WPS 10: Transition operators & the algebra of invariants July 6th, 2018

J. Alcock-Zeilinger

Exercise 1.

Construct all unitary transition operators $T_{\Theta\Phi}$ between equivalent MOLD projection operators P_{Θ} , P_{Φ} of SU(N) on $V^{\otimes 4}$ using the graphical cutting-and-gluing procedure discussed in class. Find the appropriate normalization constant by requiring

$$T_{\Theta\Phi}T_{\Phi\Theta} \stackrel{!}{=} P_{\Theta} \tag{1}$$

to hold for all transition operators.

Do these operators agree with your results from WPS 08 Exercise 2?

Exercise 2.

In class, we proved that the set Ω_n containing all Hermitian Young projection operators and all unitary transition operators of SU(N) on $V^{\otimes n}$ forms a basis for the algebra of invariants $\mathbb{C}[S_n]$. Verify this explicitly for n = 3 by writing each permutation in S_3 as a linear combination of the MOLD projection and transition operators on $V^{\otimes 3}$.

Exercise 3.

Let G be a finite group, and let $\varphi : \mathsf{G} \to \operatorname{End}(V)$ be a representation of G. We say that φ is a *unitary* representation if there exists a scalar product $\sigma \langle \cdot | \cdot \rangle : V \times V \to \mathbb{C}$ such that

$$\sigma \langle \varphi(\mathbf{g}) \boldsymbol{v}_1 | \varphi(\mathbf{g}) \boldsymbol{v}_2 \rangle = \sigma \langle \boldsymbol{v}_1 | \boldsymbol{v}_2 \rangle \tag{2}$$

for all $\mathbf{g} \in \mathbf{G}$ and for all $v_1, v_2 \in V$.

Consider the inner product $\sigma \langle \cdot | \cdot \rangle$ defined by

$$\sigma \langle \boldsymbol{v}_1 | \boldsymbol{v}_1 \rangle := \sum_{\mathbf{g} \in \mathsf{G}} \langle \varphi(\mathbf{g}) \boldsymbol{v}_1 | \varphi(\mathbf{g}) \boldsymbol{v}_1 \rangle \quad , \tag{3a}$$

where $\langle \cdot | \cdot \rangle$ is any scalar product on V. Clearly, the inner product $\sigma \langle \cdot | \cdot \rangle$ defined in (3a) satisfies eq. (2). Therefore, we have seen that, for a finite group G, one can always find a scalar product with respect to which the representation $\varphi : \mathbf{G} \to \text{End}(V)$ is unitary.

The analogous example holds for compact lie groups (such as, for example, SU(N)), and the appropriate scalar product is given by

$$\sigma \langle \boldsymbol{v}_1 | \boldsymbol{v}_1 \rangle := \int_{\mathsf{G}} \langle \varphi(\mathbf{g}) \boldsymbol{v}_1 | \varphi(\mathbf{g}) \boldsymbol{v}_1 \rangle \, \mathrm{d}\mathbf{g} \;, \tag{3b}$$

where $\int_{\mathsf{G}} d\mathbf{g}$ is the *Haar-integral* and $d\mathbf{g}$ is called the *Haar measure* (we will not show that the inner product (3b) satisfies eq. (2) as this would require a closer study of the Haar measure, see, for example, *Groups and Symmetries* — *From Finite Groups to Lie Groups* by Y. Kosmann-Schwarzbach). However, we will use the result that every representation of a compact Lie group is equivalent to a unitary one (via the scalar product (3b)), and we may therefore consider every representation to be unitary.

1. Consider the group $\mathsf{SU}(N)$. Let φ be a unitary representation of $\mathsf{SU}(N)$ on $V^{\otimes n}$. Show that this implies that

$$\varphi^{\dagger}(U) = \varphi(U^{\dagger}) \tag{4}$$

for every $U \in SU(N)$.

2. Let $\varphi_1 : \mathsf{SU}(N) \to \operatorname{End}(V_1)$ and $\varphi_2 : \mathsf{SU}(N) \to \operatorname{End}(V_2), V_1, V_2 \subset V^{\otimes n}$, be two equivalent unitary representations of $\mathsf{SU}(N)$ on $V^{\otimes n}$. Then, by Schur's Lemma, there exists an $\mathsf{SU}(N)$ -isomorphism $I_{12} : V_2 \to V_1$ (intertwining operator) between these two representations. Show that this $\mathsf{SU}(N)$ -isomorphism must satisfy $I_{12}^{\dagger} = I_{21}$ (where $I_{21} := I_{12}^{-1}$). Therefore, infer that the transition operator $T_{12} := P_1 I_{12} P_2$ (where $P_{1,2}$ are the Hermitian projection operators corresponding to the representations (φ_1, V_1) and (φ_2, V_2), respectively) must also satisfy $T_{12}^{\dagger} = T_{21}$.