of
antisymmetrizer by A′SR (this set of antisymmetrizers correspond to the set of columns CR).

3. Each symmetrizer in SΘ has one common leg with each antisymmetrizer in A′SR (since each
row in Θ overlaps with each column in CR).

4. Since, by the assumptions of the Propagation Theorem, SΘ\R and SΘ only differ by the sym-
metrizer SR, each symmetrizer in the set SΘ\R has a common leg with each antisymmetrizer
in the set A′SR .

8.4.2 Strategy of the proof

In this proof, we will use the fact that the symmetrizer SR by definition is the sum of all permutations
of the legs over which SR is drawn. If SR has length k, then this sum will consist of k! terms, and
there will be a constant prefactor 1

k! ; this was exemplified in (8.81). In particular, if λ is a particular
permutation in the expansion of SR, then we will show that O = Oλ, where Oλ is defined to be
the operator O with the permutation λ added on the right side in the place where SR would be;
schematically drawn, we will show that

O =
...

...

...

...
...

SΘ\R

SSSR

AΘ
SΘ\R ?

=
...

...

...

...

SΘ\R

SSSR

AΘ
SΘ\R

λ

=: Oλ . (8.84)
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Since the constituent permutations of a symmetrizer over a subset of factors in V ⊗n form a sub-
group of Sn [13], it immediately follows that every constituent permutation of SR can be written
as a product of constituent transpositions of SR.14 It thus suffices to show that (8.84) holds for λ
being a constituent transposition of SR (i.e. that we may propagate a transposition from the left
symmetrizer SR to the right), as then any other permutation can be produced by the successive
propagation of transpositions.

8.4.3 Propagating transpositions:

Suppose the set A′SR (introduced in condition 2 of the previous discussion) contains n antisym-
metrizers. Then, by observations 1 to 4, the length of SR will be exactly n, and each other
symmetrizer in SΘ (and thus also each symmetrizer in SΘ\R) will have length at least n. We may
then factor “the symmetrizer SR” (i.e. a symmetrizer of length n) out of each symmetrizer in the
sets SΘ and SΘ\R,

SSSR→
AΘ\
A′SSSR

...

...

SΘ AΘ SΘ\R

factor SR−−−−−−→

SSSR→
AΘ\
A′SSSR

...

...

...

...

...

...

...

...

...

...

...

...

...

SΘ AΘ SΘ\R

factor SSSR factor SSSR

,

(8.85)

where we lumped together the antisymmetrizers A′SR and the rest (AΘ \A′SR). We will denote
the left set of SR’s (which were factored out of SΘ) by {SR}l, and the right set of SR’s (which were
factored out of SΘ\R) by {SR}r, see Figure 2. From now onwards, we will focus the part Õ within
the operator O, which is highlighted blue in Figure 2.

The significance of the operator Õ in Figure 2: The left part of Õ, namely {SR}l ·A′SR , by
itself corresponds to a rectangular tableau, as each symmetrizer has the same length and each anti-
symmetrizer has the same length. This will be important, since we will need Õ to stay unchanged
under a swap of any pair of antisymmetrizers in A′SR in order to commute the constituent permu-
tations of SR through the intervening set A′SR (in analogy to what was done in example (8.56)
— this will become evident below). Note that Õ would not stay unchanged under such a swap
if the antisymmetrizers in A′SR had different lengths and would thus be distinguishable. In par-
ticular, the operator Õ corresponds to the amputated tableau ��Θc [R], which is indeed rectangular
by requirement of the Propagation Theorem 8.2. This requirement, therefore, translates into the
ability of finding an operator Õ within the operator O, thus allowing the necessary propagation of
permutations.

Suppose that SΘ contains exactly m symmetrizers (hence SΘ\R contains (m − 1) symmetrizers).
Then also {SR}l contains m symmetrizers and {SR}r contains (m− 1) symmetrizers.

14A proof that any permutation in Sn can be written as the product of transpositions can be found in [3] and other
standard textbooks.
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SSSR→

Õ̃O

AΘ\
A′SSSR

...

...

...

...

...

...

...

...

...

...

...

...

...

SΘ AΘ SΘ\R

{SSSR }l A′SSSR {SSSR }r

Figure 2: This diagram schematically depicts the operator O (c.f. eq. (8.82)) with a symmetrizer
SR factored out of each symmetrizer in SΘ and in SΘ\R. The left set of SR’s will be denoted by
{SR}l, and the right set of SR’s by {SR}r. In this proof, we will focus on the part of the operator
that is highlighted in blue. This part will be denoted by Õ.

Furthermore, since each symmetrizer in {SR}l has a common leg with each of the n antisym-
metrizer in A′SR , we may choose the kth leg exiting each symmetrizer in {SR}l to enter the kth

antisymmetrizer in A′SR .15 We may schematically draw this, as

1
2

n
n+1
n+2

2n

(m−1)n+1
(m−1)n+2

m ·n

...

1
2

m
m+1
m+2

2m

(n−1)m+1
(n−1)m+2

n ·m

...

; (8.86)

In (8.86), we have labelled the index lines for clarity; from Figure 2 it however should be noted that
the ith index in the above graphic is not necessarily the ith index line in the operator O. The part
of the operator O highlighted in blue in Figure 2, operator Õ, can then be represented as

Õ =

1
2

n
n+1
n+2

2n

(m−1)n+1
(m−1)n+2

m ·n

...

︸ ︷︷ ︸
{SR}l

...

1

2

︸ ︷︷ ︸
A′SR

...

︸︷︷︸
{SR}r

, (8.87)

15We may always choose to order index legs this way, since, within a symmetrizer, we may re-order index lines at
will without changing the symmetrizer.

109



where the last symmetrizer in the set {SR}l is the symmetrizer SR that we eventually wish to
commute through to the right. In (8.87), we labeled the first and the second antisymmetrizer of the
set A′SR by 1 and 2 respectively for future reference.

As previously stated, we strive to commute constituent transpositions (ij) of the symmetrizer SR ∈
{SR}l through the set of antisymmetrizers A′SR to the right set {SR}r. We achieve this goal in
the following way: We first factor the transposition (ij) out of each symmetrizer in {SR}l. By
doing so, the ith leg of each symmetrizer now enters the jth antisymmetrizer and vice versa (all
the other legs remain unchanged). We may now “remedy” this change by swapping the ith and jth

antisymmetrizer, similar to what we did in example (8.56). For instance, if i = 1 and j = 2, we
factor the transposition (12) out of each of the symmetrizers of {SR}l,

Õ =

1
2

n
n+1
n+2

2n

(m−1)n+1
(m−1)n+2

m ·n

... ...

1

2

...

, (8.88)

and then swap the first and second antisymmetrizer, which are marked as 1 and 2 respectively.
The key observation to make is that the antisymmetrizers 1 and 2 would be indistinguishable
if it weren’t for the labeling. Thus, the set A′SR remains unchanged even when the swap between
antisymmetrizers i ( 1 ) and j ( 2 ) is carried out. This trick of swapping identical antisymmetrizers
was initially used by KS in an example in the appendix of [21].

After we swapped the two antisymmetrizers, the ith leg of each symmetrizer in {SR}l once again
enters the ith antisymmetrizer, and same is true for the jth leg. However, now the legs exiting
the ith antisymmetrizer in A′SR enter the symmetrizers in {SR}r in the jth position, and the legs
exiting the jth antisymmetrizer enter the symmetrizers in {SR}r in the ith position. Thus, we have
effectively commuted the transpositions (ij) past the set A′SR ,

Õ =

1
2

n
n+1
n+2

2n

(m−1)n+1
(m−1)n+2

m ·n

... ...

2

1

...

. (8.89)

All but one of the propagated transpositions (ij) can then be absorbed into the symmetrizers of the
set {SR}r. One transposition, however, will remain, as there is no symmetrizer16 in the set {SR}r

16I.e. the missing symmetrizer SR on the right-hand side of the operator O.
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to absorb this transposition,

Õ =

1
2

n
n+1
n+2

2n

(m−1)n+1
(m−1)n+2

m ·n

... ...

2

1

...

. (8.90)

We then re-absorb the sets {SR}l and {SR}l into SΘ and SΘ\R respectively. This clearly leaves
the transposition (ij) un-absorbed. Thus, we have shown that

O =
...

...

...

...
...

SΘ\R

SSSR

AΘ
SΘ\R

=
...

...

...

...

SΘ\R

SSSR

AΘ
SΘ\R

λ

= Oλ (8.91)

for λ = (ij) being a transposition. We can repeat the above procedure with any constituent
tranposition of SR.

If λ is a constituent permutation (not necessarily a transposition) of SR, we can also propagate λ
to the right-hand side, since any such permutation λ can be written as a product of constituent
transpositions: Propagating the permutation λ then corresponds to successively propagating its
constituent transpositions through to the right, yielding

Õ =

1
2

n
n+1
n+2

2n

(m−1)n+1
(m−1)n+2

m ·n

... ...

...

λ

(8.92)

for any constituent permutation λ of SR.

In order to obtain the missing symmetrizer on the right, it remains to add up all the terms Oλ —
since SR is assumed to have length n, there will be exactly n! such terms. By relation (8.91), we
know that each of these terms is equal to O, yielding the following sum,

1

n!

n!∑

1




...

...

...

...
...

SΘ\R

SSSR

AΘ
SΘ\R

︸ ︷︷ ︸
O




=
1

n!

∑

λ∈Sn




...

...

...

...

SΘ\R

SSSR

AΘ
SΘ\R

λ
︸ ︷︷ ︸

Oλ



. (8.93)

The left-hand side of the above equation merely becomes n!
n!O = O. The right-hand side yields the

desired symmetrizer,17 such that

O = SΘ AΘ SΘ =
...

...

...

...

SΘ\R

SSSR

AΘ
SΘ\R

SSSR

, (8.94)

17This was already exhibited in example (8.59).
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where we used the fact that SΘ = SΘ\RSR = SRSΘ\R by assumption of Theorem 8.2 (c.f.

eq. (8.70)). In particular, using the fact that O as given in (8.94) is clearly Hermitian, O† = O,18

we find that

O =
...

...

...

...
...

SΘ\R

SSSR

AΘ
SΘ\R

=
...

...

...

...

SΘ\R

SSSR

AΘ
SΘ\R

SSSR

=
...

...

...

...
...

SΘ\R
AΘ

SΘ\R

SSSR

= O†, (8.95)

as required.

8.4.4 Propagating antisymmetrizers:

The proof of the Propagation Theorem 8.2 for an operator Q of the form Q := AΘSΘAΘ\C is very
similar to the proof given for the operator O. However, there are some differences on which we wish
to comment here: If we want to propagate an antisymmetrizer AC corresponding to a column C in
Θ from AΘ to AΘ\C , we first check that the amputated tableau ��Θr [C] is rectangular. If so, we are

able to isolate an operator Q̃ within Q in analogy to how we isolated Õ within O (see Figure 2),
where

Q̃ := {AC}l S′AC {AC}r . (8.96)

When we propagate a transposition (ij) from the left to the right of Q̃, we need to tread with
care as this will induce a factor of (−1). This factor, however, will be vital in the recombination
process that recreates the antisymmetrizer AC by summing constituent permutations: Suppose the
set {AC}l contains m antisymmetrizers, then the set {AC}r contains (m − 1) antisymmetrizers.
If we now factor a transposition (ij) out of each antisymmetrizer in {AC}l on the left of Q̃, we
obtain a factor of (−1)m. Swapping the ith and jth symmetrizers will not induce an extra minus-
sign, but absorbing the transpositions into the antisymmetrizers in the set {AC}r will produce an
extra factor of (−1)m−1. Thus, for each transposition we commute through, we obtain a factor
of (−1)2m−1 = −1, which is the signature of a transposition. In particular, each permutation
λ (consisting of a product of transpositions) will induce a prefactor of sign(λ) when commuted
through, yielding

Q̃ = sign(λ)Q̃λ. (8.97)

However, since an antisymmetrizer is by definition the sum of its constituent permutations weighted
by their signatures, for example,

=
1

3!

(
− − − + +

)
, (8.98)

equation (8.97) is exactly what we need in order to be able to reconstruct the antisymmetrizer AC
on the right of the operator Q̃ by summing up the terms sign(λ)Q̃λ. Re-absorbing {AC}l into AΘ

and {AC}r into AΘ\C yields the desired eq. (8.73).

18By the Hermiticity of (sets of) (anti-)symmetrizer, see eq. (??).
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9 Compact Hermitian Young projection operators: the MOLD
algorithm

Before we dive into the compact construction of Hermitian Young projection operators, let us
consider an example:

Exercise 9.1: Consider the Young tableau
1 3 5

2 4

6

and construct the corresponding KS

projector PΘaccordin to Corollary 8.2. Using the simplification rules derived in the previous
sections, show that this operator can be simplified to

PΘ =
32

5
(A12A34)(S135S24)(A126A34)(S135S24)(A12A34) . (9.1)

Solution: Consider the Young tableau Θ with ancestry

1 3 5
2 4
6
︸ ︷︷ ︸

Θ

π−−→ 1 3 5
2 4
︸ ︷︷ ︸

Θ(1)

π−−→ 1 3
2 4
︸ ︷︷ ︸

Θ(2)

π−−→ 1 3
2
︸ ︷︷ ︸

Θ(3)

π−−→ 1
2
︸︷︷︸
Θ(4)

. (9.2)

The correesponding KS projector (constructed according to Corollary 8.2) is given by

PΘ = YΘ(4)
YΘ(3)

YΘ(2)
YΘ(1)

YΘYΘ(1)
YΘ(2)

YΘ(3)
YΘ(4)

=
16384

405
(9.3)

We can repeatedly factor out appropriate symmetrizers and antisymmetrizers and complete
sets of (anti-) symmetrizers using the Propagation Theorem 8.2 to use the cancellation rules
given in Corollary 8.1 MAKE THIS EXPLICIT. Then, the operator (9.3) simplifies to

PΘ =
32

5
· . (9.4)

Upon taking a closer look at the operator (9.4), one may identify the following structure:

PΘ =
32

5
·AΘ(1)

SΘ AΘ SΘ AΘ(1)
; (9.5)

this is no mere coincidence but actually of a property of the Young tableau Θ which is called
MOLD (Measure Of Lexical Disorder, c.f. Definition 9.2), as we shall see in section 9.2.

Furthermore, notice that the oprator (9.4) is symmetric under a reflection about its vertical
axis: From Section 2.2.2 it immediately follows that a birdtrack satisfying this property is
Hermitian. Hence, the operator (9.4) is obviously Hermitian in that no additional proof is
needed to show its Hermiticity. Compare this with the original KS operator (9.3) which is
not symmetric under a flip about its vertical axis. To prove its Hermiticity we have to rely
on the proof of the KS Theorem 7.1 given in section 7.2.
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9.1 Tableau words & measure of lexical disorder (MOLD)

Definition 9.1 – column- and row-words & lexical ordering:
Let Θ ∈ Yn be a Young tableau. We define the column-word of Θ, CΘ, to be the column vector
whose entries are the entries of Θ as read column-wise from left to right. Similarly, the row-word
of Θ, RΘ, is defined to be the row vector whose entries are those of Θ read row-wise from top to
bottom.

We will call a tableau Θ lexically ordered, if either CΘ or RΘ or both are in lexical order. In
particular, we say that Θ is column-ordered (resp. row-ordered), if CΘ (resp. RΘ) is in lexical
order.

Example 9.1: Row- and column-word of a Young tableau

The tableau

Φ :=

1 5 7 9
2 6 8
3
4

(9.6)

has a column-word

CΦ = (1, 2, 3, 4, 5, 6, 7, 8, 9)t, (9.7)

and a row-word

RΦ = (1, 5, 7, 9, 2, 6, 8, 3, 4). (9.8)

From this, we see that Φ in (9.6) is lexically ordered. In particular, it is column-ordered (but
not row-ordered).

Definition 9.2 – Measure Of Lexical Disorder (MOLD):
Let Θ ∈ Yn be a Young tableau. We define its Measure Of Lexical Disorder (MOLD) to be the
smallest natural number M(Θ) ∈ N such that

Θ(M(Θ)) = πM(Θ) (Θ) (9.9)

is a lexically ordered tableau. (Recall from Definition 7.2 that πM(Θ) refers to M(Θ) consecutive
applications of the parent map π to the tableau Θ.)

We will refer to the set of tableaux

{
Θ , Θ(1) , Θ(2) , . . . Θ(M(Θ)−1) , Θ(M(Θ))

}
(9.10)

as the MOLD ancestry of Θ.

We note that the MOLD of a Young tableau is a well-defined quantity, since one will always
eventually arrive at a lexically ordered tableau, as, for example, all tableaux in Y3 are lexically
ordered. This then implies that the MOLD of a tableau Θ ∈ Yn has an upper bound,

M(Θ) ≤ n− 3, (9.11)
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making it a well-defined quantity. As an example, consider the tableau

Φ :=
1 2 4
3 5

. (9.12)

Example 9.2: MOLD ancestry of a Young tableau

The MOLD of the above tableau Φ given in eq. (9.12) is M(Φ) = 2, since two applications
of the parent map generate a lexically ordered tableau, but just one application of π on Φ
would not be sufficient,

1 2 4
3 5
︸ ︷︷ ︸

Φ

π−−→ 1 2 4
3
︸ ︷︷ ︸

Φ(1)

π−−→ 1 2
3
︸ ︷︷ ︸

Φ(2)

. (9.13)

We will, furthermore, make use of the following notation:

Definition 9.3 – Generalized (anti-)symmetrizers:
We denote by Ii either a set of symmetrizers or a set of antistmmetrizers, which of them Ii is will
be determined at a later stage. Bj will denote the other set, that is

if Ii = Ai then Bj = Sj and if Ii = Si then Bj = Aj . (9.14)

Ii and Bj are referred to as generalized (sets of) (anti-)symmetrizers.

Example 9.3: Generalized (anti-)symmetrizers

For the Young tableau Θ given by

1 2 4
3

, (9.15a)

the operator Q

Q = IΘ(1)
BΘIΘBΘIΘ(1)

(9.15b)

given in terms of the generalized (anti-)symmetrizers could mean either

Q = or Q = . (9.15c)

9.2 The MOLD algorithm

We follow the article Compact Hermitian Young Projection Operators by Weigert and J.A-Z [6].

