WPS 10: Transition operators \& the algebra of invariants

July $6^{\text {th }}, 2018$
J. Alcock-Zeilinger

Exercise 1.

Construct all unitary transition operators $T_{\Theta \Phi}$ between equivalent MOLD projection operators P_{Θ}, P_{Φ} of $\mathrm{SU}(N)$ on $V^{\otimes 4}$ using the graphical cutting-and-gluing procedure discussed in class. Find the appropriate normalization constant by requiring

$$
\begin{equation*}
T_{\Theta \Phi} T_{\Phi \Theta} \stackrel{!}{=} P_{\Theta} \tag{1}
\end{equation*}
$$

to hold for all transition operators.
Do these operators agree with your results from WPS 08 Exercise 2?

Exercise 2.

In class, we proved that the set Ω_{n} containing all Hermitian Young projection operators and all unitary transition operators of $\operatorname{SU}(N)$ on $V^{\otimes n}$ forms a basis for the algebra of invariants $\mathbb{C}\left[S_{n}\right]$. Verify this explicitly for $n=3$ by writing each permutation in S_{3} as a linear combination of the MOLD projection and transition operators on $V^{\otimes 3}$.

Exercise 3.

Let G be a finite group, and let $\varphi: G \rightarrow \operatorname{End}(V)$ be a representation of G. We say that φ is a unitary representation if there exists a scalar product $\sigma\langle\cdot \mid \cdot\rangle: V \times V \rightarrow \mathbb{C}$ such that

$$
\begin{equation*}
\sigma\left\langle\varphi(\mathrm{g}) \boldsymbol{v}_{1} \mid \varphi(\mathrm{g}) \boldsymbol{v}_{2}\right\rangle=\sigma\left\langle\boldsymbol{v}_{1} \mid \boldsymbol{v}_{2}\right\rangle \tag{2}
\end{equation*}
$$

for all $\mathrm{g} \in \mathrm{G}$ and for all $\boldsymbol{v}_{1}, \boldsymbol{v}_{2} \in V$.
Consider the inner product $\sigma\langle\cdot \mid \cdot\rangle$ defined by

$$
\begin{equation*}
\sigma\left\langle\boldsymbol{v}_{1} \mid \boldsymbol{v}_{1}\right\rangle:=\sum_{\mathrm{g} \in \mathrm{G}}\left\langle\varphi(\mathrm{~g}) \boldsymbol{v}_{1} \mid \varphi(\mathrm{g}) \boldsymbol{v}_{1}\right\rangle, \tag{3a}
\end{equation*}
$$

where $\langle\cdot \mid \cdot\rangle$ is any scalar product on V. Clearly, the inner product $\sigma\langle\cdot \mid \cdot\rangle$ defined in (3a) satisfies eq. (2). Therefore, we have seen that, for a finite group G, one can always find a scalar product with respect to which the representation $\varphi: \mathrm{G} \rightarrow \operatorname{End}(V)$ is unitary.
The analogous example holds for compact lie groups (such as, for example, $\mathrm{SU}(N)$), and the appropriate scalar product is given by

$$
\begin{equation*}
\sigma\left\langle\boldsymbol{v}_{1} \mid \boldsymbol{v}_{1}\right\rangle:=\int_{\mathrm{G}}\left\langle\varphi(\mathrm{~g}) \boldsymbol{v}_{1} \mid \varphi(\mathrm{g}) \boldsymbol{v}_{1}\right\rangle \mathrm{dg}, \tag{3b}
\end{equation*}
$$

where $\int_{\mathrm{G}} \mathrm{dg}$ is the Haar-integral and dg is called the Haar measure (we will not show that the inner product (3b) satisfies eq. (2) as this would require a closer study of the Haar measure, see, for example, Groups and Symmetries - From Finite Groups to Lie Groups by Y. Kosmann-Schwarzbach). However, we will use the result that every representation of a compact Lie group is equivalent to a unitary one (via the scalar product (3b)), and we may therefore consider every representation to be unitary.

1. Consider the group $\operatorname{SU}(N)$. Let φ be a unitary representation of $\operatorname{SU}(N)$ on $V^{\otimes n}$. Show that this implies that

$$
\begin{equation*}
\varphi^{\dagger}(U)=\varphi\left(U^{\dagger}\right) \tag{4}
\end{equation*}
$$

for every $U \in \operatorname{SU}(N)$.
2. Let $\varphi_{1}: \operatorname{SU}(N) \rightarrow \operatorname{End}\left(V_{1}\right)$ and $\varphi_{2}: \operatorname{SU}(N) \rightarrow \operatorname{End}\left(V_{2}\right), V_{1}, V_{2} \subset V^{\otimes n}$, be two equivalent unitary representations of $\operatorname{SU}(N)$ on $V^{\otimes n}$. Then, by Schur's Lemma, there exists an $\operatorname{SU}(N)$-isomorphism I_{12} : $V_{2} \rightarrow V_{1}$ (intertwining operator) between these two representations. Show that this $\mathrm{SU}(N)$-isomorphism must satisfy $I_{12}^{\dagger}=I_{21}$ (where $I_{21}:=I_{12}^{-1}$). Therefore, infer that the transition operator $T_{12}:=P_{1} I_{12} P_{2}$ (where $P_{1,2}$ are the Hermitian projection operators corresponding to the representations $\left(\varphi_{1}, V_{1}\right)$ and (φ_{2}, V_{2}), respectively) must also satisfy $T_{12}^{\dagger}=T_{21}$.

