Mathematik für Physiker 2 / Lineare Algebra 1 $_{\cdot\cdot}$

Übungsblatt 2

Da der bisherige Stoffumfang aufgrund der Osterfeiertage sehr gering ist, sind die folgenden Aufgaben mit realtiv wenig Aufwand zu bearbeiten. Nutzen Sie also die Chance Punkte zu sammeln!

Aufgabe 5: Der Aufspann ist ein Unterraum

Sei V ein Vektorraum über dem Körper $\mathbb K$ und $M\subset V$ eine Teilmenge. Zeigen Sie, dass $\mathrm{Span}(M)$ ein Unterraum von V ist.

Aufgabe 6: Linear unabhängige Funktionen

Gegeben seien die drei Funktionen $f, g, h: (0,1) \to \mathbb{R}$ durch

$$f(x) = 2x$$
, $g(x) = 3\ln(x)$, $h(x) = 4\ln(xe^x)$.

Entscheiden Sie mit Beweis, ob diese als Elemente des \mathbb{R} -Vektorraums $\mathbb{R}^{(0,1)}$ der Abbildungen von (0,1) nach \mathbb{R} linear unabhängig sind.

Aufgabe 7: Basis eines Unterraums

Gegeben sei die Menge $U := \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 | x_1 = x_3\} \subset \mathbb{R}^4$. Zeigen Sie, dass U ein Unterraum des \mathbb{R}^4 ist, und bestimmen Sie eine Basis von U. (D.h., geben Sie eine Basis an und beweisen Sie dann, dass es sich tatsächlich um eine Basis handelt.)

Aufgabe 8: Nochmals eine Basis

Es sei $P_{\mathbb{R}}^{(4)}$ der \mathbb{R} -Vektorraum der Polynome vom Grade höchsten 4. Es seien $q_i \in P_{\mathbb{R}}^{(4)}$ gegeben durch $q_1(x) = x^4 + x^3 + x^2 + x + 1$, $q_2(x) = x^3$ und $q_3(x) = x - 1$. Ergänzen Sie (q_1, q_2, q_3) zu einer Basis von $P_{\mathbb{R}}^{(4)}$.

Aufgabe 9: Direkte Summe von Vektorräumen

Seien V und W Vektorräume über dem Körper \mathbb{K} . Auf dem kartesischen Produkt

$$V \times W = \{(v, w) \mid v \in V, w \in W\}$$

definiert man die Verknüpfungen

$$(v_1, w_1) + (v_2, w_2) := (v_1 + v_2, w_1 + w_2)$$
 und $\lambda \cdot (v, w) := (\lambda v, \lambda w)$.

Zeigen Sie, dass $(V \times W, +, \cdot)$ ebenfalls ein \mathbb{K} -Vektorraum ist. Man nennt ihn die direkte Summe von V und W und bezeichnet ihn mit $V \oplus W$.

Abgabe: Bis spätestens 8.00 Uhr am Freitag den 03.05.2019 im Briefkasten Ihres Tutors bzw. Ihrer Tutorin. Die Briefkästen befinden sich im Gebäude C, Raum links vom Eingang in Ebene 3.