We are now in a position to formulate the main theorem of this section:
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Theorem 9.1 – MOLD operators:
Consider a Young tableau Θ ∈ Yn with MOLDM(Θ) = m. If m is even, then the Hermitian Young
projection operator corresponding to Θ, PΘ, is given by

PΘ = βΘ ·IΘ(m)
BΘ(m−1)

IΘ(m−2)
. . . IΘ(2)

BΘ(1)
IΘ BΘ IΘ BΘ(1)

IΘ(2)
. . . IΘ(m−2)

BΘ(m−1)
IΘ(m)

,

(9.16a)

and if m is odd, then

PΘ = βΘ·IΘ(m)
BΘ(m−1)

IΘ(m−2)
. . . BΘ(2)

IΘ(1)
BΘ IΘ BΘ IΘ(1)

BΘ(2)
. . . IΘ(m−2)

BΘ(m−1)
IΘ(m)

,

(9.16b)

where I = A and B = S if Θ(m) is column-ordered and I = S and B = A if Θ is row-ordered. βΘ

is a non-zero proportionality constant required to make PΘ idempotent: if M(Θ) = 0, then

βΘ = αΘ , (9.17)

the normalization constant of the Young projection operator YΘ. If M(Θ) > 0, then the exact value

of this constant has to determined by evoking the idempotency condition PΘPΘ
!

= PΘ.

The Hermitian Young projection operators PΘ constructed according to eqns. (9.16) are dubbed the
MOLD operators.

Example 9.4: MOLD projection operator

Consider the Young tableau

Θ =
1 3 4 6
2 7
5

(9.18a)

with MOLD ancestry

1 3 4 6
2 7
5
︸ ︷︷ ︸

Θ

π−−→
1 3 4 6
2
5
︸ ︷︷ ︸

Θ(1)

π−−→
1 3 4
2
5
︸ ︷︷ ︸

Θ(2)

π−−→ 1 3 4
2
︸ ︷︷ ︸

Θ(3)

. (9.18b)

The MOLD projection operator PΘ is given by

PΘ = βΘ ·AΘ(3)
SΘ(2)

AΘ(1)
SΘAΘSΘAΘ(1)

SΘ(2)
AΘ(3)

= βΘ · , (9.19)

where βΘ is a non-zero normalization constant ensuring the idempotency of PΘ
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Note 9.1: Structure of a MOLD operator

Theorem 9.1 encompasses four different constructions for a MOLD projector corresponding
to a Young tableau Θ ∈ Yn, depending on the parity of the MOLD M(Θ) and on whether
Θ(M(Θ)) is column- or row-ordered. Let us discuss these cases in more detail and try to
develop an intuitive understanding why the disctinction of these for cases is necessary:

The parity of the MOLD of Θ: Notice that, in each of the construction, one starts with
a set I(M(Θ)) and then goes up one generation, always altering between I and B (where I
is either a set of symmetrizers or anti-symmetrizers, and B is the other set, respectively).
The parity of the MOLD M(Θ) will determine whether the set corresponding to the parent
tableau Θ(1) is also I, or the other set B.

Notice that at the center of the operator we have either IΘBΘIΘ or BΘIΘBΘ (depending
on whether the set corresponding to Θ(1) is I or B), always alternating sets of I and B as
we go up generations of ancestor tableaux. This reflects the Hermitian nature of the MOLD
projector, as the operators

IΘBΘIΘ and BΘIΘBΘ (9.20)

by themselves are Hermitian operators.

However, it is important to note that if we simply constructed all Hermitian projectors merely
according to eq. (9.20), the resulting operators would not be transversal or complete. For
these properties to be satisfied, we need to “dress” the projector with sets of ancestor tableaux
as prescribed by Theorem 9.1.

Row- or column-ordering of Θ(M(Θ)): Consider the case where Θ is lexically ordered,
that is M(Θ) = 0. If Θ is column ordered, then

PΘ ∝ AΘSΘAΘ , (9.21a)

and if Θ is row-ordered then

PΘ ∝ SΘAΘSΘ . (9.21b)

Thus, the ordering of the tableau not only gives a stopping criterion on how many “buffer sets”
we need to dress the central symmetrizers and antisymmetrizers with, but also the quality of
the sets needed. It appears as if the Hermiticity/nestedness and all other desirable properties
that the Young symmetrizers reach can onbly be achieved if the operator, in its birdtrack
representation, only has vertical lines entering/exiting the outermost (anti)symmetrizers.

This pattern continues when we consider tableaux with MOLDM(Θ) > 0, as again the nature
of the ordering (row- or column-ordered) of the ancestor ΘM(Θ) determines the nature of the
outermost sets (symmetrizers of antisymmetrizers) of the projection operator PΘ.

Note that we will not prove that the index lines entering/exiting the outermost sets of (anti)-
symmetrizers of a Hermitian projector must be vertical (in its birdtrack representation), but
this statement may be used as a criterion to check whether you drew the MOLD operator
correctly!
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Exercise 9.2: Construct the MOLD projection operators (with corresponding normaliza-
tion constants!) of SU(N) on V ⊗4.

Solution: Still to do.

9.3 Proof of the MOLD Theorem 9.1:

The strategy of the proof of the MOLD Theorem 9.1 will be as follows: We will give a proof by
induction (induction within induction...) on the MOLD M(Θ)

• Base stepM(Θ) = 0: In this case, the tableau Θ ∈ Yn is already in lexical order. We will show
by induction in the number of boxes n that PΘ constructed according to the KS Theorem 7.1
always reduces to

PKSΘ = IΘBΘIΘ or . (9.22)

The main ingredients in this step of the proof are the cancellation and propagation rules
discussed in sections 8.2 and 8.3.

• Induction step M(Θ) = m+ 1: We will assume that Theorem 9.1 holds for all tableaux with
MOLD m, and construct the Hermitian Young projection operator corresponding to a tableau
Θ with MOLD M(Θ) = m+ 1 according to the KS Theorem 7.1, that is

PKSΘ = PMOLD
Θ(1)

YΘP
MOLD
Θ(1)

, (9.23)

where, clearly, M(Θ(1)) = m and therefore PΘ(1)
can be constructed according to the MOLD

Theorem 9.1. We will use the cancellation rules given in section 8.2, as well as the fact that the
projection operators constructed according to the KS algorithm Theorem 7.1 are Hermitian,
to prove that the operator (9.23) reduces to the form claimed in Theorem 9.1.

Proof of MOLD Theorem 9.1. Consider a Young tableau Θ with MOLDM(Θ) such that Θ(M(Θ))

has a lexically ordered column-word. We will provide a Proof by Induction on the MOLD of Θ,
M(Θ).

9.3.1 Base step: M(Θ) = 0

We will prove this base step with an induction on the number of boxes n of the Young tableau
Θ ∈ Yn (an induction within the induction):

First, we prove the Base Step for the projection operators of SU(N) over V ⊗3 (i.e with 3 legs),
since this is the smallest instant for which the KS algorithm produces a new operator (and also
the first instant for which non-Hermitian Young projectors occur). Thereafter, we will consider a
general projection operator corresponding to a Young tableau Θ ∈ Yn+1 with a lexically ordered
column-word. We will assume that Theorem 9.1 is true for the Hermitian operator corresponding to
its parent tableau PΘ(1)

, where Θ(1) ∈ Yn; this is the Induction Hypothesis. Then, we show that the
projection operators obtained from the KS Theorem reduce to the expression given in the MOLD
Theorem 9.1,

PKSΘ = PΘ(1)
YΘPΘ(1)

= αΘAΘSΘAΘ = αΘe
†
ΘeΘ , (9.24)
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where we have noticed that

SΘAΘSΘ = eΘe
†
Θ and AΘSΘAΘ = e†ΘeΘ . (9.25)

Base Step: For the projection operators of SU(N) over V ⊗1 or V ⊗2 (i.e. with 1 or 2 legs), the

proof of (9.24) is trivial since all Young operators are automatically Hermitian, e†Θ = eΘ, and (9.24)
reduces to

αΘe
†
ΘeΘ = αΘ eΘeΘ︸ ︷︷ ︸

1
αΘ

eΘ

= eΘ . (9.26)

Since all Young projection operators YΘ with Θ ∈ Y1,2 have normalization constant 1 (as can easily
be checked by looking at all three of them explicitly), YΘ = eΘ holds for these operators. Thus, the
MOLD Theorem 9.1 returns the original, already Hermitian operators, as does the KS algorithm.

The first nontrivial differences occur for n = 3: Here, we have the following Young projection
operators corresponding to their respective Young tableaux,

4

3

4

3
and (9.27a)

1
2
3

1 3
2

1 2
3

1 2 3 . (9.27b)

In (9.27a), the first and last operator are already Hermitian and have normalization constant 1.
Therefore, the MOLD Theorem 9.1 will return these operators unchanged, c.f. eq. (9.26).

The second and third tableaux in (9.27b) are lexically column-ordered and row-ordered, respectively.
Table 4 shows that the KS Theorem 7.1 and the MOLD Theorem 9.1 yield the same Hermitian
projection operators for the tableaux (9.27b), thus concluding the base step of this proof:

KS Theorem 7.1 MOLD Theorem 9.1

(Multiplying Hermitian parent on either side)
(Multiplying by Hermitian conjugate on

appropriate side)

= =

4
3 · = 4

3 ·
4
3 · = 4

3 ·

4
3 · = 4

3 ·
4
3 · = 4

3 ·

= =

Table 4: This table contrasts the construction of Hermitian Young projection operators according to
the KS Theorem 7.1 (left), with that according to the MOLD Theorem 9.1 (right). Despite visible
algorithmic differences, the results are identical.
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The Induction Step: Let Θ ∈ Yn+1 be a lexically ordered tableau and let Θ(1) ∈ Yn be its parent
tableau. Clearly, also Θ(1) is in lexical order. We will assume that the MOLD Theorem 9.1 holds
for the Hermitian Young projection operator PΘ(1)

, i.e. that PΘ can be written in terms of the
generalized sets of (anti-)symmetrizers as

PΘ(1)
= αΘ · IΘ(1)

BΘ(1)
IΘ(1)

, (9.28)

and we will refer to this condition as the Induction Hypothesis. From now on, we will use the short
hand notation

PΘ := βΘP̄Θ , (9.29)

where βΘ is the normalization constant ensuring the idempotency of PΘ (for M(Θ) = 0, we will
show that βΘ = αΘ), and P̄Θ denotes the birdtrack part of PΘ.

Constructing P̄Θ from P̄Θ(1)
using the KS Theorem 7.1, we obtain

P̄Θ = IΘ(1)
BΘ(1)

IΘ(1)︸ ︷︷ ︸
P̄Θ(1)

BΘ IΘ︸ ︷︷ ︸
e
(†)
Θ

IΘ(1)
BΘ(1)

IΘ(1)︸ ︷︷ ︸
P̄Θ(1)

, (9.30)

where e
(†)
Θ = eΘ or e

(†)
Θ = e†Θ, depending on whether BΘ = SΘ or BΘ = AΘ. From now on, we

will ignore any additional constants, as carrying them with us would draw attention away from
the important steps of the proof. Once we have shown that P̄Θ ∝ IΘBΘIΘ, we will show that the
proportionality constant αΘ given in (9.24) (c.f. (9.17)) is indeed the one we require for PΘ to be
idempotent.

Since Θ(1) is the parent tableau of Θ, the images of all symmetrizers and antisymmetrizers in
YΘ (and thus PΘ) are contained in the images of the symmetrizers and antisymmetrizers in YΘ(1)

respectively,

BΘ ⊂ BΘ(1)
and IΘ ⊂ IΘ(1)

, (9.31a)

and hence

BΘ(1)
BΘ = BΘ = BΘ BΘ(1)

and IΘ(1)
IΘ = IΘ = IΘ IΘ(1)

. (9.31b)

Therefore, we are able to factor BΘ(1)
out of BΘ in (9.30) to obtain

P̄Θ = IΘ(1)
BΘ(1)

IΘ(1)
BΘ(1)

BΘ IΘ IΘ(1)
BΘ(1)

IΘ(1)
.

= e
(†)
Θ(1)

= e
(†)
Θ(1)

BΘ → BΘ(1)
BΘ

(9.32)

Since Y
(†)

Θ(1)
= αΘ(1)

e
(†)
Θ(1)

is a projection operator, it follows that Y
(†)

Θ(1)
Y

(†)
Θ(1)

= Y
(†)

Θ(1)
. Hence, eq. (9.32)

reduces to

P̄Θ ∝ IΘ(1) ���BΘ(1)
BΘ IΘ���IΘ(1)

BΘ(1)
IΘ(1)

= IΘ(1)
BΘ IΘ BΘ(1)

IΘ(1)
,

= e
(†)
Θ(1)

BΘ(1)
BΘ → BΘ

IΘIΘ(1)
→ IΘ

(9.33)

where we used eq. (9.31b) to reabsorb BΘ(1)
into BΘ and IΘ(1)

into IΘ. Thus

P̄Θ ∝ IΘ(1)
BΘ IΘ BΘ(1)

IΘ(1)
. (9.34)
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We will now focus on the case there Θ is column ordered, but denote the appropriate alteration of
the proof for a row-ordered Θ in square brackets. To complete the proof, we have to distinguish two

cases: The case where m+1 lies in the first row [column] of Θ , and the case where it is positioned

in any but the first row [column].

1. Suppose m+1 lies in the first row [column] of Θ. Since this is the box containing the highest

value in the tableau Θ, there is no box positioned below [to the right of] it (otherwise Θ
would not be a Young tableau). Thus, the leg (m+1) is not contained in any antisymmetrizer
[symmetrizer] of length > 1, yielding the sets IΘ(1)

and IΘ identical, IΘ(1)
= IΘ,

P̄Θ ∝ IΘ(1)
BΘ IΘ BΘ(1)

IΘ(1)
= IΘ BΘ IΘ BΘ(1)

IΘ . (9.35)

We now apply Corollary 8.3 to the part of PΘ in the red box to obtain

P̄Θ ∝ IΘ BΘ IΘ , (9.36)

as required.

2. Suppose now that m+1 is situated in any but the first row [column] of Θ. In this case, the leg

m + 1 does enter an antisymmetrizer [symmetrizer] of length > 1, thus IΘ(1)
6= IΘ — a new

strategy is needed. To understand the obstacles, let us once again look at the operator P̄Θ as
described by equation (9.34),

P̄Θ ∝ IΘ(1)
BΘ IΘ BΘ(1)

IΘ(1)
. (9.37)

Describing the strategy: In (9.37), we have suggestively shaded a part of PΘ — if we were
allowed to exchange the sets IΘ(1)

and IΘ, replacing P̄Θ by

IΘ BΘ IΘ(1)
BΘ(1)

IΘ(1)
, (9.38)

we would be able to factor the symmetrizer BΘ(1)
out of BΘ by relation (9.31b), and use the

fact that Y
(†)

Θ(1)
= αΘ(1)

e
(†)
Θ(1)

is a projection operator to obtain

(9.38) ∝ IΘ BΘ BΘ(1)
IΘ(1)

BΘ(1)
IΘ(1)

∝ IΘ BΘ BΘ(1)
IΘ(1)

.

BΘ → BΘBΘ(1)

= e
(†)
Θ(1)

= e
(†)
Θ(1)

(9.39)

Re-absorbing BΘ(1)
into BΘ yields

(9.38) ∝ IΘ BΘ���BΘ(1)
IΘ(1)

= IΘ BΘ IΘ(1)
.

BΘBΘ(1)
→ BΘ

(9.40)

From there, a similar argument as is needed to justify the missing step from (9.37) to (9.38)
can be used to show that

IΘ BΘ IΘ(1)
= IΘ BΘ IΘ , (9.41)

yielding the desired form of P̄Θ. The main obstacle in achieving this result thus lies in the
justification of the exchange of antisymmetrizers in the step from (9.37) to (9.38).
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The full argument: We will accomplish this exchange of IΘ(1)
and IΘ within the marked

region of (9.37) in the following way: Consider the Young tableaux Θ(1) and Θ as depicted in
Figure 3:

Θ(1) =
m

and Θ =
m

m+1

Figure 3: This figure gives a schematic depiction of the Young tableaux Θ(1) and Θ. The boxes that
are common in the two tableaux have been shaded in. The box with entry (m+ 1) has to lie in the
bottom-most position of the last column of Θ [right-most position of the last row], as otherwise the
column-word [row-word] of Θ, CΘ [RΘ], would not be in lexical order, contradictory to our initial
assumption. The requirement that CΘ [RΘ] is lexically ordered therefore also uniquely determines
the position of the box m, as is indicated in this figure.

Since, by assumption, m+1 does not lie in the first row of Θ, the leg (m+1) is contained in an

antisymmetrizer of length > 1 in IΘ, as was already mentioned previously. Let us denote this
antisymmetrizer byAm+1

Θ ∈ IΘ. Furthermore, letAm
Θ(1)

be the corresponding antisymmetrizer

of the tableau Θ(1): in other words, Am
Θ(1)

is the antisymmetrizer Am+1
Θ with the leg m + 1

removed. Hence Am
Θ(1)
⊃ Am+1

Θ , using the notation introduced in section REFERNCE. [For

a row-ordere d Θ, m+1 enters a symmetrizer of length > 1 in IΘ, and we can similarly define

the quantities SmΘ and SmΘ(1)
such that SmΘ(1)

⊃ Sm+1
Θ .]

