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Exercise 1.

Recall the definition of the special linear group on a vector space V with dim(V ) = N , GL(N), to be

GL(N) :=
{
f ∈ End(V )

∣∣ ∃f−1 ∈ End(V ) : ff−1 = 1V = f−1f
}
, (1)

where 1V is the identity map on V .

1. Show that GL(N) is indeed a group by checking that it contains the identity, every element has an inverse,
it is closed under “multiplication” (i.e. composition of linear maps).

We briefly also talked about the special unitary group SU(N), which is defined as

SU(N) :=
{
U ∈ GL(N)

∣∣ UU† = 1 = U†U and detU = 1
}

; (2)

here, U† denotes the Hermitian conjugate of U with respect to the canonical scalar product on V and det
denotes the matrix determinant of U (recall that we may view the elements of End(V ) as matrices). Show that
SU(N) is also a group in the following way:

2. Consider the map det : GL(N) → C, where C is viewed as a commutative groups (with respect to
multiplication) with multiplicative identity 1. Reason that this is a group homomorphism.

3. Since det is a group homomorphism, ker det is a subgroup of GL(N), called the special linear group SL(N).
(Note that the term special refers to the fact that all its elements have determinant 1).

4. Show that the subset of SL(N) that consists only of unitary elements is closed, thus making it a subgroup
of SL(N). This subgroup is in fact the special unitary group SU(N).

Exercise 2.

Let Yn be the set of all Young tableaux consisting of n boxes, and let YΘ be the Young projection operator
corresponding to Θ ∈ Yn. Consider the direct sum of all Young projection operators⊕

Θ∈Yn

YΘ , (3a)

which acts on the whole space V ⊗n and can therefore be visualized as a matrix of size

dim(V ⊗n)× dim(V ⊗n) = Nn ×Nn . (3b)

In lectures, we discussed that the Young projection operators generate the irreducible representations of SU(N)
on V ⊗n. That is, each Young projector YΘ projects onto an irreducible subspace of V ⊗n. Thus, the matrix (3a)
block-diagonalizes, and each block corresponding to a particular YΘ is of size dim(YΘ) × dim(YΘ). We can
choose a particular basis on V ⊗n such that the block corresponding to YΘ for a particular Θ ∈ Yn is given
by the identity matrix of size dim(YΘ) × dim(YΘ) (this is due to the fact that YΘ acts as the identiy on the
subspace onto which it projects). Thus, the dimension of the representation corresponding to YΘ is merely given
by tr (YΘ),

tr (YΘ) = tr




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


︸ ︷︷ ︸
dim(YΘ)×dim(YΘ)

 =

dim(YΘ)∑
i=1

1 = dim(YΘ) . (4)
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However, since the trace of a matrix does not depend on the choice of basis, it follows that, in general

tr (YΘ) = dim(YΘ) . (5)

Consider the Young projection operators of SU(N) on V ⊗3 given by

Y 1 2 3 = , Y 1 2
3

=
4

3
, Y 1 3

2

=
4

3
, Y 1

2
3

= . (6)

Calculate the dimension of the irreducible representation corresponding to each of these Young projection
operators in the birdtrack formalism. [Hint: Recall that the trace of a birdtrack is formed by connecting the
index lines on the same level, and use the formula for the partial traces of symnmetrizers and antisymmetrizers
provn in WPS 02.]

Since these Young projection operators divide the space V ⊗3 into irreducible subspaces, the dimensions of each
of the operators (i.e. the dimensions of each of the irreducible subspaces corresponding to the operators) must
sum up to dim(V ⊗3) = N3. Check that this is indeed the case here.

Exercise 3.

Recall that the trace of a birdtrack operator O, tr (O), is formed by connecting all index lines on the same level.
We define a partial trace trk(O) to be the trace of the bottom k indices of O, that is,

tr (O) = ...
...

O and trk(O) = ...
...

O . (7)

Let Θ ∈ Yn be a Young tableau, and let Θ(1) ∈ Yn−1 be the Young tableau obtained from Θ by removing the
box n . If YΘ is the Young projection operator corresponding to Θ, it can be shown that

tr1(YΘ) ∝ YΘ(1)
. (8)

Explicitly verify eq. (8) for the Young projection operators YΘ for Θ ∈ Y4.

