Mathematik II für Naturwissenschaftler*innen

Übungsblatt 7 (Abgabe 06.06.2019)

Aufgabe 30

(3+3+3+6 = 15 Punkte)

Wir betrachten nochmal die Funktionen f und q aus Aufgabe 26.

- a) Für welche \vec{x} sind f und q total differenzierbar? Geben Sie ∇f und ∇q an.
- b) Bestimmen Sie die Richtungsableitung von f an der Stelle $\vec{x}_0 = (\frac{\pi}{2}, 0, 1)^T$ in Richtung von $(1, 1, 1)^T$.
- c) Bestimmen Sie die Richtungsableitung von q an der Stelle $\vec{x}_0 = (0, 0, 1)^T$ in Richtung von $(0, 1, 0)^T$.
- d) Berechnen Sie alle zweiten partiellen Ableitungen und geben Sie die Hesse-Matrizen $f''(\vec{x})$ und $q''(\vec{x})$ an.

Aufgabe 31

(3+3+3 = 9 Punkte)

Sei $g: \mathbb{R}^2 \to \mathbb{R}$,

$$g(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} &, \quad x^2 + y^2 > 0 \\ 0 &, \quad x = y = 0 \end{cases}.$$

- a) Bestimmen Sie $g_x(0,0)$ und $g_y(0,0)$.
- b) Berechnen Sie g_x und g_y für $(x, y) \neq (0, 0)$.
- c) Bestimmen Sie $g_{xy}(0,0)$ und $g_{yx}(0,0)$.

Aufgabe 32

(10 Punkte)

Berechnen Sie $\int_{\mathfrak{K}_j} \vec{f} \, d\vec{x}$, j = 1, 2, 3, für $\vec{f}(x, y) = \begin{pmatrix} y \\ -x \end{pmatrix}$ und die Wege

a)
$$\mathfrak{K}_1: \vec{x}(t) = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}, t \in [0, 2\pi],$$

b)
$$\mathfrak{K}_2: \vec{x}(t) = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}$$
, $t \in [0, \frac{\pi}{2}]$ und

c) \mathfrak{K}_3 : Die geradlinige Verbindung von $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ nach $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Geben Sie auch jeweils Anfangs- und Endpunkt des Integrationswegs an. Ist \vec{f} konservativ? Begründen Sie Ihre Antwort.

Bestimmen Sie $\int_{\mathfrak{K}_j} \vec{f} \, \mathrm{d}\vec{x}, \, j=1,2,$ für

$$\vec{f} = \begin{pmatrix} z e^{xz} - 2x \cos(x^2 + y^2) \\ e^{-y^2} - 2y \cos(x^2 + y^2) \end{pmatrix} \quad \text{und} \quad \mathfrak{K}_1 : \vec{x}(t) = \begin{pmatrix} \cos t \\ \sin t \\ \cos(2t) \end{pmatrix}, \quad 0 \le t \le 2\pi,$$

$$\text{sowie} \quad \mathfrak{K}_2 : \vec{x}(t) = \begin{pmatrix} \cos(2\pi t) \\ \sin(2\pi t) \\ \log(1 + 3t) \end{pmatrix}, \quad 0 \le t \le 1.$$

Zeichnen Sie außerdem \mathfrak{K}_1 .