Since Θ(1) is the parent tableau of Θ, all columns [rows] but the last will be identical in the
two tableaux, see Figure 3. Thus, the antisymmetrizers [symmetrizers] corresponding to any
but the last row [column] will be contained in both sets IΘ(1)

and IΘ, which in particular
implies that

IΘ = IΘ(1)
Am+1

Θ (9.42)

since Am
Θ(1)
⊃ Am+1

Θ [and similarly IΘ = IΘ(1)
Sm+1

Θ for a row-ordered tableau Θ]. Thus, if

we were able to commute the antisymmetrizer Am+1
Θ [symmetrizer Sm+1

Θ ] through the set
BΘ from the right to the left (and then absorb Am

Θ(1)
into Am+1

Θ ), we could cast PΘ into the

desired form (9.38) (and thus (9.41)). In fact, this is exactly what we will do: According to the
Propagation Theorem 8.2, the antisymmetrizer Am+1

Θ [symmetrizer Sm+1
Θ ] can be propagated

through the set BΘ if the row-amputated Young tableau��Θr [column-amputated Young tableau

��Θc] according to the last column [row] of Θ is rectangular. This is indeed the case,19

��Θr = m

m+1

, (9.43)

allowing us to propagate the antisymmetrizer Am+1
Θ [symmetrizer Sm+1

Θ ] from the right to the
left, yielding

P̄Θ ∝ IΘ BΘ IΘ(1)
BΘ(1)

IΘ(1)
. (9.44)

19It is important to note that this amputated tableau would not necessarily be rectangular if Θ were not lexically

ordered, as then m+1 could be situated in a column [row] other than the last one. Thus, for non-lexically ordered

tableaux (as is the case in the induction step 9.3.2, the proof breaks down at this point.
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Having demonstrated that IΘ(1)
and IΘ may be swapped, it is possible to simplify P̄Θ as shown

in (9.39)–(9.40),

P̄Θ ∝ IΘ BΘ BΘ(1)
IΘ(1)

BΘ(1)
IΘ(1)

∝ IΘ BΘ���BΘ(1)
IΘ(1)

= IΘ BΘ IΘ(1)

BΘ → BΘBΘ(1)
BΘBΘ(1)

→ BΘ

= e
(†)
Θ(1)

= e
(†)
Θ(1)

= e
(†)
Θ(1)

. (9.45)

We once again use Theorem 8.2 to obtain the desired form of P̄Θ,

P̄Θ ∝ IΘ BΘ IΘ(1)

Thm. 8.2
======= IΘ BΘ IΘ . (9.46)

Normalization constant: It remains to show that the normalization constant given in (9.24) is
the right one: that is, we will show that PΘ = αΘP̄Θ, where P̄Θ = IΘBΘIΘ (as was found in (9.36)
and (9.46)), is indeed a projection operator. We will establish this by simply squaring PΘ = αΘP̄Θ

and checking whether it is idempotent:

PΘPΘ = α2
Θ · (IΘ BΘ IΘ) (IΘ BΘ IΘ) = α2

Θ · IΘ BΘ IΘ︸ ︷︷ ︸
=e

(†)
Θ

BΘ IΘ︸ ︷︷ ︸
=e

(†)
Θ

, (9.47)

where we have used the fact that IΘIΘ = IΘ. By the idempotency of Young projection operators

YΘ, it follows that e
(†)
Θ e

(†)
Θ = 1

αΘ
eΘ(†) , simplifying (9.47) as

PΘPΘ =
α2

Θ

αΘ
· IΘ BΘ IΘ︸ ︷︷ ︸

=e
(†)
Θ

= αΘ · IΘ BΘ IΘ = PΘ . (9.48)

This concludes the proof of the base step of Theorem 9.1.

9.3.2 Induction step: M(Θ) = m+ 1

For this part of the proof, we will again ignore the proportionality constant βΘ until the end and
concentrate on the birdtrack part of PΘ only. From the steps in the following proof, it will become
evident that βΘ 6= 0 and βΘ < ∞ (as is explicitly discussed at the appropriate places), ensuring
that PΘ := βΘP̄Θ is a non-trivial (i.e. nonzero) finite projection operator.

Let us now consider a Young tableau Θ, such that the MOLD Theorem holds for its parent tableau
Θ(1), and denote its MOLD by M(Θ(1)) = m ∈ N. Thus, we have that M(Θ) = m + 1. We can
now have one of two situations: either m is even, or m is odd; we will denote P̄Θ(1)

by

P̄Θ(1)
= C

{
IΘ(1)

BΘ(1)
IΘ(1)

BΘ(1)
IΘ(1)

BΘ(1)

}
C† , (9.49a)

with C defined as

C := IΘ(m+1)
BΘ(m)

IΘ(m−1)
. . .

{
IΘ(3)

BΘ(2)

BΘ(3)
IΘ(2)

}
, (9.49b)

where we understand P̄Θ(1)
to be given by the top row if m is even (and hence M(Θ) = m + 1 is

odd), or P̄Θ(1)
is given by the bottom row if m is odd.
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We will now construct the birdtrack P̄Θ according to the KS Theroerm 7.1,

P̄Θ = P̄Θ(1)
eΘ P̄Θ(1)

= C IΘ(1)
BΘ(1)

IΘ(1)
· · · BΘ(m) ����IΘ(m+1)

IΘ BΘ IΘ(m+1)
· · · IΘ(1)

BΘ(1)
IΘ(1)

C † ,IΘ(1)
BΘ(1)

IΘ(1)
IΘ(1)

BΘ(1)
IΘ(1)

IΘ BΘ

IΘ(m+1)
IΘ → IΘ

C † C

(9.50)

where we absorbed IΘ(m+1)
into IΘ. We notice that the parts of P̄Θ outside the grey outlined box

(denoted by C(†)) are already in the form that we want them to be. We thus focus our attention on
the part of P̄Θ inside the grey box. If we can show that this part can be written as

P̄Θ
?∝ C

{
IΘ(1)

BΘ IΘ BΘ IΘ(1)

BΘ(1)
IΘ BΘ IΘ BΘ(1)

}
C† , (9.51)

then we have completed the proof. We will accomplish this goal in two steps:

1. We will use the cancellation rule Corollary 8.3 to cancel the wedged ancestor sets of (anti-)-
symmetrizers in the grey box of the operator (9.50), and thus reduce P̄Θ to

P̄Θ = C
{

IΘ(1)
BΘ(1)

IΘ BΘ IΘ(1)

BΘ(1)
IΘ(1)

BΘ IΘ BΘ(1)

}
C† . (9.52)

2. Since the KS operators are Hermitian (c.f. Theorem 7.1), we can make use of the Hermiticity
of PΘ to show that

P̄Θ = C
{

IΘ(1)
BΘ IΘ BΘ IΘ(1)

BΘ(1)
IΘ BΘ IΘ BΘ(1)

}
C† . (9.53)

Let us start the two-step-process: In order not to carry around both rows of the operator, we will
focus on the case where m is even (i.e. m+ 1 is odd), thus proving the top row of eq. (9.53).
The proof for an odd m follows the same steps and is thus left as an exercise to the reader.

1. The first step is easily accomplished: We factor a set IΘ(1)
out of IΘ and a set BΘ(1)

out of
BΘ,

P̄Θ = C IΘ(1)
BΘ(1)

IΘ(1)
· · · BΘ(m)

IΘ(1)
IΘ BΘ BΘ(1)

IΘ(m+1)
· · · IΘ(1)

BΘ(1)
IΘ(1)

C† .IΘ(1)
BΘ(1)

IΘ(1)
IΘ(1)

BΘ(1)
IΘ(1)

IΘ BΘ

IΘ → IΘ(1)
IΘ

BΘ → BΘBΘ(1)

(9.54)

We now encounter sets of symmetrizers and antisymmetrizers corresponding to ancestor
tableaux Θ(k) with 1 ≤ k ≤ m wedged between sets belonging to the tableau Θ(1). Thus,
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we may use the cancellation rule Corollary 8.3 to simplify the operator P̄Θ,

P̄Θ = C IΘ(1)
BΘ(1)

IΘ(1)
· · · BΘ(m)

IΘ(1)
IΘ BΘ BΘ(1)

IΘ(m+1)
· · · IΘ(1)

BΘ(1)
IΘ(1)

C †IΘ(1)
BΘ(1)

IΘ(1)
IΘ(1)

BΘ(1)
IΘ(1)

IΘ BΘ

∝ BΘ(1)
IΘ(1)

∝ BΘ(1)
IΘ(1)

∝ C IΘ(1)
BΘ(1)

IΘ(1)
IΘ BΘ BΘ(1)

IΘ(1)
C†IΘ BΘ . (9.55)

Re-absorbing IΘ(1)
into IΘ and BΘ(1)

into BΘ yields the desired result,

P̄Θ ∝ C IΘ(1)
BΘ(1) ���IΘ(1)

IΘ BΘ ���BΘ(1)
IΘ(1)

C†IΘ BΘ

IΘ(1)
IΘ → IΘ

BΘBΘ(1)
→ BΘ

= C IΘ(1)
BΘ(1)

IΘ BΘ IΘ(1)
C† , (9.56)

thus concluding this step of the proof.

2. For the second step of the proof, we first notice that the operator (9.56) is Hermitian; this is
due to the fact that P̄Θ (as given in (9.50)) was constructed according to the iterative method

described in the KS Theorem 7.1. In particular, this implies that P̄Θ = P̄ †Θ, and hence

P̄Θ ∝ C IΘ(1)
BΘ(1)

IΘBΘIΘ(1)
C† = C IΘ(1)

BΘIΘBΘ(1)
IΘ(1)

C† ∝ P̄ †Θ . (9.57)

Let us define the operator Q by

Q := C IΘ(1)
BΘIΘBΘIΘ(1)

C† ; (9.58)

clearly, this operator is Hermitian as it is axially symmetric. We seek to show that P̄Θ = Q in
order to conclude the second step of this proof. This will be accomplished by showing that

Q ⊂ k1P̄Θ and P̄Θ ⊂ k2Q for some nonzero constants k1, k2 . (9.59)

These inclusions will then lead us to conclude that the subspaces onto which Q and P̄Θ project
are equal (up to scaling), rendering the two operators proportional, Q = kP̄Θ for some nonzero
constant k.

Let us prove the two inclusions (9.59): As discussed in section 2.2.2, the first inclusion holds
if and only if Q · P̄Θ ∝ P̄Θ ∝ P̄Θ · Q (c.f. equation (2.21)). We thus need to examine the
product

Q · P̄Θ ∝ C IΘ(1)
BΘIΘBΘIΘ(1)

C† · C IΘ(1)
BΘ(1)

IΘBΘIΘ(1)
C† . (9.60)

This can be simplified using the cancellation rule Corollary 8.3,

Q · P̄Θ ∝ C IΘ(1)
BΘ IΘBΘIΘ(1)

C† · C IΘ(1)
BΘ(1)

IΘBΘ︸ ︷︷ ︸
∝IΘBΘ

IΘ(1)
C† , (9.61)

yielding

Q · P̄Θ ∝ C IΘ(1)
BΘIΘBΘIΘ(1)

C† = Q . (9.62)
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Hence, we found that Q · P̄Θ ∝ Q. Recalling that both operators Q and P̄Θ are Hermitian, it
follows that

Q = Q† ∝
(
Q · P̄Θ

)†
= P̄ †Θ ·Q† = P̄Θ ·Q . (9.63)

Thus, we have shown that both equalities, Q · P̄Θ ∝ Q and P̄Θ · Q ∝ Q, hold, implying the
first inclusion Q ⊂ k1P̄Θ for some constant k1 6= 0.

To prove the second inclusion in (9.59), we need to consider the product P̄Θ ·Q,

P̄Θ ·Q ∝ C IΘ(1)
BΘ(1)

IΘBΘIΘ(1)
C† · C IΘ(1)

BΘIΘBΘIΘ(1)
C† . (9.64)

Once again, we may use Corollary 8.3 to simplify this product as

P̄Θ ·Q ∝ C IΘ(1)
BΘ(1)

IΘBΘIΘ(1)
C† · C IΘ(1)

BΘIΘBΘ︸ ︷︷ ︸
∝IΘBΘ

IΘ(1)
C†

∝ C IΘ(1)
BΘ(1)

IΘBΘIΘ(1)
C†. (9.65)

We recognize the right hand side of equation (9.65) to be the operator P̄Θ. We thus found
that P̄Θ ·Q ∝ P̄Θ. Once again, we make use of the Hermiticity of the operators Q and P̄Θ to
see that

P̄Θ = P̄ †Θ ∝
(
P̄Θ ·Q

)†
= Q† · P̄ †Θ = Q · P̄Θ , (9.66)

yielding the second inclusion P̄Θ ⊂ k2Q for some nonzero constant k2. We have thus managed
to prove both inclusions in (9.59), forcing us to conclude that the two operators Q and P̄Θ

are proportional to each other,

P̄Θ ∝ Q = C IΘ(1)
BΘIΘBΘIΘ(1)

C† , (9.67)

as desired.

If m is odd (i.e. m+ 1 is even), one may follow analogous steps (Exercise!) to show that

P̄Θ ∝ IΘ(m+1)
. . . IΘ(2)

BΘ(1)
IΘBΘIΘBΘ(1)

IΘ(2)
. . . IΘ(m+1)

, (9.68)

as desired.

Normalization constant: Lastly, we notice that the idempotency of PΘ in each of the cases (9.16)
can again be verified by using the cancellation rule Corollary 8.3,

PΘ · PΘ = β2
Θ · IΘ(m)

. . .

{
IΘ BΘ IΘ

BΘ IΘ BΘ

}
. . . IΘ(m)

· IΘ(m)
. . .

{
IΘ BΘ IΘ

BΘ IΘ BΘ

}

︸ ︷︷ ︸

=λ·

{
IΘ BΘ IΘ

BΘ IΘ BΘ

}

. . . IΘ(m)

= β2
Θλ · IΘ(m)

. . .

{
IΘ BΘ IΘ

BΘ IΘ BΘ

}
. . . IΘ(m)

, (9.69)

where λ is a nonzero constant, since all the cancelled sets can be absorbed into IΘ and BΘ respec-
tively (c.f. Condition 8.1). Thus, defining

βΘ :=
1

λ
<∞ (9.70)

ensures that PΘ is indeed idempotent and hence a projection operator.
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10 Transition operators

10.1 Transition operators from intertwining operators

In section 5.1 we discussed intertwining operators between equivalent irreducible representations of
a group G: Recall that for two equivalent irreducible representations

ϕi : G→ End(Vi) and ϕj : G→ End(Vj) , (10.1a)

the intertwining operator Iij : Vj → Vi between the representations ϕi and ϕj satisfies

Iij ◦ ϕj(g) ◦ I−1
ij = ϕi(g) for every g ∈ G , (10.1b)

c.f. Definition 5.3. In other words, for two equivalent irreducible representations (ϕi, Vi) and
(ϕj , Vj) of SU(N) over V , where Vi,j ⊂ V , the intertwining operator Iij : Vj → Vi translates the
representation of any group element U ∈ SU(N) from representation ϕj to ϕi. However, Iij merely
acts on the subspace Vj of V , but not the whole space,

V2 V1

V2 V1

I12

ϕ2(U) ϕ1(U)

I12

(10.2)

We would now like to define the analogous concept between two Hermitian Young projection oper-
ators generating equivalent irreducible representations of G = SU(N):

Definition 10.1 – Transition operator:
We define the transition operator to be a generalization of the intertwining operator acting on the
whole space V

Tij : V → V such that Tijv =

{
Iijv if v ∈ Vj
0 if v ∈ V \ Vj

, (10.3)

that is, the action of Tij restricted onto Vj becomes the action of Iij, Tij
∣∣
Vj

= Iij.

The operator Tij can be constructed from Iij by first projecting onto the appropriate subspaces.
This is done by multiplying the corresponding Hermitian projection operators Pi,j : V → Vi,j on
either side, thus effectively embedding Iij into the whole space,

Tij := P †i IijPj (10.4)

(suppressing ◦ but understanding the “multiplication” to mean composition of linear maps). In
eq. (10.6) Pj : V → Vj first projects onto the subspace Vj , the intertwining operator Iij : Vj → Vi
then translates Vj into Vi, and finally P †i embeds the result back into the whole space V :

V V

V2 V1

T12

P2 P†
1

I12

. (10.5)

127



In this section, we will be working with Hermitian projection operators such that

Tij = PiIijPj . (10.6)

Note that, if we set i = j, eq. (10.1b) forces the intertwining operator Iij to become the identity id
(also on the product space),

Tij := PiIijPj
i=j−−→ Tii = Pi Iii︸︷︷︸

=id

Pi = PiPi = Pi , (10.7)

reducing the transition operator Tij to the projection operator Pi.

10.2 A general construction algorithm for the unitary transition operators

Here is a first version of the construction algorithm for transition operators:

Theorem 10.1 – unitary transition operators:
Let Θ,Φ ∈ Yn be two Young tableaux with the same underlying Young diagram, and let PΘ and PΦ

be their respective Hermitian Young projection operators, and TΘΦ the transition operator between
them. Then, TΘΦ is given by

TΘΦ = τ · PΘρΘΦPΦ , (10.8)

where τ is a nonzero constant, and ρΘΦ ∈ Sn is the tableau permutation constructed according to
Definition 8.2.

10.2.1 Properties of transition operators

Since each projection operator Pi : Vi → Vi defines an irreducible SU(N)-module Vi on V ⊗k, Schur’s
Lemma 5.1 ensures us that for each pair of Hermitian projection operators Pi : Vi → Vi and
Pj : Vj → Vj corresponding to equivalent representations there exists a pair of transition operators
Tij : Vj → Vi and Tji satisfying

PiTij = Tij = TijPj (10.9a)

Tij = T †ji (10.9b)

TijT
†
ji = Pi (10.9c)

(eqns. (10.9) describe what it means for Tij to be an SU(N)-isomorphism). This allows us to treat
eqns. (10.9) as the defining properties of transition operators. Furthermore, all operators Tij for
Pi, Pj generating inequivalent irreducible submodules are zero.

Notice that eq. (10.9c) uniquely determines the constant τ in eq. (10.8) of Theorem 10.1.

That the operator (10.8) defined in Theorem 10.1 satisfies all conditions (10.9), c.f. Exercise 10.1:

Exercise 10.1: Check that the operators Tij defined in eq. (10.8) satisfy eqns. (10.9), thus
proving Theorem 10.1

Solution: We prove each of the properties given in eqns. (10.9):
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Property (10.9a), TΘΦPΦ = TΘΦ = PΘTΘΦ: Let

TΘΦ := τ · PΘρΘΦPΦ with τ ∈ R \ {0} . (10.10)

Then,

TΘΦ · PΦ := τ · PΘρΘΦ PΦ · PΦ︸ ︷︷ ︸
=PΦ

= τ · PΘρΘΦPΦ , (10.11)

since PΦ is a projection operator. Similarly,

PΘ · TΘΦ := τ · PΘ · PΘ︸ ︷︷ ︸
=PΘ

ρΘΦPΦ = τ · PΘρΘΦPΦ . (10.12)

Property (10.9b), T †ΘΦ = TΦΘ:

T †ΘΦ =
(
PΘρΘΦPΦ

)†
= PΦρ

†
ΘΦPΘ = TΦΘ , (10.13)

where the last equality holds since ρ†ΘΦ = ρΦΘ is the inverse permutation of ρΘΦ (c.f. Defini-
tion 8.2).

Property (10.9c), TΘΦTΦΘ = PΘ: We unpack

TΘΦTΦΘ = τ2 · PΘρΘΦ PΦ · PΦ︸ ︷︷ ︸
=PΦ

ρ†ΘΦPΘ = τ2 · PΘρΘΦPΦρ
†
ΘΦPΘ , (10.14)

writing ρΦΘ as ρ†ΘΦ for clarity in the steps to follow. Of the equivalent ways to express the
projectors PΘ and PΦ, we choose PΘ and PΦ to be constructed according to the shortened
KS algorithm Corollary 8.2:

TΘΦTΦΘ

τ2
= YΘ(n−2)

· · ·YΘ · · ·YΘ(n−2)︸ ︷︷ ︸
PΘ

ρΘΦ YΦ(n−2)
· · ·YΦ · · ·YΦ(n−2)︸ ︷︷ ︸

PΦ

ρ†ΘΦ YΘ(n−2)
· · ·YΘ · · ·YΘ(n−2)︸ ︷︷ ︸

PΘ

.

