WPS 01: Birdtracks, symmetrizers and antisymmetrizers

April $27^{\text {th }}, 2018$
J. Alcock-Zeilinger

Exercise 1.

1. Consider the action of group S_{4} on $V^{\otimes 4}$ (or, equivalently, the ordered set $\{1,2,3,4\}$). Write down the quantities \boldsymbol{S}_{24} and \boldsymbol{A}_{134} in birdtrack notation, using the shorthand notation (think box over certain index lines) discussed in class. Show that both these quantities are idempotent by writing them as a sum of permutations.
2. Consider the action of the group S_{n} on an ordered set $\{1,2, \ldots, n\}$. Let $\left\{a_{1}, a_{2}, \ldots a_{k}\right\}$ be a subset of $\{1,2, \ldots, n\}$. Show that the antisymmetrizer $\boldsymbol{A}_{a_{1} a_{2} \ldots a_{k}}$ is idempotent:
(a) First, write $\boldsymbol{A}_{a_{1} a_{2} \ldots a_{k}}$ as a sum of permutations.
(b) When forming the product $\boldsymbol{A}_{a_{1} a_{2} \ldots a_{k}} \cdot \boldsymbol{A}_{a_{1} a_{2} \ldots a_{k}}$, use the fact that the permutations in the sum of part 2a form a subgroup of S_{n} to argue which elements can appear in the product $\boldsymbol{A}_{a_{1} a_{2} \ldots a_{k}} \cdot \boldsymbol{A}_{a_{1} a_{2} \ldots a_{k}}$ and how often they can appear there.
(c) Show that, for any $\rho, \sigma \in S_{n}, \operatorname{sign}(\rho) \operatorname{sign}(\sigma)=\operatorname{sign}(\rho \sigma)$.
(d) Put everything together to obain the desired result.

Exercise 2.

Consider the action of S_{3} on $V^{\otimes 3}$ (or, equivalently, the ordered set $\{1,2,3\}$). Using birdtrack notation, explicitly check that $\boldsymbol{S}_{24}=(34) \boldsymbol{S}_{23}(34)^{-1}$ by writing the quantities on either side of the equal sign as sums of permutations and comparing the outcome.

Exercise 3.

Consider the action of the group S_{4} on $V^{\otimes 4}$. Knowing the definition of a trace in birdtrack notation, and using the scalar product $\langle A \mid B\rangle:=\operatorname{tr}\left(A^{\dagger} B\right)$ (where $A, B \in \operatorname{Lin}\left(V^{\otimes m}\right)$), compute the following quantities:

1. $\langle(12)(34)+(243) \mid(134)-(24)\rangle$
2. $\left\langle(1234) \mid \boldsymbol{S}_{23}\right\rangle$
3. $\left\langle\boldsymbol{S}_{12} \mid \boldsymbol{A}_{23}\right\rangle$

Give a diagrammatic argument why the trace as defined in birdtrack notation is cyclic.

Exercise 4.

Consider the action of the group S_{n} on $V^{\otimes n}$, and recall the definition of a trace in birdtrack notation. Compute the following quantities:

1. $\operatorname{tr}\left(\boldsymbol{S}_{12}\right)$ and $\operatorname{tr}\left(\boldsymbol{A}_{12}\right)$
2. $\operatorname{tr}\left(\boldsymbol{S}_{123}\right)$ and $\operatorname{tr}\left(\boldsymbol{A}_{123}\right)$

Can you guess a general formula for $\operatorname{tr}\left(\boldsymbol{S}_{12 \ldots n}\right)$ and $\operatorname{tr}\left(\boldsymbol{A}_{12 \ldots n}\right)$?

