WPS 01: Birdtracks, symmetrizers and antisymmetrizers April 27th, 2018 J. Alcock-Zeilinger

Exercise 1.

- 1. Consider the action of group S_4 on $V^{\otimes 4}$ (or, equivalently, the ordered set $\{1, 2, 3, 4\}$). Write down the quantities S_{24} and A_{134} in birdtrack notation, using the shorthand notation (think box over certain index lines) discussed in class. Show that both these quantities are idempotent by writing them as a sum of permutations.
- 2. Consider the action of the group S_n on an ordered set $\{1, 2, ..., n\}$. Let $\{a_1, a_2, ..., a_k\}$ be a subset of $\{1, 2, ..., n\}$. Show that the antisymmetrizer $A_{a_1a_2...a_k}$ is idempotent:
 - (a) First, write $A_{a_1a_2...a_k}$ as a sum of permutations.
 - (b) When forming the product $A_{a_1a_2...a_k} \cdot A_{a_1a_2...a_k}$, use the fact that the permutations in the sum of part 2a form a subgroup of S_n to argue which elements can appear in the product $A_{a_1a_2...a_k} \cdot A_{a_1a_2...a_k}$ and how often they can appear there.
 - (c) Show that, for any $\rho, \sigma \in S_n$, $\operatorname{sign}(\rho)\operatorname{sign}(\sigma) = \operatorname{sign}(\rho\sigma)$.
 - (d) Put everything together to obain the desired result.

Exercise 2.

Consider the action of S_3 on $V^{\otimes 3}$ (or, equivalently, the ordered set $\{1, 2, 3\}$). Using birdtrack notation, explicitly check that $S_{24} = (34)S_{23}(34)^{-1}$ by writing the quantities on either side of the equal sign as sums of permutations and comparing the outcome.

Exercise 3.

Consider the action of the group S_4 on $V^{\otimes 4}$. Knowing the definition of a trace in birdtrack notation, and using the scalar product $\langle A|B \rangle := \operatorname{tr} (A^{\dagger}B)$ (where $A, B \in \operatorname{Lin}(V^{\otimes m})$), compute the following quantities:

- 1. $\langle (12)(34) + (243)|(134) (24) \rangle$
- 2. $\langle (1234) | S_{23} \rangle$
- 3. $\langle \boldsymbol{S}_{12} | \boldsymbol{A}_{23} \rangle$

Give a diagrammatic argument why the trace as defined in birdtrack notation is cyclic.

Exercise 4.

Consider the action of the group S_n on $V^{\otimes n}$, and recall the definition of a trace in birdtrack notation. Compute the following quantities:

- 1. tr (S_{12}) and tr (A_{12})
- 2. tr (S_{123}) and tr (A_{123})

Can you guess a general formula for $\operatorname{tr}(S_{12...n})$ and $\operatorname{tr}(A_{12...n})$?