(10.15)

Writing each Young projection operator as a product of symmetrizers and antisymmetrizers,
YΞ = αΞSΞAΞ, eq. (10.15) becomes

TΘΦTΦΘ

τ2β2
ΘβΦ

= (10.16)

SΘ(n−2)
· · · SΘ AΘ SΘ(1)

· · ·AΘ(n−2)
ρΘΘ′ SΘ′

(n−2)
· · · SΘ′ AΘ′ · · ·AΘ′

(n−2)
ρΘ′Θ SΘ(n−2)

· · ·AΘ(1)
SΘ AΘ · · ·AΘ(n−2)

,

=: M(1) =: M(2) =: M(3)

P̄Θ P̄Θ′ P̄Θ

where the constants βΘ and βΦ lump together all the constants αΞ appearing in PΘ and PΦ

respectively. Let us now take a closer look the part of TΘΦTΦΘ that is enclosed in a green
box in (10.16): We notice that this part is of the form

O := SΘ M (1) M (2) M (3) AΘ , (10.17)
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where the M (i) are defined in (10.16). According to the cancellation rule Corollary 8.3, there
exists a constant λ such that

O = λYΘ . (10.18)

Furthermore, we know that λ 6= 0, if the operator O itself is nonzero. In section 8.2, we gave
two conditions under which O is guaranteed to be nonzero. From the definition of the M (i)

in eq. (10.16), it is clear that M (1) and M (3) satisfy the first such condition (condition 8.1),
while M (2) satisfies the second condition (condition 8.2). Thus, a combination of the two
conditions hold, and O is nonzero (c.f. condition 8.3). This implies that (10.18) holds for a
nonzero constant λ. We may therefore simplify (10.16) as

TΘΦTΦΘ

τ2β2
ΘβΦ

= λ·SΘ(n−2)
· · ·AΘ(1)

SΘ AΘ SΘ(1)
· · ·AΘ(n−2)

. (10.19)

Once again writing the sets of symmetrizers and antisymmetrizers as Young projection op-
erators, YΞ = αΞSΞAΞ (where we recall that the αΞ are encoded in the constants β), the
product TΘΦTΦΘ becomes

TΘΦTΦΘ =
(
τ2βΘβΦλ

)
· YΘ(n−2)

· · ·YΘ · · ·YΘ(n−2)︸ ︷︷ ︸
PΘ

. (10.20)

Thus, for

τ =
1√

βΘβΦλ
, (10.21)

where obviously τ < ∞ and τ 6= 0 since λ, βΘ and βΦ are nonzero and finite, the transition
operator TΘΦ also satisfies property (10.9c).
Since TΘΦ does indeed satisfy all properties laid out in eqns. (10.9), we conclude that it is the
transition operator between the Hermitian Young projection operators PΘ and PΦ.

Example 10.1: Transition operators for SU(N) on V ⊗3

Consider the tableau permutation calculated in Example 8.4,

Θ→ 1 2

3

1 3

2
← Φ =⇒ ρΘΦ = . (10.22)

The transition operator TΘΦ is given by

TΘΦ =

(
4

3

)2

τ ·
︸ ︷︷ ︸

PΘ

︸︷︷︸
ρΘΦ

︸ ︷︷ ︸
PΦ

. (10.23)

Using Corollary 8.3 condition 8.2, this can be simplified to

TΘΦ ∝ , (10.24)
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and, invoking eq. (10.9c), we find that

TΘΦ =
√

4

3
· . (10.25)

The constant
√

4
3 is determined via implementing eq. (10.9c). In fact, one can incorporate

this simplification step directly in the construction, arriving at a general efficient algorithm.

10.2.2 A multiplet adapted basis for API (SU(N), V ⊗m)

Definition 10.2 – Set of projection and transition operators:
Let Pn denote the set of all Hermitian Young projection operators of SU(N) on V ⊗n (constructed
either according to hte KS algorithm or the MOLD algorithm), and let Tn be the set of all unitary
transition operators between equivalent projection operators in Pn. Ωn shall denote the union of
these sets,

Ωn = Pn ∪ Tn (10.26)

Proposition 10.1 – Multiplet adapted basis for the algebra of invariants:
The set Ωn constitutes a basis for the algebra of invariants of SU(N) on V ⊗n,

Ωn is a basis for API
(
SU(N), V ⊗n

)
= C[Sn] ⇔ C[Ωn] = C[Sn] (10.27)

Unlike the canonical basis Sn, Ωn is orthogonal with respect to the scalar product 〈A|B〉 := tr
(
A†B

)

given in Definition 2.5.

To prove this proposition, we will need the following result:

Theorem 10.2:
Let Y be a Young diagram consisting of n boxes and let fY be the number of Young tabelaux with

shape Y (incidentally, from Theorem 5.3, we know that fY = n!
HY

). Then, the sum of all f2
Y over

all Young diagrams with n boxes yields the order (size) of the group Sn

∑

Y

f2
Y = |Sn| = n! . (10.28)

Notice that the left hand side of eq. (10.28) gives the sum of the square of the number of all Young
tableaux with the same shape. What eq. (10.28) says is that this sum has to add add up to the order
of the group. Therefore, if one could find a bijection between the permutations in Sn and all ordered
pairs of Young tableaux of the same shape, the theorem would be proven. Such a bijection exists
and is given by the the Robinson-Schensted algorithm [24, 25], which is a combinatorial algorithm
that we will not discuss any further here.

Note 10.1: Multiplicities of representations and the order of the group

Theorem 10.2 is actually much more general than the formulation given here. In fact, Let G
be a finite group, ϕ : G → End(V ) be an irreducible representation of G, and let mϕ be the
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multiplicity of this representation (c.f. Note 6.4). Then,

∑

ϕ

m2
ϕ = |G| . (10.29)

In the standard literature, this result is usually proven using group character, see, e.g.
REFERNCE

Since all irreducible representations of Sn on V ⊗n corresponding to Young tableaux of the
same shape are equivalent (c.f. Theorem 5.2), the multiplicity of a representation ϕΘ corre-
sponding to a particular Young tableau Θ is given by the number of Young tableaux with
shape YΘ (i.e. the Young diagram underlying Θ).

Proof of Proposition 10.1. The projection operators corresponding to irreducible representations of
SU(N) over V ⊗n project onto equivalent irreducible representations if and only if the corresponding
Young tableaux have the same shape (c.f. Theorem 5.2) and thus correspond to the same underlying
Young diagram. Consider a particular Young diagram Y giving rise to fY Young tableaux; from
Theorem 5.3, we know that this number is given by

fY =
n!

HY
, (10.30)

where HY is the hook length of the Young diagram Y. Then, the set of all projection operators
corresponding to these fY tableaux and all transition operators between them — let us denote this
set by SY — will be of size f2

Y,

|SY| =
(
n!

HY

)2

, (10.31)

since one may always arrange the elements of SY into an fY × fY matrix which has the projection
operators on the diagonal and each off-diagonal element in position ij is the transition operator
between the diagonal elements ii and jj. If we sum the |SY| over all Young diagrams Y consisting
of m boxes, we obtain the aggregate number of all projection and transition operators associated
with SU(N) over V ⊗n, |Ωn|,

|Ωn| =
∑

Y

|SY| =
∑

Y

(
n!

HY

)2

. (10.32)

From Theorem 10.2, we know that also

|Sn| =
∑

Y

(
n!

HY

)2

, (10.33)

implying that the two sets Ωn and Sn have the same size,

|Sn| = |Ωn| . (10.34)

Provided that N ≥ n, so that dimensional zeros are absent, the projection and transition operators
in Ωn are all linearly independent. It follows that these operators span the algebra of invariants
over V ⊗n, and thus constitute an alternative basis of this algebra,

API
(
SU(N), V ⊗n

)
=
{
λQ
∣∣∣λ ∈ C, Q ∈ Ωn

}
= C[Ωn] . (10.35)
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Let us now show that the operators in Ωn are mutually orthogonal with respect to the scalar
product (2.13): Denote

mii = PΘi for all Θi ∈ Ym with underlying diagram YΘi (10.36a)

mij = TΘiΘj for all Θi,Θj ∈ Ym with underlying diagram YΘi = YΘj . (10.36b)

Since the projection operators PΘi are Hermitian (c.f. eq. (7.41f)) and the transition operators
TΘiΘj are unitary (c.f. eq. (10.9b)), it follows that

m†ij
(10.9b)

======
(7.41f)

mji for all mij ∈ Ωn . (10.37)

Hence,

〈mij |mkl〉 = tr
(
m†ijmkl

)
(10.9b)

======
(7.41f)

tr (mjimkl) . (10.38)

Irrespective of whether mji and mkl are projection or transition operators, mjimkl contains the
product PΘiPΘk , which vanishes unless i = k by the transversality property of the Hermitian Young
projection operators (c.f. eq. (7.41b)),

PΘiPΘk

(7.41b)
====== δikPΘi . (10.39)

Therefore,

tr (mjimkl)
(7.41b)

====== δiktr (mjimil) . (10.40)

By the cyclicity of the trace, tr (mjimil) also contains the product PΘlPΘj , such that

tr (mjimkl)
(7.41b)

====== δikδljtr (mjimij) = δikδljtr
(
m†ijmij

)
. (10.41)

Hence, the inner product of all elements mij ,mlk ∈ Ωn vanishes unless mij = mlk.

We just showed that, for all mij ,mlk ∈ Ωn If mji is a projection operator, then mji

〈mij |mkl〉 = δikδljtr
(
m†ijmij

)
. (10.42)

• If mij = mii is a projection operator, then

tr
(
m†ijmij

)
= tr

(
m†iimii

)
= tr

(
P †ΘiPΘi

)
= tr (PΘiPΘi) = tr (PΘi) = dim(Θi) . (10.43)

• If mji is a transition operator, then, by property (10.9c),

tr
(
m†ijmij

)
= tr (mjj) = tr

(
PΘj

)
= dim(Θj) = dim(Θi) , (10.44)

where the last equality holds since Θi and Θj correspond to equivalent representations (other-
wise mij would be zero by Schur’s Lemma 5.1), and hence the corresponding representations
must have the same dimension.

In either case, we found that

〈mij |mkl〉 = tr
(
m†ijmkl

)
= δikδjldim(Θi) . (10.45)
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10.3 Compact construction algorithm

Due to the length of the operator expressions,Theorem 10.1 becomes inefficient very easily. The
following Theorem 10.3 provides a more efficient way of constructing the transition operator TΘΦ

between PΘ and PΦ by, literally, taking the left part of PΘ and the right part of PΦ and gluing the
two parts together — exactly how this is done is described in the theorem. This gluing procedure
requires a specific graphical convention for the birdtracks used to represent the projection operators:
For any birdtrack operator, we will align all sets of symmetrizers and antisymmetrizer at the top. If a
particular set of symmetrizers SΘ contains several symmetrizers such that each Si ∈ SΘ corresponds
to the ith row of Θ, then we draw Si above Sj if i < j. The analogous convention is used for
antisymmetrizers corresponding to the columns of Θ.

Theorem 10.3 – Compact transition operators:
Let Θ and Φ be two Young tableaux of equivalent representations of SU(N). They therefore have
the same shape, and the sets of antisymmetrizers AΘ and AΦ are in one-to-one correspondence
(i.e. for each element of AΘ, there exists a counterpart in AΦ with the same length). Let PΘ

and PΦ be the birdtracks of two Hermitian Young projection operators constructed according to the
MOLD Theorem 9.1, drawn using the conventions listed in the previous paragraph. Then PΘ and
PΦ contain AΘ and AΦ at least once, but at most twice. This determines how to proceed:

1. If both PΘ and PΦ each contain exactly one set of AΘ respectively AΦ, then pick this set in
each operator.

2. If one of PΘ and PΦ contains one copy of AΘ respectively AΦ, the other contains two, then
pick the leftmost set AΘ in PΘ and the rightmost set AΦ in PΦ.

3. If both PΘ and PΦ each contain two sets of AΘ respectively AΦ, then pick either the leftmost
set or the rightmost set in both operators. (It does not matter which one, but it needs to be
the same in both operators.)

Now split PΘ and PΦ by vertically cutting through the tower of antisymmetrizers chosen according
to these rules. The next step discards everything to the right of the cut in PΘ and everything to the
left of the cut in PΦ, and glues the remaining pieces together at the cut. The resulting birdtrack is
T̄ΘΦ, where

TΘΦ := τ · T̄ΘΦ . (10.46)

One still needs to find the normalization constant τ from direct calculation by requiring eqns. (10.9)
to hold (the relatively compact expressions are well suited for an automated treatment to obtain this
constant).

It should be noted that the cutting-and-gluing procedure described in Theorem 10.3 can always be
done since the two Young tableaux Θ and Φ have the same shape, thus do their sets of antisym-
metrizers AΘ and AΦ, and the two sets are top-aligned.

Furthermore, one could equally well replace antisymmetrizer sets (AΘ respectively AΦ) by sym-
metrizer sets (SΘ respectively SΦ) in all the steps outlined in Theorem 10.3, as this leads to the
same birdtrack TΘΦ (as becomes evident in the proof, c.f. section 10.3.2). Basing the procedure on
antisymmetrizers, however, explicitly shows that TΘΦ contains the same sets of antisymmetrizers as
PΘ and PΦ, and therefore becomes dimensionally zero exactly when PΘ and PΦ vanish dimensionally.
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Example 10.2: Constructing a transition operator according to Theorem 10.3

Consider the two Hermitian Young projection operators

PΘ =
3

2
· and PΦ = 2 · (10.47)

corresponding to the Young tableaux

Θ =
1 4
2
3

and Φ =
1 3
2
4

(10.48)

respectively. We construct TΘΦ according to the compact construction Theorem 10.3: we
first split the leftmost antisymmetrizer A123 of PΘ and discard everything to the right of the
cut,

PΘ ∝ 7→
�
�
�
��

= . (10.49)

Similarly,

PΦ ∝ 7→
�

�
�

��
= . (10.50)

Gluing the remaining pieces together at the cut then yields

TΘΦ ∝ ; (10.51)

and indeed, the transition operator is

TΘΦ = 2 · , (10.52)

as can be easily checked via direct calculation.

10.3.1 The significance of the cutting-and-gluing procedure

Before we present the proof of Theorem 10.3, we need to make some observations: Let I be a
generalized set of (anti-)symmetrizers, and let ρ be a permutation. Then, using the fact that
ρ† = ρ−1 for any permutation, we have that

ρ I = ρ I ρ†ρ︸︷︷︸
id

= ρ I ρ†︸ ︷︷ ︸
=:I′

ρ = I′ ρ, (10.53)

where I′ is now a genarlized set of (anti-)symmetrizers, over a different set of indices.
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Example 10.3: Permuting (anti-)symmetrizers with tableau permutations

Consider

︸︷︷︸
ρ
︸︷︷︸

I

=

︸︷︷︸
ρ
︸︷︷︸

I
︸︷︷︸
ρ†ρ

=

︸ ︷︷ ︸
I′

︸︷︷︸
ρ

, (10.54)

where we have I = {S123,S45} and I′ = {S124,S35}.

In the proof of Theorem 10.3, we will come across a particular such case, namely where ρ is the
tableau permutation ρΘΦ as defined in Definition 8.2. The simplest case we encounter are the
products ρΘΦSΦ and ρΘΦAΦ. By its very definition ρΘΦ explicitly relates Θ and Φ such that

ρΘΦSΦ = SΘρΘΦ = SΘρΘΦSΦ (10.55a)

ρΘΦAΦ = AΘρΘΦ = AΘρΘΦAΦ , (10.55b)

where the last equality follows from the fact that each (anti-) symmetrizer individually is idempotent.
Recognizing the parallel between eq. (10.55) and transition operators eq. (10.8) (between Hermitian
projectors, such as symmetrizers SΞ and antisymmetrizers AΞ), the objects (10.55) can be viewed
as transition operators between individual sets of (anti-) symmetrizers. This observation extablishes
the connection to the graphical cutting-and-gluing procedure discussed in Theorem 10.3: cutting
antisymmetrizers AΘ and AΦ vertically and gluing them as suggested by the Theorem is equivalent
to forming the product AΘρΘΦAΦ (and similarly for symmetrizers). This is illustrated in the
following example: For the Young tableaux

Θ =
1 3
2
4

and Φ =
1 2
3
4

, (10.56)

we have

︸ ︷︷ ︸
AΘ

︸︷︷︸
ρΘΦ

︸ ︷︷ ︸
AΦ

= = . (10.57)

The feature observed in this example is fully general: ρΘΦ is defined to translate the ordering of the
left legs on AΦ into the ordering of the right legs on AΘ — this is precisely what the cutting and
gluing procedure achieves graphically:

AΘ →
�
�
�� and AΦ →

�
�
�� 7→ . (10.58)

Both procedures lead to the same result (this is a consequence of relation (10.55)). Thus, we will
refer to the algebraic construct (10.55b) as the cut-antisymmetrizer and denote it by

��AΘΦ := AΘρΘΦAΦ = AΘρΘΦ = ρΘΦAΦ , (10.59)

and similarly for the cut-symmetrizer �SΘΦ := SΘρΘΦSΦ. For the proof of Theorem 10.3, we will
only concern ourselves with cut-antizymmetrizers, as we already did in the Theorem. However, all
the following arguments hold equally well if we consider cut-symmetrizers instead.
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It is important to note that eqns. (10.55) do not hold for the ancestor sets SΦ(k)
and AΦ(l)

of SΦ

and AΦ. However, such ancestor sets will be transformed (upon commutation with the permutation
ρΘΦ) into sets of the same shape that can be obtained from SΘ resp. AΘ by dropping lines, as will
be explained in Note 10.2:

Note 10.2: Φ-MOLD ancestry of a tableauΘ

Consider two Young tableaux

Θ =
1 2 5
3 4
6

and Φ =
1 3 5
2 6
4

(10.60)

with MOLD ancestries

Θ =
1 2 5
3 4
6

π−−→ 1 2 5
3 4

π−−→ 1 2
3 4

(10.61a)

and

Φ =
1 3 5
2 6
4

π−−→
1 3 5
2
4

π−−→
1 3
2
4

π−−→ 1 3
2

. (10.61b)

The tableau permutation ρΘΦ is given by

ρΘΦ = . (10.62)

Any set of (anti-)symmetrizers IΦ(m) corresponding to an ancestor tableau Φ(m) of Φ can
be transformed into a set that can be absorbed into IΘ by conjugating it with the tableau
permutation ρΘΦ. In fact, the set ρΘΦIΦ(m)ρ

†
ΘΦ corresponds to the tableau obtained from

Θ by removing the boxes that are in the same positions as the m highest boxes of Φ, for
example,

Φ Φ(1) Φ(2) Φ(3)
︷ ︸︸ ︷
1 3 5
2 6
4

→

︷ ︸︸ ︷
1 3 5
2
4

→

︷ ︸︸ ︷
1 3
2
4

→
︷ ︸︸ ︷
1 3
2

(10.63a)

1 2 5
3 4
6
︸ ︷︷ ︸

→
1 2 5
3
6
︸ ︷︷ ︸

→
1 2
3
6
︸ ︷︷ ︸

→ 1 2
3
︸ ︷︷ ︸

. (10.63b)

Θ Θ(Φ,1) Θ(Φ,2) Θ(Φ,3)

Each tableau Θ(Φ,k) in (10.63b) was obtained from the predecessor Θ(Φ,k−1) by removing
the box which is in the same position as the box with the highest number in Φ(k−1). We
shall refer to the tableaux in (10.63b) as the Φ-MOLD ancestry of Θ. Note that most of the
tableaux in the Φ-MOLD ancestry of Θ are not the ancestor tableaux of Θ; in fact, most of
them are not even Young tableaux. The Θ(Φ,i) emerge by superimposing the Φ(i) in cookie
cutter fashion over Θ and thus intrinsically differ from the ancestry of Θ itself.
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Thus, the ancestor (anti-)symmetrizers satisfy

ρΘΦSΦ(k)
= SΘ(Φ,k)

ρΘΦ for SΘ(Φ,k)
⊃ SΘ (10.64a)

ρΘΦAΦ(l)
= AΘ(Φ,l)

ρΘΦ for AΘ(Φ,l)
⊃ AΘ , (10.64b)

the (anti-)symmetrizers SΘ(Φ,k)
and AΘ(Φ,l)

correspond to tableaux in the Φ-MOLD ancestry of Θ .