Exercise 4.

Consider a 3-dimensional vector space V with basis {v1, v2, v3}. Forming the tensor product space V ⊗3, the
basis of V induces a basis on V ⊗3, where each basis vector of V ⊗3 is of the form

vi ⊗ vj ⊗ vk for i, j, k ∈ {1, 2, 3} ; (9a)

clearly, this basis has size 33 = 27. (In general, if dim(V ) = N , the tensor product space V ⊗n has dimension
Nn.) Introducing the shorthand notation

|ijk〉 := vi ⊗ vj ⊗ vk , (9b)

the basis vectors of V ⊗3 are given by |111〉 , |112〉 , |121〉 , . . . and so on. We will now study the irreducible
representations of both S3 and SU(3) on V ⊗3:

1. Since the irreducible representations of SU(N) and Sn on V ⊗n are generated by the Young projection
operators of length n, we must again look at the Young projection operators given in eq. (6). Calculate the
action of each of these Young projection operators on each of the 27 basis vectors of V ⊗3. [Hint: to make
your life a lot easier, first consider various symmetries hidden within these Young projection operators;
for example, you will find that

Y 1 3
2

(12) =
4

3
= − 4

3
= −Y 1 3

2

⇒ Y 1 3
2

|ijk〉 = −Y 1 3
2

(12) |ijk〉 = −Y 1 3
2

|jik〉 , and hence Y 1 3
2

|iij〉 = 0 .]

(10)

In particular, you should find 10 nonzero, linearly independent vectors of the form Y 1 3 2 |ijk〉 (|ijk〉 = |ijk〉
is a basis vector of V ⊗3), 8 nonzero, linearly independent vectors of the form Y 1 2

3

|ijk〉, 8 nonzero, linearly

independent vectors of the form Y 1 3
2

|ijk〉, and 1 nonzero, linearly independent vector of the form Y 1
2
3

|ijk〉.
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2. Show that, for each group element U ∈ SU(3),

UYΘ |ijk〉 ⊂ YΘV
⊗3 (11)

for every basis vector |ijk〉 of V ⊗3. [Hint: use the fact that the actions of SU(3) and S3 commute on V ⊗3.]
Therefore, conclude that the Young projection operators YΘ give rise to SU(3)-invariant submodules of
V ⊗3, and therefore generate representations of SU(3). Recalling the number of nonzero, linearly inde-
pendent vectors YΘ |ijk〉 for each Θ ∈ Y3 from part 1, argue what the dimension of each SU(3)-invariant
module YΘV

⊗3 (and hence each representation of SU(3) on V ⊗3) should be. Does this agree with your
findings in Exercise 2 for N = 3?

Notice that, since the tableaux
1 2

3
and

1 3

2
have the same shape, they produce two equivalent

irreducible representations of SU(N) — in particular, we say that the representation corresponding to
either of these tableaux has multiplicity 2.

3. Consider now the action of S3 on the vectors YΘ |ijk〉 for each Θ ∈ Y3. Convince yourself that, for a
particular basis vector v of V ⊗3, the action of any ρ ∈ S3 produces

ρYΘv =
∑
Φ

cΦYΘv , Φ has the same shape as Θ, cΦ ∈ C . (12)

In other words, show that, for a fixed basis vector v

ρY 1 2 3v = c 1 2 3Y 1 2 3v (13a)

ρY 1 2
3

v = c 1 2
3

Y 1 2
3

v + c 1 3
2

Y 1 3
2

v , ρY 1 3
2

v = c′1 2
3

Y 1 2
3

v + c′1 3
2

Y 1 3
2

v (13b)

ρY 1
2
3

v = c 1
2
3

Y 1
2
3

v . (13c)

Therefore, conclude that the irreducible dimension of YΘv for a fixed basis vector is given by the number
of tableaux of shape Θ. What is the multiplicity of the irreducible representation YΘv for each Θ ∈ Y3?

In this question, you should have noticed that the multiplicity and dimension of an irreducible representation
generated by YΘ change roles when switching between representations of SU(N) and representations of Sn. This
is in fact a general feature (not particular to hte case n = N = 3), but we will not prove this fact.