We will now present a proof for the shorthand graphical construction of the birdtracks of transition
operators given in Theorem 10.3.

10.3.2 Proof of Theorem 10.3

Let Θ,Φ ∈ Yn be two Young tableaux with the same shape, thus corresponding to equivalent irre-
ducible representations of SU(N), and let the corresponding Hermitian Young projection operators
PΘ and PΦ be constructed according to the MOLD Theorem 9.1. Then

PΘ ∝ CΘ IΘBΘIΘ C†Θ , (10.65)

where CΘ consists of ancestor sets of (anti-) symmetrizers of Θ, and the exact structure of CΘ is
determined by the MOLD of Θ. Similarly, PΦ is of the form

PΦ ∝ DΦ

{
IΦBΦIΦ

BΦIΦBΦ

}
D†Φ , (10.66)

where, like CΘ, DΦ consists of ancestor sets of (anti-)symmetrizers of Φ. In equation (10.66), we
have taken into account that the central part of PΦ can either have the same form as PΘ (which is
IBI), or it may have symmetrizers and antisymmetrizers exchanged from PΘ. It should be noted
that the set DΦ will be different whether the central part of PΦ is IΦBΦIΦ or BΦIΦBΦ, but in both
cases it will consist of ancestor sets of symmetrizers and antisymmetrizers of Θ. Understanding
this, we have chosen not to introduce different symbols for the set DΦ.

According to Theorem 10.1, the birdtrack of the transition operator TΘΦ is given by

TΘΦ ∝ CΘ IΘBΘIΘ C†Θ︸ ︷︷ ︸
=PΘ

ρΘΦ DΦ

{
IΦBΦIΦ

BΦIΦBΦ

}
D†Φ

︸ ︷︷ ︸
=PΦ

. (10.67)

As was discussed in section 10.3.1, the permutation ρΘΦ can be commuted with DΦ, in accordance
with relations (10.64). Furthermore, equations (10.55) tell us that ρΘΦIΦ = IΘρΘΦ and ρΘΦBΦ =
BΘρΘΦ .

In commuting the ρΘΦ through the sets IΦ and BΦ, it will be convenient to stop the commutation
in a different place in the top row than the bottom row of TΘΦ,

TΘΦ ∝ CΘ IΘBΘIΘ C†Θ DΘ

{
IΘBΦρΘΦIΦ

BΘIΘBΘρΘΦ

}
D†Φ , (10.68)

this choice may seem arbitrary at this point, but the position of ρΘΦ in (10.68) will turn out
to specify the position of the cut in the cutting-and-gluing procedure (c.f. section 10.3.1). We
emphasize that DΘ denotes the product of (anti-)symmetrizers in DΦ when commuting them with
ρΘΦ (c.f. eqns. (10.64)),

DΘρΘΦ := ρΘΦDΦ . (10.69)
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We may apply the cancellation rule Corollary 8.3 to the operator (10.68) to simplify TΘΦ as

TΘΦ
Cor. 8.3

======= CΘ IΘBΘIΘ

{
IΘBΘρΘΦIΦ

BΘIΘBΘρΘΦ

}
D†Φ = CΘ

{
IΘBΘIΘ IΘBΘρΘΦIΦ

IΘBΘIΘ BΘIΘBΘρΘΦ

}
D†Φ . (10.70)

The product IΘBΘ is proportional to either a Young projection operator or the Hermitian conjugate

thereof, IΘBΘ ∝ e(†)
Θ . The quasi-idempotency of eΘ allows us to simplify TΘΦ to

TΘΦ ∝ CΘ

{
IΘBΘρΘΦIΦ

IΘBΘρΘΦ

}
D†Φ . (10.71)

In Theorem 10.3, we discussed three different cutting-and-gluing procedures, depending on the exact
structure of the projection operators PΘ and PΦ.

1. Option 1 requires both operators PΘ and PΦ to contain exactly one set of antisymmetrizers
AΘ and AΦ respectively. This occurs if we choose the top option of TΘΦ as given in (10.67)
(and hence the top line in (10.71)) and if B denotes the set of antisymmetrizers and thus IΘ

denotes the set of symmetrizers,

(10.71) : TΘΦ ∝ CΘ IΘBΘρΘΦIΦ D†Φ
B=A, I=S−−−−−−−→ CΘ SΘ AΘρΘΦ︸ ︷︷ ︸

=�AΘΦ

SΦ D†Φ , (10.72)

where we marked the cut-antisymmetrizer ��AΘΦ (see eq. (10.59)). Clearly, (10.72) coincides
with the cutting-and-gluing prescription of Theorem 10.3 if each projector PΘ and PΦ contains
exactly one set AΘ and AΦ respectively.

2. Option 2 of Theorem 10.3 requires PΘ and PΦ to have a different number of AΘ and AΦ.
The bottom option of operator (10.67) (and hence operator (10.71)) corresponds to this case.
Dependent on which operator (PΘ or PΦ) contains two sets of antisymmetrizers (AΘ or AΦ)
is whether B denotes the set of antisymmetrizers and I the set of symmetrizers, or the other
way around: If B denotes the set of antisymmetrizers (i.e. PΘ contains AΘ once and PΦ

contains two copies of AΦ), we have

(10.71) : TΘΦ ∝ CΘ IΘBΘρΘΦ D†Φ
B=A, I=S−−−−−−−→ CΘ SΘ AΘρΘΦ︸ ︷︷ ︸

=�AΘΦ

D†Φ . (10.73a)

The operator (10.73a) is the same operator that would have resulted from cutting PΘ at its
leftmost set AΘ and PΦ at its rightmost set AΦ, and gluing the pieces in the appropriate man-
ner as described in Theorem 10.3. On the other hand, if I denotes the set of antisymmetrizers
(i.e. PΘ contains two copies of AΘ and PΦ contains AΦ once), then

TΘΦ
I=A, B=S−−−−−−−→ CΘ AΘSΘρΘΦ D†Φ

eq. (10.55a)
========= CΘ AΘρΘΦ︸ ︷︷ ︸

=�AΘΦ

SΦD†Φ , (10.73b)

where we used the commutation relation (10.55a) to commute SΘ and ρΘΦ. This again yields
the same result as the cutting-and-gluing procedure of Theorem 10.3.

3. Lastly, suppose that both PΘ and PΦ each contain two sets of antisymmetrizers AΘ and
AΦ respectively. Then, we once again need to look at the top option of the operator TΘΦ
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as given in (10.67) (and hence (10.71)), but this time we require that I denotes the set of
antisymmetrizers. Then,

(10.71) : TΘΦ ∝ CΘ IΘBΘρΘΦIΦ D†Φ
I=A, B=S−−−−−−−→ CΘ AΘSΘ ρΘΦAΦ︸ ︷︷ ︸

=�AΘΦ

D†Φ . (10.74a)

Equivalently,

TΘΦ ∝ CΘ AΘSΘρΘΦ AΦD†Φ
eq. (10.55a)

========= CΘ AΘρΘΦ︸ ︷︷ ︸
=�AΘΦ

SΦAΦD†Φ ; (10.74b)

eq. (10.74a) corresponds to cutting-and-gluing at the rightmost sets of antisymmetrizers AΘ

and AΦ (respectively) in both PΘ and PΦ, while eq. (10.74b) corresponds to cutting-and-gluing
the leftmost sets of antisymmetrizers AΘ and AΦ in both PΘ and PΦ.

Thus, we have shown that TΘΦ can indeed be obtained by the graphical cutting-and-gluing pre-
scription given in Theorem 10.3 up to a normalization constant.
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Part III

Antifundamental representations and
applications in QCD
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11 Antifundamental representations of SU(N)

11.1 Unitary representations

Let G be a finite group, and let ϕ : G → End(V ) be a representation of G. We say that ϕ is a
unitary representation if there exists a scalar product σ 〈·|·〉 : V × V → C such that

σ 〈ϕ(g)v1|ϕ(g)v2〉 = σ 〈v1|v2〉 (11.1)

for all g ∈ G and for all v1,v2 ∈ V .

Consider the inner product σ 〈·|·〉 defined by

σ 〈v1|v1〉 :=
∑

g∈G
〈ϕ(g)v1|ϕ(g)v1〉 , (11.2a)

where 〈·|·〉 is any scalar product on V . Clearly, the inner product σ 〈·|·〉 defined in (11.2a) satisfies
eq. (11.1). Therefore, we have seen that, for a finite group G, one can always find a scalar product
with respect to which the representation ϕ : G→ End(V ) is unitary.

The analogous example holds for compact Lie groups (such as, for example, SU(N)), and the
appropriate scalar product is given by

σ 〈v1|v1〉 :=

∫

G
〈ϕ(g)v1|ϕ(g)v1〉dg , (11.2b)

where
∫
G dg is the Haar-integral and dg is called the Haar measure (we will not show that the

inner product (11.2b) satisfies eq. (11.1) as this would require a closer study of the Haar measure,
see, for example, Groups and Symmetries — From Finite Groups to Lie Groups by Y. Kosmann-
Schwarzbach [26]). However, we will use the result that every representation of a compact Lie group
is equivalent to a unitary one (via the scalar product (11.2b)), and we may therefore consider every
representation to be unitary.

11.2 Dual space V ∗

In Definition 6.2, we defined the defining (or fundamental) representation of a group element U ∈
SU(N), γ(g) to be the matrix acting on the N -dimensional vector space V . Notice that, if γ is a
representation of SU(N), then so are

γ(U) , [γ(U)−1]t and [γ(U)−1]t , (11.3)

where γ(U) is the complex conjugate of the matrix γ(U), γ(U)−1 is the inverse matrix and γ(U)t

denotes the transpose.

Since we are mainly interested in unitary representations, we have that

[γ(U)−1]t = [γ(U)†]t = γ(U) and [γ(U)−1]t = [γ(U)†]t = γ(U) , (11.4)

so the only two distinct representations we obtain are γ(U) and γ(U) = [γ(U)−1]t. It turns out that
the latter defines a representation on the dual space V ∗, called the antifundamental representation
of SU(N), as we shall see in this section.
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Definition 11.1 – Dual space:
let V be an N -dimensional vectors space. Then, its dual space V ∗ is defined to be the space of all
functions from V to a field F. (In these lectures, we will always take F = C).

It is readily seen that V ∗ is indeed a vector space.

Let V,W be two vector spaces and V ∗,W ∗ their dual spaces. If we have a map φ : V → W , we
can, in a very natural way, define a dual map φ∗ : W ∗ → V ∗ in a natural way: For every map
W ∗ 3 h : W → C, we define φ∗(h) to be

φ∗(h) := h ◦ φ . (11.5)

Clearly, φ∗ is a linear map, and we shall refer to this as the dual map of φ. (Note that one cannot
construct a map φ̃ : V ∗ →W ∗ using φ as, for f ∈ V ∗, neither f ◦ φ nor φ ◦ f makes sense.)

If we have three vector spaces X,V,W with duals X∗, V ∗,W ∗ and maps

X
φ−−→ V

ψ−−→ W (11.6a)

W ∗
ψ∗−−→ V ∗

φ∗−−→ X∗ (11.6b)

between them, then these maps satisfy

(φ ◦ ψ)∗ = ψ∗ ◦ φ∗ (11.7)

Consider now the special case where V = X = W , and let φ and ψ be the maps γ(U1) and γ(U2)
for two group elements U1, U2 ∈ SU(N), respectively (and γ is the defining representation of SU(N)
on V ), then the dual map γ∗ satisfies

γ(U1)∗ ◦ γ(U2)∗ = γ(U2U1)∗ . (11.8)

This is a little unfortunate as this means that γ∗ is not a representation of SU(N) on the dual space
V ∗ (for it to be a representation, it would have to be a group homomorphism and hence satisfy
γ(U1)∗ ◦ γ(U2)∗ = γ(U1U2)∗). We can, however, define a representation on V ∗ using γ∗ if we do the
following

Definition 11.2 – antifundamental representation of SU(N):
Consider the group SU(N) and let V be an N -dimensional vectors space with dual space V ∗. Then,
the map γ defined as

γ : SU(N) → End(V ∗)

γ(U) 7→ γ(U−1)∗
(11.9)

is a representation of SU(N) on V ∗ called the antifundamental representation. We will show in
the following section 11.3 that the matrix representing γ(U) is indeed the complex conjugate of the
matrix γ(U) ( c.f. eq. (11.22)), justifying the notation.

It is readily seen that γ is indeed a group homomorphism:

γ(U1)γ(U2) = γ(U−1
1 )∗γ(U−1

2 )∗ = γ(U−1
2 U−1

1 )∗ = γ
(
(U1U2)−1

)∗
= γ(U1U2) . (11.10)
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11.3 Index gymnastics

Let e := {e(i)} be a basis for V . This induces a canonical basis ω := {ω(i)} for V ∗ via

ω(j)e(i) := δji , (11.11)

where δji is the Kronecker delta. With respect to this basis, we can write the components of a
vector v ∈ V as vi. Since the vector f ∈ V ∗ lives in a vector space that is distinct from V , we
make this explicit by denoting its components with a lower index fj . Then, the action of f on v is
realized through index contraction,

f(v) := fiv
i ∈ C , (11.12)

where a repeated index is understood to be summed over (according to the Einstein summation
convention).

!
Important: The convention (11.12) makes clear that index contraction only makes
sense between an upper and a lower index, but not between two upper indices or
between two lower indices, as there is no well defined product between two vectors

in V or two vectors in V ∗. Notive also that, whether a tensor component has an upper or a
lower index signifies in which space (V or V ∗) this index lives, and therefore must be treated
as different objects!

Since both V and V ∗ are vector spaces, and γ(U) and γ(U) are linear maps on V , respectively, V ∗,
we may interpret them as matrices (with respect to the bases e and ω). In particular, for v ∈ V
with components vi, we have that

γ(U)(v) := γ(U)jiv
i = v′j ∈ V , (11.13a)

and for f ∈ V ∗ with components fi, it follows that

γ(U)(f) := γ(U)
i

j fi = f ′j ∈ V ∗ . (11.13b)

Recall that γ(U) is defined to be γ(U−1)∗, where γ(U)∗ is defined through eq. (11.5). In index
notation, eq. (11.5) reads

γ(U)∗(f) := f ◦ γ(U)

⇒ (γ(U)∗) ji fj = fjγ(U)ji , (11.14)

for every f ∈ V ∗, and γ(U) : V → V , γ(U)∗ : V ∗ → V ∗. Notive that the components of the
transpose γ(U)t of the matrix γ(U) are given by

γ(U)ji
(
γ(U)t

) j
i
, (11.15)

as is illustrated in the following Note 11.1:

Note 11.1: Transposing a matrix

Let us relate the components of the N×N matrices U and U t acting on V and V ∗ respectively:
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Consider the matrix

M =




m11 m12 . . . m1N

m21 m22 . . . m2N
...

...
. . .

...
mN1 mN2 . . . mNN


 . (11.16)

Then, its components Ma
b are given by

Ma
b = mab . (11.17)

The transposed matrix M t is given by

M t =




m11 m21 . . . mN1

m12 m22 . . . mN2
...

...
. . .

...
m1N m2N . . . mNN


 , (11.18)

and has components

(M t)ab = mba = M a
b . (11.19)

This allows us to reqrite eq. (11.14) as

⇒ (γ(U)∗) ji fj = fjγ(U)ji =
(
γ(U)t

) j
i
fj (11.20)

(where we were allowed to commute fj and γ(U)ji =
(
γ(U)t

) j
i

since both are merely tensor compo-

nents, i.e. complex numbers). What eq. (11.20) tells us is that the matrices (γ(U)∗) ji and
(
γ(U)t

) j
i

act identically on every vector f ∈ V ∗, and therefore they must be identical as maps on V in their
matrix representation,

γ(U)∗ = γ(U)t . (11.21)

Since γ is a group homomorphism, it satisfies γ(U−1) = γ(U)−1, and since we take γ to be a unitary
representation of SU(N), it furthermore follows that γ(U)−1 = γ(U)†. Therefore, we finally obtain
that

γ(U) = γ(U−1)∗ = γ(U−1)t =
[
γ(U)−1

]t
=
[
γ(U)†

]t
, (11.22)

showing that the matrix γ(U) is the complex conjugate of the matrix γ(U).

Note 11.2: Fundamental and antifundamental index lines in the birdtrack for-
malism I

Since the tensor components have different indices depending on whether these indices live
in V or V ∗ (upper, respectively, lower indices), the index lines in the corresponding birdtrack
representing this tensor must be distinguished. So far, we have marked a line acting on a
fundamental index with and arrow from right to left,

δji = , δji : V → V . (11.23)
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The Kronecker delta mapping V ∗ to itself is given by

δ i
j : V ∗ → V ∗ . (11.24a)

Inspired by the notation given in (11.23), where we draw the arrow from the lower in index
(right) to the upper index (left), we will denote the Kronecker delta δ i

j by

δ i
j = . (11.24b)

!
Important: In fact, a particular type of index line represents a particular repre-
sentation of SU(N) in birdtrack notation. The fact that the index lines acting on
V and V ∗ are distinct is indicative of the fact that the fundamental and antifunda-

mental representations of SU(N) are indeed distinct representations (even though these two
representations carry the same dimension, they are not isomorphic to each other).

11.4 Primitive invariants of SU(N) on V ⊗ V ∗

Consider now a tensor t ∈ V ⊗ V ∗ with components tij — notice that such a tensor can also be

interpreted as a map V → V . One may act a Kronecker delta δki on the fundamental index, and a

Kronecker delta δ jl on the antifundamental index as

δkiδ
j
l t

i
j = tkl ∈ V ⊗ V ∗ (11.25)

According to the convention established in Note 11.2, the operator δkiδ
j
l : V ⊗ V ∗ → V ⊗ V ∗ is

depicted as

δkiδ
j
l :=

k

i

j

l

drop−−−−→
indices

. (11.26)

As we have seen, a lower index may “act on” an upper index of a tensor (and vice versa) via
contraction. Since t ∈ V ⊗ V ∗, a natural thing to do is to act one of its indices on the other as

δ ji t
i
j = tii = tr (t) ∈ C , (11.27)

where we denoted tii as tr (t), inspired by the trace of a matrix (the sum of its diagonal elements).
In order for the result to once again be a tensor in V ⊗V ∗, we multiply by an additional Kronecker
delta,

δklδ
j
i t

i
j = δkltr (t) ∈ V ⊗ V ∗ . (11.28)

As a birdtrack, the product δklδ
j
i is depicted as

δklδ
j
i :=

k

i

j

l

drop−−−−→
indices

. (11.29)
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Note 11.3: Fundamental and antifundamental index lines in the birdtrack for-
malism II

Notice that the lines in both birdtracks

and (11.30)

the arrow direction is preserved (opposed to something like

, (11.31)

where it is ambiguous in which direction the arrow points). This is an artefact of the decision
that the arrow has to always point from the lower to the upper index, therefore making the
associated Kronecker delta a function from V to V . (Recall that the function space V → V
is isomorphic to V ⊗ V ∗, where the fundamental index is fixed.)

11.4.1 The primitive invariants of SU(N) on V ⊗ V compared to V ⊗ V ∗

Recall that the primitive invariants of SU(N) on the space V ⊗2 = V ⊗ V are given by the permu-
tations in S2,

id2 = δj1i1δ
j2
i2

= and (12) = δj2i1δ
j1
i2

= . (11.32)

We will now see that the two operators

δj1i1δ
i2

j2
= and δj1j2δ

i2
i1

= (11.33)

are invariants of SU(N) on V ⊗ V ∗. In fact, these two span the space of linear invariants of SU(N)
on V ⊗ V ∗ (without proof):

To show that the permutations ρ ∈ Sn are invariants of SU(N) on V ⊗n, we showed that these
permutations satisfy

ρ γ(U)⊗ γ(U)⊗ · · · ⊗ γ(U)︸ ︷︷ ︸
n times

v = γ(U)⊗ γ(U)⊗ · · · ⊗ γ(U)︸ ︷︷ ︸
n times

◦v (11.34)

for any vector v ∈ V ⊗n, where ρ acts on v by permuting its tensor components, the “multiplication”
between ρ and γ(U) ⊗ γ(U) ⊗ · · · ⊗ γ(U) is understood to be the composition of linear maps, and
γ(U) is the unitary fundamental representation of SU(N) on V . Since γ is a unitary representation,
eq. (11.34) is equivalent to saying that

γ(U)† ⊗ γ(U)† ⊗ · · · ⊗ γ(U)†︸ ︷︷ ︸
n times

ρ γ(U)⊗ γ(U)⊗ · · · ⊗ γ(U)︸ ︷︷ ︸
n times

= ρ (11.35)

as maps on V ⊗n. In particular, for n = 2, this equation becomes

γ(U)† ⊗ γ(U)†ργ(U)⊗ γ(U) = ρ . (11.36)

In the birdtrack formalism, this equation can for the two elements of S2 be written as

U†

U†

U

U
=

U†U

U†U

UU†=1
====== (11.37a)
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and

U†

U†

U

U
=

U†U

U†U

UU†=1
====== (11.37b)

where me may, literally, think of the U ’s as being moved along the lines in the direction of the arrow
(this is clear in the index notation — try this for yourself as an exercise).

Since a tensor t ∈ V ⊗ V ∗ carries a fundamental and an antifundamental index, it cannot be acted
upon by γ(U)⊗γ(U) but rather γ(U)⊗γ(U) = γ(U)⊗[γ(U)†]t (c.f. Definition 11.2 and eq. (11.22)).
Let us denote the set of the two operators in eq. (11.33) by S1,1

S1,1 :=
{

,
}
. (11.38)

To show that σ ∈ S1,1 is an invariant of SU(N) on V ⊗V ∗, we therefore have to show that it satisfies

γ(U)† ⊗ γ(U)tσγ(U)⊗ [γ(U)†]t = σ (11.39)

for every U ∈ SU(N).

Let us show this for the element σδj1i1δ
i2

j2
∈ S1,1 in index notation. This yields:

[γ(U)†]l1k1
γ(U)k1

j1
δj1i1 t

i1
i2
δ i2
j2

[γ(U)†] j2
k2

γ(U) k2
l2

= [γ(U)†]l1k1
γ(U)k1

i1
ti1i2 [γ(U)†] i2

k2
γ(U) k2

l2
δ i2
l2

γ(U)γ(U)†=1
========== δl1i1 t

i1
i2
δ i2
l2

= tl1l2 , (11.40)

where we used the fact that [M t]ab = M a
b (c.f. eq. (11.19)). In the birdtrack formalism, this

equation may be written as

U†

Ut

U

[U†]t
=

U†U

Ut[U†]t
UU†=1

====== (11.41)

where the index notation given in eq. (11.40) justifies moving the U ’s along the lines in the direction
of the arrow.

Similarly, for the second element δj1j2δ
i2

i1
∈ S1,1, we have that

[γ(U)†]l1k1
γ(U)k1

j1
δi2i1 t

i1
i2
δ j1
j2

[γ(U)†] j2
k2

γ(U) k2
l2

= [γ(U)†]l1k1
γ(U)k1

j1
tr (t) [γ(U)†] j1

k2
γ(U) k2

l2

γ(U)γ(U)†=1
========== δl1j1 tr (t) δ j1

l2

= tr (t) δl1l2 . (11.42)

Thus, indeed, the two operators in S1,1 are invariants of SU(N) on V ⊗ V ∗. Again in the birdtrack
formalism,

U†

Ut

U

[U†]t
=

U†U

Ut[U†]t
UU†=1

====== . (11.43)

We will state the following theorem without proof:
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Theorem 11.1 – Primitive invariants of SU(N) over mixed product spaces:
The primitive invariants of SU(N) on V ⊗(m+n), Sm+n, are in one-to-one correspondence with those

on V ⊗m ⊗ (V ∗)⊗n, Sm,n. In particular, this implies that the two sets have the same size,

|Sm+n| = |Sm,n| . (11.44)

This theorem tells us that the set S1,1 given in eq. (11.38) in fact spans the algebra of invariants,

C[S1,1] = API (SU(N), V ⊗ V ∗) . (11.45)

Note 11.4: Fundamental and antifundamental index lines in the birdtrack for-
malism III

The one-to-one correspondence between the elements of Sm+n and those in Sm,n becomes
abundantly clear in the birdtrack formalism:

Swapping a fundamental factor V in a tensor product space for an antifundamental factor is
affected by swapping the left and right endpoints on the specific V to be converted into is
dual vector space V ∗. For example

S3 on V ⊗3 : , , , , , (11.46a)

S2,1 on V ⊗2 ⊗ V ∗ : , , , , , . (11.46b)

Looking back on the primitive invariants in S1,1 (eq. (11.38)), this is exactly what we get if
we exchange the second fundamental index lines of the elements of S2 for an antifundamental
one in the prescribed way.

Notice that the primitive invariants Sm,n no longer form a group (unlike the primitive invari-
ants Sm+n!), as any invariant containing an index contraction does not have an inverse, and
multiplication is not closed within Sm,n, only within the algebra

C[Sm,n] = API
(
SU(N), V ⊗m ⊗ (V ∗)⊗n

)
, (11.47)

c.f. Exercise 11.1.

In Note 11.2, we motivated that the arrow of the birdtrack index line should always point
from the upper to the lower index. Since transposing a matrix corresponds to swapping the
upper and lower index

[M t]ab = M a
b (11.48)

— the first index gets lowered and the second index gets raised (the fact that the index a
is on top in both matrices and b is on the bottom is a statement about the exact value of
the matrix element M a

b rather than the raising and lowering of indices, c.f. Note 11.1) —
transposing a birdtrack must, therefore, correspond to changing the direction of the arrow.
Furthermore, in Note 2.2 we stated (without proof, for the proof see, e.g., [1, 6]) that the
Hermitian conjugation of a birdtrack is effected via flipping it about the vertical axis and then
changing the direction of the arrows (or in the opposite order). Since Hermitian conjugation
itself is the act of complex conjugating the operator and then taking the transpose (or,
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equivalently, in the opposite order), and we just motivated that changing the arrow direction
corresponds to transposing the birdtrack, mirroring the index line about its vertical axis must
correspond to taking the complex conjugate in the birdtrack sense,

Hermitian conjugate †
flip & change arrow direction

−→ transpose t complex conjugate
change arrow direction flip

.

Exchanging a fundamental factor V in a tensor product space for an antifundamental factor
V ∗ necessitates the exchange of the fundamental representation γ(U) with the antifundamen-
tal representation γ(U) in the product representation of SU(N) on the tensor product space.
In eq. (11.22), we showed that the map γ(U) is merely the complex conjugate of γ(U) for
every U ∈ SU(N). Thus, the mapping between Sm+n and Sm,n exemplified in eq. (11.46)
does exactly what we expect, showing that the birdtrack notation is a good one, as it makes
this map intuitive!

Exercise 11.1: Write the multiplication table of the group S2,1 in birdtrack notation.

Solution: Each element aij in the multiplication table is the product of the element
in the header of the ith row and the header of the jth column.

N N

N N

N N

N N

Notice that this multiplication table contains additional constants N , explicitly showing that
multiplication is not closed in Sm,n (compare this with the multiplication table of S3 given in
Exercise 1.1).
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12 Singlet projectors of SU(N) on V ⊗m ⊗ (V ∗)⊗n

In QCD, we will mainly be interested in the 1-dimensional (singlet) representations of SU(N) on
V ⊗m ⊗ (V ∗)⊗n. Therefore, this section focuses on the construction of singlet projection operators.

Consider the special unitary group SU(N) and let ϕ : SU(N) → GL(V ) be a singlet representation
of SU(N). That is to say that V is a 1-dimensional vector space over C, and therefore is isomorphic
to C, V ∼= C, via the map

V 3 v = λe 7→ λ , where λ ∈ C, e is the unique basis vector of V . (12.1)

Since V can be identified with C, GL(V ) may be viewed as a matrix group of 1 × 1 matrices with
entries in C, which is itself isomorphic to C. In summary, a singlet representation ϕ of SU(N) maps
each group element U ∈ SU(N) to a scalar in C. Furthermore, by virtue of the SU(N)-elements
having determinant 1 and ϕ being a group homomorphism, each element U ∈ SU(N) will be mapped
to an element onto the unit circle of C,

ϕ : U 7→ eiφ , where φ ∈ R , (12.2)

which, in turn, is isomorphic to the real interval [0, 2π),

eiφ is a unique element on the unit circle ⇔ φ ∈ [0, 2π) . (12.3)

If Pϕ is a projection operator of SU(N) onto a singlet representation ϕ on some tensor product space
W , it must project a tensor on W into a scalar in C. In the birdtrack formalism, this corresponds
to the middle part of Pϕ having no index lines running through, as each such index lines would
correspond to a tensor index in the subspace onto which Pϕ projects (since the space in quesion is
1-dimensional, there are no such tensor indices). In other words, such a projection operator must
be of the form

Pϕ =

...

...

ϕ
...

...

ϕ . (12.4a)

Notice that, since we wnat Pϕ to be Hermitian, the corresponding birdtrack is mirror symmetric,
i.e. the left half of the topologically disjoint birdtrack is the right half mirrored about the vertical
axis with the arrows reversed. In other verse, the left half is the Hermitian conjugate of the right
half,

...

...

ϕ =




...

...

ϕ



†

. (12.4b)

Let us first consider the special case where m = n:

12.1 Singlets on V ⊗n ⊗ (V ∗)⊗n

If we consider a tensor product consisting of n fundamental factors V and the same number of
antifundamental factors V ∗, a projection operator that has no index lines trespassing through the
middle is easily constructed by connecting each fundamental index line to an antifundamental one
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on the same side of the operator. We have already encountered such an operator when we considered
the space where n = 1,

is a singlet projector on V ⊗ V ∗ . (12.5)

If n > 1, there are more possibilities of constructing a singlet projector that satisfies the criterion
laid out in eq. (12.4a).

Example 12.1: Singlet projectors of SU(N) on V ⊗3 ⊗ (V ∗)⊗3 I

For example, for n = 3, we have

1

N3
,

1

N3
,

1

N3
,

1

N3
,

1

N3
and

1

N3
,

(12.6)

where the prefactors 1
N3 enjures that each projector P is appropriately normalized (and hence

satisfies P 2 = P ).

Clearly, since there are 3 fundamental factors to be connected to 3 antifundamental ones, the number
of ways in which this can be achieved is 3! — each singlet projector corresponds to a permutation
in S3. More explicitly, in the birdtrack formalism, one may obtain any singlet in eq. (12.6) from
the corresponding permutation in S3 by bending and mirroring the birdtrack,

bend−−−→ mirror−−−−→ . (12.7)

Furthermore, one may create other singlet projectors by forming linear combinations of the singlets
generated from Sn. Thus, the bent Sn-singlets span the algebra of singlet projectors of SU(N) on
V ⊗n ⊗ (V ∗)⊗n.

Notice, however, that none of the the singlet projectors in (12.6) are note pairwise transversal, for
example,

1

(N3)2
=

1

N6
tr

(( )†
·

)

=
1

N6
tr

( )

=
N2

N6
6= 0 . (12.8)

In fact, any two singlet projectors Pρ and Pσ generated from two permutations ρ, σ ∈ Sn, respec-
tively, satisfy

Pρ · Pσ =
1

(Nn)2

...

...

ρ
...

...

ρ
...

...

σ

...

...

σ =
tr
(
ρ†σ
)

(Nn)2

...

...

ρ
...

...

σ , (12.9)
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where the resulting prefactor is tr
(
ρ†σ
)

rather than tr (ρσ) since the part of Pρ contributing to this
scalar stems from the Hermitian conjugate of the bent permutation ρ (c.f. eq. (12.4b)).

If we could find another basis for the algebra of singlet projectors for which the prefactor tr
(
ρ†σ
)

is
zero, one would have found an orthogonal basis. Luckily, we already know of such a set of operators:

In section 10.2.2, we proved that the set of projection and transition operators of SU(N) on V ⊗n,
Ωn, spans the same algebra as Sn,

C[Ωn] = C[Sn] , (12.10)

c.f. Proposition 10.1. Furthermore, in this proposition we proved that any two operators A,B ∈ Ωn

satisfy

tr
(
A†B

)
= 0 . (12.11)

Therefore, the operators in Ωn, upon being bent and mirrored as illustrated in eq. (12.7), not only
span the algebra of singlet projectors of SU(N) on V ⊗n ⊗ (V ∗)⊗n, but also constitute a transversal
basis for this space.

Example 12.2: Singlet projectors of SU(N) on V ⊗3 ⊗ (V ∗)⊗3 II

An orthogonal basis for the algebra of singlet projectors of SU(N) on V ⊗3⊗(V ∗)⊗3 is obtained
by bending and mirroring the operators in the set Ω3,

ω3 =

{
,

4

3
,
√

4

3
,
√

4

3
,

4

3
,

}
(12.12)

This procedure yields the following singlet projectors:

χ1 , χ2 , χ2 , χ2 , χ2 , and χ3 ,

(12.13a)

where the normalization constants are given by

χ1 =
6

(N + 2)(N + 1)N
, χ2 =

3

N(N2 − 1)
and χ3 =

6

(N − 2)(N − 1)N
. (12.13b)

12.2 Singlets on V ⊗N : determinants

Consider once again the MOLD projection operators of SU(N) on V ⊗n. One of these will always
be the total antisymmetrizer of length n projecting onto an SU(N)-irreducible sublspace of V ⊗n of
dimension N !

n!(N−n)! . Notice that, if N = n, this subspace becomes 1-dimensional,

N !

n!(N − n)!

N=n
=====

N !

N !0!
= 1 , (12.14)

implying that, for this particular value of N , the total antisymmetrizer corresponds to a singlet rep-
resentation of SU(N) on V ⊗n. (You should convince yourself that this is in fact the only projection
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operator of SU(N) on V ⊗n for which we can choose a value N ∈ N such that the corresponding
irreducible subspace becomes 1-dimensional.)

However, it can be shown that a singlet corresponding to an antisymmetrizer of length N is com-
pletely equivalent to a singlet in V ⊗(N−1) ⊗ (V ∗)⊗(N−1):

12.2.1 Leibniz rule for determinants

Let U ∈ SU(N) and consider U to be in the fundamental representation, i.e. it can be viewed as
an N ×N -matrix acting on an N -dimensional vector space V . Let us denote the components of U
by U iai . The Leibniz formula for determinants [27] allows us to calculate the determinant of any
matrix by forming an antisymmetric sum over its columns (or, equivalently, rows) as

det (U) = εa1a2...aNU1
a1
U2

a2
. . . UNaN , (12.15)

where a sum over repeated indices is implied. Further permuting the rows (resp. columns) of a
matrix induces a minus sign in its determinant [28] such that

εb1b2...bN det (U)︸ ︷︷ ︸
=1

= εa1a2...aNU b1a1
U b2a2

. . . U bNaN , (12.16)

where we have used the fact that, by the definition of the special unitary group, the determinant of
U must equal 1. Lastly, since U is unitary, it follows that

(
U iai

)−1
=
(
U iai

)†
= (U †) aii . (12.17)

Eq. (12.16) may, therefore, be cast as

εb1b2...bN (U †) aN
bN

= εa1a2...aN
U b1a1

U b2a2
. . . U

b(N−1)
a(N−1)

. (12.18)

Thus, the Levi-Civita symbol εa1a2...aN acts as a map that translates a representation on V ⊗(N−1)

into a representation on V ∗ — eq. (12.18) allows us to read an antiquark as an antisymmetric
product of (N − 1) quarks, in agreement with eq. (??). Even more generally, one may write

εb1b2...bN (U †) aN
bN

. . . (U †)
a(N−j+1)

b(N−j+1)︸ ︷︷ ︸
N−j antiquarks

= εa1a2...aN
U b1a1

U b2a2
. . . U

b(N−j)
a(N−j)︸ ︷︷ ︸

j quarks

. (12.19)

Let us now translate the two identities (12.18) and (12.19) into birdtrack notation: Following [1],
the Levi-Civita tensor ε12...N will be denoted by a black box over N index lines, where all of these
lines exit to the left. On the other hand, the index lines of ε†12...N will exit the black box to the
right. For example,

iφεijk =
i
j
k

and i−φ(εijk)
† =

i
j
k
, (12.20)

where i−φ is a phase factor with φ = n(n−1)/2, and n is the number of legs/indices of the Levi-Civita
tensor [1] (for the example (12.20), φ = 3).20

20The phase factors i±φ are needed to ensure that the reordering of index lines of (εa1a2...aN )† brought abut by the
Hermitian conjugate † does not destroy the property (εa1a2...aN )†εa1a2...aN = 1, see [1, section 6.3].
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In birdtrack notation, (12.18) amounts to

... =
... , (12.21)

and similarly eq. (12.19) becomes

...

...

=

...

...

. (12.22)

It further should be noted that, due to the identity [1, eq. (6.28)]

...
...

1
2

N−1
N

dim(V )=N
======== ...

...

1
2

N−1
N

(12.23)

for Levi-Civita symbols of length N (where the numbers on the index lines in (12.23) keep track
of their amount, but are not necessarily the index label), the product (εa1a2...aN )†εb1b2...bN is an
element of the algebra of invariants API (SU(N), V ⊗m).

• simple example about converting A123 into singlet on V ⊗2 ⊗ (V ∗)⊗2

• mention general singlet on V ⊗m ⊗ (V ∗)⊗n: must contain antisymmetrizers of length N and
generic subsinglet contain equal number of quarks and antiquarks.
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13 Quantum Chromodynamics (QCD)

13.1 Standard model of particle physics

The standard model of particle physics postulates the following fundamental particles:
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Figure 4: Standard model of particle physics

In quantum mechanics, we consider the same kind of particles to be indistinguishable. That is, if
we, for example, observe one electron, we have observed them all, the next one is in no way different
to the first one.

The particles depicted in Figure 4 can be classified into two categories, the fermions (including
quarks and leptons), and the bosons. This classification is based on whether these particles obey
Fermi-Dirac statistics (fermions) or Bose-Einstein statistics (bosons). Let us first take a closer look
at the former kind of particles:

13.1.1 Fermions

As already mentioned, fermions obey Fermi-Dirac statistics. A consequence is that these particles really?really?
carry half-integer spin and must obey the Pauli exclusion principle. The latter states that no two
fermions can be in exactly the same state, that is any two fermions that are bound in the same
system must differ by at least one quantum number (such as spin, flavor, etc.).

Pauli exclusion ?:
Consider now the wave function ψ(x, y) depending on two spatial coordinates x, y (which may be
seen as the positions of two particles). This wave function must satisfy

|ψ(x, y)|2 = ψ(x, y)ψ̄(x, y) = 1 , (13.1)

as one interprets the square of the wave function as a kind of probability dirstribution.

There is experimental evidence that baryons (such as the proton and the neutron) contain a sub-
structure of three fundamental particles called quarks. Figure 5 shows the baryon octet and baryon
decouplet, which are collections of baryons containing only the up, down and strange quark.
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Figure 5: Baryon octet (left) and decouplet (right).

The ∆−, and ∆++ particles, however, posed a problem: both contain three down, respectively, up
quarks.21. Let us see why this is problematic. Consider, for example, the ∆− consisting of three
down quarks,

∆− = |ddd〉 . (13.2)

Since all three quarks have the same flavor (they are all down quarks), they all carry the same
electric charge, namely −1

3e (where −e is the charge of an electron). Since there are only two
options of spin — either spin up ↑ or spin down ↓ — at least two of the down quarks must have the
same spin. However, by the Pauli exclusion principle, there cannot be a bound system of fermions
with two (or more) fermions having the exact same quantum numbers. Thus, quarks must carry
another quantum number in which the two same-spin down quarks in the ∆− differ. However, since
this additional charge (indicated by the new quantum number) has never been observed, it must
be such that three particles can add up to zero net charge.

Suppose, for the sake of argument, quarks carry a charge called direction, either they left or right,
such that a left-directed and a right-directed quark combine to a direction-less quark (in analogy
to electric charge, magnetic charge or spin where, for example, a spin-↑ and a spin-↓ combine into
a state with net spin 0). Then, since each down quark is the same as the next, the magnitude of
the direction charge has to be the same uniformly, that is we cannot have one down quark that
has direction left, and another that has direction 2×right. Considering once again the ∆− particle.
Suppose that the two same-spin down quarks carry the opposite direction, one left and the other
right. The remaining down quark must also have a direction (either left or right), let us, without
loss of generality, assume that it is a left-directed quark. Notice that this does not come in conflict
with the Pauli exclusion principle as it carries the opposite spin to the other left-directed quark.
However, now the ∆− particle contains two left-directed and one right-directed quark, such that it
has a net direction left,

direction(∆−) = left + left + right︸ ︷︷ ︸
=0

= left . (13.3)

This is however impossible, since this new charge that the quarks must carry has never been observed
in nature! Hence the charge that quarks carry cannot contain only two flavors, it must contain at
least three.

It turns out that three flavors is sufficient to describe the additional charge of quarks. Gell-Mann first double
check
double
check21The Ω− had not been discovered at the dime, but more of that later
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proposed such a charge and called it color, where a quark can be either red, green of blue, where

red + green + blue = white / neutral color . (13.4)

Since a quark could have either of those colors, it is represented by a vector in a Nc = 3-dimensional
vector space (Nc is short for number of colors, it will turn out to be convenient to treat Nc as a
parameter rather than setting it to 3), where, for example




1
0
0


 = red (r) ,




0
1
0


 = blue (b) and




0
0
1


 = green (g) . (13.5)

Hence, a quark lives in an Nc-dimensional vector space V — for the group SU(Nc), V carries the
fundamental representation.

Similarly, an antiquark carrying anticolor r̄, b̄, ḡ, also lives in an Nc-dimensional vector space, but
since quarks and antiquarks are distinct particles, this cannot be the same as the space V . Instead,
we take antiquarks to live in the dual space V ∗ carrying the antifundamental representation of
SU(Nc).

!
Important: Notice that calling the additional charge of quarks color is merely a
name — it has nothing to do with colors in the everyday sense (as color, as we perceive
it, is an electromagnetic interaction mediated through photons, which explicitly do

not carry color charge).

13.1.2 Bosons

The other type of particles in the standard model are bosons, which carry integer spin. Bosons
are the force carriers in this model, which is to say that they mediate a particular interaction
(corresponding to a particular force) between other fundamental particles.

Bosons carry integer valued spin and obey Bose-Einstein statistics, which allows for multiple bosons
to be in the same state.

13.1.3 Strong force and SU(3)

In nature, there are four fundamental forces, each one is mediated by a particular kind of boson:

• the gravitational force (described by general relativity, although certain theories propose the
existence of a spin-2 boson called the graviton, which has never been observed in nature as of
yet)

• the electromagnetic force (photon)

• the weak force (W± and Z bosons)

• the strong force (gluon)
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Notice that the Higgs boson is responsible for the elementary particles aquiring mass (opposed
to being massless), and thus does not quite fall into the same category as the above mentioned
bosons, but this is way beyond the scope of these lecture notes (for more information on the Higgs
mechanism, see, e.g., [29]).

Quantum chromodynamics is a particular quantum field theory (QFT) that seeks to describe inter-
actions of fundamental particles through the strong force, i.e. via the exchange of a gluon.

The strong force is so named because, within the its very short range of approximately 0.8fm =
8× 10−16m, it is by far the strongest of the above mentioned forces in magnitude. The strong force
is responsible for the composite particles (sych as baryons and mesons) not decaying, and it also
ensures that the nucleus of an atom — composed of only electrically positively charged particles
(protons) and neutral particles (neutrons) — to stay bound.

The gauge boson mediating the strong interaction is a gluon. It is a massless particles that carries
one unit of color and one unit of anti-color. Notice that there are, in principle 9 = N2

c such color
combinations:

rr̄ bb̄ gḡ

rb̄ bḡ gr̄

rḡ br̄ gb̄

(13.6)

where the bar indicates the anticolor. Notice that, due to the relation r + b + g = 0 (eq. (13.4)),
there are actually only 8 = N2

c − 1 linearly independent color-anticolor combinations (eq. (13.4)
takes away one degree of freedom). Hence, a gluon lives in an N2

c − 1-dimensional vector space V a

— this space is said to carry the adjoint representation of SU(Nc).

If we want to consider a system of q quarks, q̄ antiquarks and g gluons, we must consider the space

V ⊗g ⊗ (V ∗)⊗q̄ ⊗ (V a)⊗g (13.7)

(such a space is also referred to as a Fock space component).

13.2 What we want to study

In experimental particle physics, deep inelastic scattering (DIS) describes an event in which the
target is broken up into its constituents. (Note that, if the target is a proton, then such an ex-
periment provides evidence for the existence of quarks, rather than considering quarks as purely
mathematical constructs.)

Consider a DIS events involving two nuclei; the different stages this event goes through are indicated
in the following Figure 6:

Figure 6: The different stages of a DIS event over time.
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Initially, the nuclei are in a state called the color glass condensate (CGC). There is a singularity at
the time of collision, and then there is a theorized state of matter (called the Glasma), in which the
CGC “continues” to exist after the collision. The Glasma thermalizes into the quark gluon plasma
(QGP), and then eventually “freezes out”, i.e. hadrons start forming which are eventually picked
up by the detector.

The QGP is under a lot of study right now, as it offers acess to the very early stages of the universe
that are (currently?) not accessible by observational astronomy, c.f. Figure 7.

Figure 7: Comparison of the big bang (creation of the universe) and the little bang (particle colli-
sion).

However, in order to properly study the QGP in a DIS event as depicted in Figure 6, one has to
know the correct initial conditions for such an event. That is, one requires knowledge about the
CGC.
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13.2.1 Color glass condensate (CGC)

In a DIS event in which we wish to create the QGP, the incoming nuclei have to experience an
extremely high rapidity separation,

lig
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e
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ge
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(13.8)

as otherwise no QGP would be created.

Thus, in order to study such a nucleus in the CGC state (i.e. initially, before the collision), it is
often easier to study the interaction between a well-understood object — usually an electron —
and the CGC. In order to mirror the interaction we actually wish to study, the projectile (electron)
and target (CGC nucleus) have to experience a large rapidity separation. In order for this rapidity
separation not to become significantly diminished through the interaction between the target and
the projectile, this interaction has to be mediated by a soft boson, i.e. one that has low energy in
comparison to the collision energy.

The energy fraction of the emitted boson is given by Bjorken-x, also denoted as xBj, which, for a
soft spacelike (due to T -channel) boson, reduces to

xBj :≈ Q2

s
, Q2 = −q2 where q2 is the boson’s 4-momentum , (13.9)

and s is the Mandelstam variable denoting the total energy of the collision. In other words, for a
soft boson (Q2 � s), we are in the small xBj limit.

It can be shown that the rapidity Y can be expressed in terms of xBj (for small xBj) as

Y = ln
1

xBj
, (13.10)

which, as already mentioned, must be large.

We thus are considering the following corner of the phase space diagram:
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Figure 8: QCD phase space diagram

13.3 Feynman diagrams

The interactions between subatomic particles (such as those given in the standard model) is well un-
derstood, but a little complicated to describe mathematically. Luckily, Feynman devised a pictorial
method to deal with such interactions in an intuitive way, where each segment of the picture corre-
sponds to a particular mathematical expressen via the so-called Feynman rules. (If one translates a
particular mathematical expression into a Feynman diagram, one speaks of deriving the Feynman
rules for the interaction at hand). We will not go into how such Feynman rules can be derived, —
readers are referred to [29, 30] for an in-depth treatment of the topic — we will, however, explain
how to draw and read a Feynman diagram, and state the Feynman rules for the interaction at hand.

As already mentioned, a Feynman diagram describes an interaction between subatomic particles.
We always read time on the horizontal axis, either from left to right or from right to left (depending
on preference); we will follow the latter of the two options. For different particles one draws different
types of lines, c.f. Note 13.1.

Note 13.1: Feynman diagrams I

In a Feynman diagram, Fermions are given by solid lines with an arrow pointing in the direc-
tion of increasing time, antifermions point into the direction of decreasing time (backwards
in time, if you will), and bosons usually each have a particular type of line attached to it:
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Particle Line

Fermion f f

Antifermion f̄ f̄

Photon

Gluon

W±, Z bosons

W±,Z

or
W±,Z

Higgs boson

Table 5: Feynman diagrams for the fundamental particles. The two conventions of lines for
the W± and Z bosons depend on the reference at hand.

This way of drawing a Feynman diagram emphasizes the fundamental force with respect to
which the interaction took place, as the force carriers (bosons) corresponding to different
fundamental forces are drawn with a different line style.

For example, the following diagram is interpreted as an electron e and an anti-electron (a positron)
ē coming in, interacting via the exchange of a photon, and then going out again. draw dia-

gram
draw dia-
gram

There are different kinds of interaction, S-channel, T -channel and U -channel draw dia-
gram
draw dia-
gram

We will concentrate on T -channel interactions.

In an experiment, one can only measure the |in〉 state and |out〉 state, but one cannot determine
the actual interaction that took place. Therefore, if we consider an interaction of a certain kind
(i.e. due to one of the four fundamental forces) taking place via the exchange of the corresponding
gauge boson, we cannot know how many gauge bosons have been exchanged, and how exactly this
exchange took place. Therefore, we must consider all these interactions concurrently, such that draw di-

agrams
- sum of
QCD in-
teractions

draw di-
agrams
- sum of
QCD in-
teractions
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Note 13.2: Feynman diagrams II

To translate Feynman diagrams into an equation, one has to determine the Feynman rules
for the interaction at hand: In these rules, one assignes a propagator to each particle line.
These propagators usually take the form

1

p2 −m2 + iε
, (13.11)

where p is the particle 4-momentum, m is the mass of the particle, and ε is a small parameter
that prevents the operator from becoming zero if it is on-shell (i.e. p2 = m2).
Each vertex indicates an interaction, as a particle is either emitted or absorbed. Such a
vertex usually induces, amongst other scalar factors, the coupling constant into the equation,
which gives a measure of how much energy is involved in the emission/absorption of said
particle. Therefore, if it “costs” particle a a lot to emit particle b, the coupling constant α
will be small, making diagrams with more such vertices less likely to occur in nature than
those with only few vertices of the kind considered.

Notice that, if the coupling constant is large, one may often truncate the series of diagrams early,
as higher order diagrams are a lot smaller in magnitude than lower order ones.

13.3.1 Deep inelastic scattering

The Feynman diagram for the DIS event we want to consider is

∑

number of gluons

x−

q
q

q̄

x+

p

draw this as−−−−−−−→

x−

q
q

q̄

x+

p

. (13.12)

In such an event, the vertex factor goes as ∼ αs ln
(

1
xBj

)
, where αs is the coupling constant of the

strong force (which is αs � 1). However, since we are working in the small-xBj region of phase

space, ln
(

1
xBj

)
will be large, such that the overall vertex factor turns out to be of order 1. Hence,

the series of diagrams cannot be truncated, as each diagram is of the same importance. Luckily,
this summation can be carried out explicitly:

13.4 Wilson lines at high energies

13.4.1 Gauge theories

A brief overview of gauge theories Nature obeys a multitude of symmetries, be it rota-
tional, translational or a symmetry of a more abstract kind. These symmetries are mathematically
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expressed as groups, that is, in order for a field theory to faithfully capture a particular natural phe-
nomenon, it has to be constrained by the group describing the associated symmetry. Such theories
are called gauge theories and the corresponding groups are referred to as gauge groups [31–34].

In field theories (such as QCD), one introduces a continuous version of a Lagrangian, in analogy
to what you are already familiar with from the Lagrangian formuation of classical mechanics. In
the same sense as in classical mechanics, the Lagrangian “encodes the physics” of the particular
situation at hand.

!
Important: The Lagrangian L of a system is given by a spatial integral of a quan-
tity L, which is called the Lagrangian density. Physics literature is often very sloppy
and also refers to the Lagrangian density as a Lagrangian, merely distinguishing the

two by the different letters L respectively L. We will continue this sloppyness here and call
both, the Lagrangian L and the Lagrangian density L the Lagrangian of the theory.

The QCD Lagrangian (density) LQCD is given by

LQCD = −iψ̄(x)��Dψ(x) +mψ̄(x)ψ(x) +
1

2
tr (FµνFµν) , (13.13)

where ψ(x) describes the “particle field” at position x, ��D is the covariant derivative (using Feynman
slash notation,

��D := γµDµ (13.14)

and γµ are the Dirac matrices [35]) and Fµν is referred to as the field strength tensor. Both D and
Fµν contain the gauge field Aµ(x),

Aµ(x) := Aaµ(x)ta , (13.15)

where the ta are the generators of the gauge group. For the covariant derivative, we have that

Dµ := ∂µ − igAµ(x) , g is called the coupling constant . (13.16a)

The exact form of this tensor will depend on the particular field theory — QCD falls into the class
of Yang-Mills theories [36], which describe Fµν as

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] . (13.16b)

If the gauge group (and hence the Lie algebra) is abelian, the last term in (13.16b) vanishes, reducing
Fµν to

Fµν = ∂µAν − ∂νAµ . (13.17)

An example of an abelian gauge theory is QED, which has gauge group U(1). On the other hand,
since the gauge group of QCD is SU(3) which is non-abelian, all terms in (13.16b) are nonzero,
and the Lagrangian will include a term proportional to A2. This term gives rise to vertices where
the gauge field couples to itself. In other words, non-abelian gauge theories such a QCD allow for
vertices of the type

or . (13.18)
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Note 13.3: Canonical Quantization

In classical mechanics, the fields in the Lagrangian are classical fields, in that they are scalar
valued. When moving from classical to quantum mechanics, one promotes the fields to
operators acting on the energy states of the system. These operators, in general, do not
commute, so one has to establish commutation relations. These commutation relations, in
turn, may be represented in terms of the eigenstates of the Hamiltonian of the system (which
is closely related to the Lagrangian), called creation and annhialation operators.

When such creation operators act on the energy states of the system, they creat excited
states. If this creation operator a corresponds to a commutation relation of the field φ,

[φa(x), φ†b(y)] = δ(3)(x−y)δab
Fourier transform−−−−−−−−−−−→ [asp, a

t†
q ] = (2π)3δ(3)(p−q)δst , (13.19)

then the action of ap on the ground state |0〉 of the system will produce an excited state
with additional energy Ep — we shall refer to this as an excited state of the field φ, or,
equivalently a quantum of φ. (This nomenclature comes from the fact that the excited states
are quantized, i.e. there is no continuous spectrum of eigenstates.)

These field quanta are interpreted as the particles involved in the interaction, and by acting
a spin operator on the excited states, one can find out whether they are bosons (carrying
integer spin) or fermions (carrying half integer spin).
Alternatively, if the fields satisfy commutation relations, then the corresponding quanta de-
scribe fermions (think Pauli exclusion principle), and if they satisfy anti-commutation rela-
tions, then the quanta describe bosons.

Upon quantization, the quanta of the field ψ are interpreted as the quarks, and the quanta of the
gauge field A are the gauge bosons (in QCD, these are the gluons).

13.4.2 Physics interpretation of a Wilson line: Eikonal approximation

Consider a quark radiating a gluon. It will be shown that if we sum over multiple gluon exchanges
and the radiated gluons are soft, then the Dirac propagator and the gluon vertex of the corresponding
Feynman diagrams turn into the Wilson line propagator and gluon vertex of eqns. (13.41).

Suppose a quark with momentum p emits a gluon with momentum k,

k

µ ,a

p− k p

F
, (13.20)

where time flows from right to left, and the grey blob F incorporates all possible diagrams containing
the depicted vertex. Suppose that the gluon that is emitted by the quark is soft (this is also referred
to as the eikonal limit),

k � p , (13.21)

such that the straight line trajectory of the quark is not (significantly) altered by the emmission of
the gluon.
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Using standard Feynman rules [30, 31, 37], the diagram (13.20) becomes

F
i(�p− �k)−m

(p− k)2 −m2 + iε
(−igtaγµ) u(p)

Dirac propagator
gluon vertex

(Dirac)remainder quark

(13.22)

where F depends of the particularities of the blob F in the diagram, m is the total mass of the add
gauge
field in
this equa-
tion

add
gauge
field in
this equa-
tion

quark and the gluon, ε is a small parameter, and u(p) encodes all information about the quark. We
once again used Feynman slash notation (c.f. eq. (13.14)). We emphasize that, for the purpose of
this thesis, the emitted gluon in the diagram (13.20) attaches to the background field, such that an
additional factor Aµa appears in eq. (13.22). For now, we will suppress Aµa, but we will make this
factor explicit at the end of our calculation.

In the eikonal limit (13.21), the momentum of the radiated gluon is negligible in comparison to the
quark momentum, implying that �p−�k ≈ �p. Furthermore, since the gluon is massless, the total mass
m of the quark and the gluon reduces to the quark mass m = mq. Therefore, when expanding the
term (p− k)2 −m2, we obtain

(p− k)2 −m2 = p2

︸︷︷︸
=m2

q

−2p · k + k2
︸︷︷︸
�p2

− m2
︸︷︷︸
=m2

q

≈ −2p · q . (13.23)

Since we are in the high energy regime of QCD, the contribution from the quark momentum dom-
inates over that of its rest mass, p � mq = m. Taking all these approximations into account, the
Feynman diagram (13.22) reduces to

F
ipνγ

ν

−2p · k + iε
(−igtaγµ)u(p) , (13.24)

where we have resolved �p into pνγ
ν according to eq. (13.14). Let us rearrange terms in eq. (13.24):

Firstly, notice that (−igta) commutes with both γµ and u(p), such that we can write

F
ipνγ

νγµ

−2p · k + iε
u(p)(−igta) . (13.25)

Secondly, by the Dirac equation [38], we have that

0 = �pu(p) = pνγ
νu(p). (13.26)

Thus, we may add a term γµpνγ
νu(p) to the numerator of eq. (13.25),

F
ipν (γνγµ + γµγν)

−2p · q + iε
u(p)(−igta) , (13.27)

where we used the fact that γµ and pν commute (notice the different indices on p and γ implying
that no contraction between the two quantities occurs). The term in the round brackets in the
numerator of eq. (13.27) is merely the anti-commutator of two γ-matrices, which is given by [30]

{γµγν} = 2gµν , gµν is the metric . (13.28)

Expressing pν as |p|ην , where ην is a normalized direction vector, eq. (13.27) becomes

F
i2|p|ηνgµν

−2|p|η · k + 2|p| iε2|p|
(−igta)u(p) . (13.29)
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It remains to define iε′ := iε
2|p| < iε and cancel a common factor 2|p| in the fraction to obtain (c.f.

eqns. (13.41))

F
i

−η · k + iε′
(−igηµta) u(p)

Wilson propagator

gluon vertex
(Wilson)remainder

quark

. (13.30)

Eq. (13.30) describes a Wilson line propagator along the path of the quark emitting a gluon on the
way.

Instead of emitting one gluon (such that one gluon is in the out state), the quark also may emit
a multitude of soft gluons. However, here the calculation becomes more involved, as one has to
consider several Feynman diagrams. For example, Figure 9 depicts some diagrams that produce
two gluons in the out state.

k1

ν1,a1

k2

ν2,a2

pp− k1p− (k1 + k2)

F

k1

ν2,a2

k2

ν1,a1

pp− k1p− (k1 + k2)

F

k = k1 + k2

ν1,a1

k1

ν1,a1

k2

ν2,a2

pp− (k1 + k2)

F

Figure 9: This graphic contains several diagrams in which a quark radiates two gluons (top row) or
one gluon (bottom row), such that there are two gluons in the out state. All these diagrams need
to be taken into account when considering the sub-process interaction q → ggq.

Amazingly, when all diagrams of a given order are added up, one obtains an ordered product —
this was proven to all orders in [39],

F

( ∞∑

m=0

iηνmAνmam(km)

η ·∑m
i=1 ki + iε

. . .
iην2Aν2a2(k2)

η ·∑2
i=1 ki + iε

iην1Aν1a1(k1)

η · k1 + iε
(−ig)mtam . . . ta2ta1

)
u(p)

= F U[η,∞,−∞] u(p) , (13.31)

where we have made the external/background gluons A explicit again, as discussed previously.

It can be shown that the interaction indicated by U[η,∞,−∞] in the above (resulting from a resumma-
tion of the contributions of all Feynamn diagrams where a quark radiates a soft gluon to all orders)
can be expressed as a path ordered exponential of the gauge field A as

U[η,∞,−∞] = Pexp

{
(−ig)

∫ ∞

−∞
dτ η ·A(γ(τ))

}
. (13.32)

It is easier to show that the expression of U[η,∞,−∞] given in eq. (13.32) can be reformulated to (13.31)
than the other way around; this is done in Note 13.4.
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Note 13.4: Feynman rules of Wilson lines

Let us now establish a physical picture for Wilson lines by discussing their Feynman rules.
These may be derived by pursuing the steps laid out below, which are summarized from [37].
Consider the Wilson line

U[η,∞,−∞] = Pexp

{
(−ig)

∫ ∞

−∞
dτ η ·A(γ(τ))

}
. (13.33)

Geometrically, this Wilson line describes a straight line path γ parametrized by τ , γµ = ηµτ ,
where ηµ gives the direction of the straight line, and τ ∈ (−∞,∞). In particular, notice that
U[η,∞,−∞] may be interpreted as the solution to the equation

ψ(x) = U[γ,x,y]ψ(y) . (13.34)

However, for U[γ,x,y]ψ(y) to yield the vector ψ(x) and not some other element of the tangent
space VxM4, U[x,y] has to satisfy the parallel transport equation [37, 40, 41]

d

dτ
U[γ,x,y] = −ig

(
dγµ

dτ
Aµ(γ)

)
U[γ,x,y] , (13.35)

where τ parametrizes the path γ.

• Taylor expand the path-ordered exponential and thus write it as a sum. The mth term
of this sum will consist of an ordered product of integrals,

(−ig)m
∫ ∞

−∞
dτm . . .

∫ τ3

−∞
dτ2

∫ τ2

−∞
dτ1

(
η ·A(γ(τm))

)
. . .
(
η ·A(γ(τ2))

)(
η ·A(γ(τ1))

)
.

(13.36)

• Fourier transform the gauge field in each term:

Aµ(ηµτ) −→
∫

d4k

(4π)2
e−iτ(η·k)Aµ(k) . (13.37)

• Exchange the order of integration
∫

dk ↔
∫

dτ in each term of the sum. For the mth

term, this means

(−igη)m
∫

d4k1d4k2 . . . d
4km

(4π)2m
A(km)A(km−1) . . . A(k1)×

×
∫ ∞

−∞
dτm . . .

∫ τ3

−∞
dτ2

∫ τ2

−∞
dτ1 e

−iη·
∑m
j=1 τjkj ; (13.38)

we have suppressed the Lorentz indices on the gauge fields A and on the directional
vector η, but we understand that each η is contracted with exactly one A.

• The integrals over the variables τi are essentially Fourier transforms of Heaviside step
functions, for example,

∫ τ2

−∞
dτ1 e

−iτ1η·k1 =

∫ ∞

−∞
dτ1 θ(τ2 − τ1) e−iτ1η·k1 =

i

−η · k1 + iε
e−iτ2η·k1 , (13.39a)
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where ε is a small parameter. For the mth term (13.38) in the series expansion of the
Wilson line, we thus have

∫ ∞

−∞
dτm . . .

∫ τ3

−∞
dτ2

∫ τ2

−∞
dτ1 e

−iη·
∑m
j=1 τjkj =

m∏

f=1

(
i

−η ·∑f
j=1 kj + iε

e−iτmη·kf

)
.

(13.39b)

After these steps are performed, the Wilson line (13.33) takes the form

U[η,∞,−∞] =

∞∑

m=1

(−igη)m
∫

d4k1 . . . d
4km

(4π)2m
A(km) . . . A(k1)

m∏

f=1

(
i

−η ·∑f
j=1 kj + iε

e−iτmη·kf

)
.

(13.40)

The sum of momenta
(
−∑f

j=1 kj

)
in the denominator physically arises from multiple gluon

emissions: by conservation of energy-momentum at a vertex, a quark with momentum p
radiating a gluon with momentum k1 has momentum p− k1 after the emission. If it radiates
a further gluon with momentum k2, the quark’s momentum will be reduced to p− (k1 + k2),
and so forth.
Recall that we used the short-hand notation A = Aata (c.f. eq. (13.16a)). Making the
generators ta explicit and identifying the Wilson line propagator and the gluon vertex as

Wilson line propagator:
i

−η · kj + iε
(13.41a)

Gluon vertex: − igηµta , (13.41b)

the Wilson line U[η,∞,−∞] may be thought of as a sum of all Feynman diagrams where a
particle moving along the straight line path γµ = ηµτ radiates/absorbs multiple gluons along
the way.

Summary: We, therefore, showed that a Wilson line describes a parton radiating/absorbing sev-
eral low-energy (soft) gluons, where a sum over the number of gluons is implied. Since the path of
the particle will not be altered significantly when radiating a soft gluon, one may approximate this
path by a straight line. This physical picture justifies the following schematic of a Wilson line,

U[η,∞,−∞] =
∑

gluons
· · · , (13.42)

where the red dots at the end of the gluon coils indicate that the gluon attaches to the background
field. In other words, in the eikonal approximation, Wilson lines allow us to re-sum all Feynman
diagrams describing a quark emitting any number of soft (external/background) gluons to all orders.

It can be shown that the Wilson lines are, in fact, elements of SU(N), c.f. Exercise 13.1

Exercise 13.1: Show that the Wilson lines given in eq. (13.33) are elements of SU(N).
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Solution:

1. Identity: The Wilson line can become the identity matrix in two ways: either the path
γ along which the Wilson line is taken has zero length,

U[γ,x,x] = Pexp

{
−ig

∫ x

x
dγµAaµ(γ)ta

}
= Pexp {0} = 1 , (13.43a)

or the gauge field Aµ vanishes along the path of the Wilson line,

U[γ,x,y] = Pexp

{
−ig

∫ x

y
dγµ 0

}
= Pexp {0} = 1 . (13.43b)

2. Unitarity [37, 42]: The inverse of a Wilson line is obtained by “reversing the effects” —
in other words, one needs to employ anti-path-ordering, and flip the sign of the integral
to “traverse the path in the opposite direction” [43],

(U[γ,x,y])
−1 =

(
Pexp

{
−ig

∫ x

y
dγµAµ(γ)

})−1

= P̄exp

{
+ig

∫ x

y
dγµAµ(γ)

}
. (13.44a)

In doing so, one reverses the order in the product and exchanges −i → +i, which is
exactly the same procedure one employs when forming the Hermitian conjugate. Hence
we conclude that Wilson lines are unitary, U−1

[γ,x,y] = U †[γ,x,y], implying that

U †[γ,x,y]U[γ,x,y] = U[γ,x,y]U
†
[γ,x,y] = 1 . (13.44b)

3. Closure under multiplication: Consider a Wilson line along a path γ from y to x con-
taining a point p. We may split γ into two segments, γ1 and γ2, where γ1 runs from y
to p along γ, and γ2 follows γ from p to x,

x

p

y

γ split γ−−−−→

x

p

y

γ1

γ2

, (13.45)

such that

U[γ,x,x] = Pexp

{
−ig

∫ x

y
dγµAaµ(γ)ta

}

= Pexp

{(
−ig

∫ p

y
dγµ1A

a
µ(γ1)ta

)
+

(
−ig

∫ x

p
dγµ2A

a
µ(γ2)ta

)}
. (13.46)

The path-ordering will ensure that all integrals over points on the curve γ1 come to
stand to the right of all integrals over points in γ2 such that the Wilson line U[γ,x,y] can
be expressed as a product of two Wilson lines along the paths γ1 and γ2 respectively,

U[γ,x,y] = U[γ2,x,p]U[γ1,p,y] , γ1 ∪ γ2 = γ . (13.47)
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This result however was to be expected [43]: We started our discussion on Wilson lines
by defining the object U[γ,x,y], the device that parallel transports the vector ψ(y) to the
point x, such that U[γ,x,y]ψ(y) = ψ(x) (c.f. eq. (13.34)). Thus, for the paths γ, γ1 and
γ2, as defined in (13.45), we must have

ψ(x) = U[γ2,x,p]ψ(p) = U[γ2,x,p]

(
U[γ1,p,y]ψ(y)

)
= U[γ2,x,p]U[γ1,p,y]ψ(y) , (13.48)

and also

ψ(x) = U[γ,x,y]ψ(y) , (13.49)

which again implies that

U[γ2,x,p]U[γ1,p,y] = U[γ,x,y] . (13.50)

More generally, the path of a Wilson line may be broken up consecutively into smaller
segments, allowing us to write a particular Wilson line as a product of shorter Wilson
lines,

U[γ,x,y] = U[γn,x,pn]U[γn−1,pn,pn−1] . . . U[γ1,p2,p1]U[γ0,p1,y] , γ0∪γ1∪· · ·∪γn−1∪γn = γ .

(13.51)

4. Determinant: We present a proof given in [43] to show that the determinant of SU(N)
is 1: One can write the determinant of U[γ,x,y] as

det(U[γ,x,y]) = etr(lnU[γ,x,y]) . (13.52)

Taking the derivative with respect to x yields Jacobi’s formula for the derivative of
determinants [44]

∂

∂x
det(U[γ,x,y]) = etr(lnU[γ,x,y])tr

(
∂

∂x
lnU[γ,x,y]

)
= det(U[γ,x,y])tr

(
U−1

[γ,x,y]

∂

∂x
U[γ,x,y]

)
.

(13.53)

From the explicit form (??) of U[γ,x,y], the derivative ∂
∂xU[γ,x,y] is calculated to be

∂

∂x
U[γ,x,y] = (−ig)U[γ,x,y]A

a
µ(γ)ta , (13.54)

such that eq. (13.53) reduces to

∂

∂x
det(U[γ,x,y]) = (−ig)det(U[γ,x,y])tr

(
Aaµ(γ)ta

)
. (13.55)

Adding in all previously suppressed matrix indices, ta = [ta]ij , tr
(
Aaµ(γ)ta

)
is under-

stood to be

tr
(
Aaµ(γ)ta

)
−→ tr

(
Aaµ(γ)[ta]ij

)
= Aaµ(γ)tr ([ta]ij) . (13.56)

Since the generators [ta]ij of SU(N) are traceless, it follows that

∂

∂x
det(U[γ,x,y]) = 0 ; (13.57)

the determinant of U[γ,x,y] is constant with respect to x. Using the initial condition
U[γ,y,y] = 1 (see eq. (13.43a)), we must have

det(U[γ,x,y]) = det(U[γ,y,y]) = det(1) = 1 , (13.58)

as required.
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In summary, the properties discussed in this section verify that Wilson lines are elements
of the special unitary group SU(N). Intuitively, this was to be expected since, by its very
definition

U[γ,x,y] = Pexp

{
−ig

∫ x

y
dγµAaµ(γ)ta

}

γ

, (13.59)

a Wilson line is a (path-ordered) exponential of the group generators ta.

In other words, the interaction we need to consider in order to study the CGC is described by
an SU(N) element U (acting on the appropriate Fock space component). Since, by color confine-
ment, all particles must assemble into color-neutral configurations, one has to project onto a singlet
representation of SU(N) before as well as after the interaction,

〈
PSi
∣∣U
∣∣PSj

〉
. (13.60)

!
Important: Note that this projection has to be done manually
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