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A FREQUENT OBJECTION TO DE BROGLIE-

BOHM’s THEORY: WHAT IS SO SPECIAL

ABOUT POSITIONS?

WHY NOT INTRODUCE “HIDDEN VARI-

ABLES” FOR ALL OBSERVABLES?



TWO ANSWERS

1. All measurements are ultimately measure-

ments of positions, as we saw: spin, mo-

mentum, but also energy, angular momen-

tum etc.

THINK of classical mechanics: everything

(momentum, energy, angular momentum) is

a function of the trajectories.

So, if we recover the statistical predictions of

quantum mechanics for the positions mea-

surements (and we do thanks to quantum

equilibrium), we recover the statistical pre-

dictions of quantum mechanics for all ob-

servables.

No need for other “hidden variables”.



2. A deeper reason: introducing “hidden vari-

ables” for all observables is IMPOSSIBLE

→ the goal of this talk.



In showing that, we will disprove once and for

all the naive statistical interpretation of quan-

tum mechanics as well as clarify the so-called

“quantum logic”.

Message of this talk in a nutshell:

“MEASUREMENTS” DON’T MEASURE AND

“OBSERVATIONS” DON’T OBSERVE.



LET US GO BACK TO STANDARD QUAN-

TUM MECHANICS.

THE GENERAL QUANTUM ALGORITHM:

Ψ = STATE: VECTOR IN A HILBERT SPACE,

e.g. L2(RN ).

Ψ0 −→ Ψt = U(t)Ψ0

U(t) UNITARY OPERATOR

= SOLUTION OF SCHRÖDINGER’S EQUA-

TION



A “OBSERVABLE” = SELF-ADJOINT OP-

ERATOR ACTING ON THAT HILBERT SPACE.

IF A HAS A BASIS OF EIGENVECTORS:

AΨi = λiΨi

Ψ =
∑
i ciΨi

∑
i |ci|2 = 1

PROBA (Result = λi when measure A, if state

= Ψ) = |ci|2

AFTER THAT, THE STATE JUMPS OR IS

REDUCED OR COLLAPSES TO Ψi.



POSSIBLE WORRY: Two mutually incom-

patible rules of evolution for Ψ; one about what

happens “outside of measurements” and one about

what happens “during measurements”.



ANSWER FROM THE “NO WORRY” PHYSI-

CISTS:

Measurements reveal pre-existing properties

of the system and the quantum state gives the

statistical distribution of those properties.

The collapse rule then simply comes from the

fact that one changes one’s probabilities after

an observation (since we just learned something

about the system).



It is just like coin flipping: if we don’t look on

which face the coin fell, we assign a probability

(1
2) to each face.

Once we look on which face the coin fell, the

probabilities jump to zero and one.

Nothing mysterious here.

Isn’t it just like that in quantum mechanics?

POSSIBLE WORRY: Non commuting opera-

tors, interference effects.

Not the real reason!



Let us formalize this idea; for every individ-

ual system with a given quantum state Ψ, there

would exist a

MAP v : A → R

so that ∀A ∈ A, v(A) = pre-existing, but un-

known value of the “observable” A for an indi-

vidual system.

Of course, we must have

v(A) ∈ {eigenvalues of A}.



The quantum state would then give a prob-

ability distribution over those maps, following

the quantum algorithm:

If the state is Ψ, and the operator A has a

basis of eigenvectors,

AΨi = λiΨi

we write:

Ψ =
∑
i ciΨi

∑
i |ci|2 = 1

PROBA (v(A) = λi) = |ci|2.

Now, this value pre-exists to measurements

and has nothing to do with them. Proper mea-

surements will of course reveal that value but

they do not create it.



This “value map” is sometimes called “non

contextual” because it yields the same value for

all proper measurements of A.

In particular, that value does not depend on

the particular arrangement of the apparatus that

is supposed to “measure observable A”, nor on

whether one measures simultaneously withA an

operator B that commutes with A.



NO HIDDEN VARIABLES THEOREMS: PROB-

LEM FOR THE STATISTICAL INTERPRE-

TATION OR THE IMPLICIT VIEW.

(Gleason, Kochen-Specker, Bell...)

THEOREM 1:

@ MAP v : A → R

A= set of matrices or of operators (in a space

of dimension at least equal to three), for exam-

ple spin matrices and their products,

such that ∀ A,B ∈ A

1) v(A) ∈ {eigenvalues of A}

2) If [A,B] = AB −BA = 0, then

v(A + B) = v(A) + v(B)



THEOREM 2 (simplified version due to D.

Mermin):

@ MAP v : A → R

A= set of matrices or of operators (in a space

of dimension at least equal to four), for example

spin matrices and their products,

such that ∀ A,B ∈ A

1) v(A) ∈ {eigenvalues of A}

2) If [A,B] = AB −BA = 0, then

v(AB) = v(A)v(B)



NO USE OF THE QUANTUM FORMALISM

EXCEPT FOR RULES 1 AND 2

1) v(A) ∈ {eigenvalues of A}

2) If [A,B] = AB −BA = 0, then

v(A + B) = v(A) + v(B)

or v(AB) = v(A)v(B),

THAT ARE SATISFIED BY THE QUAN-

TUM PREDICTIONS.



THE QUANTUM STATE CANNOT GIVE

A PROBABILITY DISTRIBUTION ON THINGS

(THE MAPS v) THAT DO NOT EXIST!



CONCLUSION :

THE STATISTICAL VIEW (WHICH IS THE

MOST NATURAL ONE) IS UNTENABLE.

THE STATISTICAL VIEW IS SOMETIMES

CALLED “NAIVE REALISM WITH RESPECT

TO OPERATORS” (NRAO)

MEASUREMENTS DO NOT SIMPLY “MEA-

SURE”. THEY IN SOME SENSE ACT ON

THE SYSTEM.

BUT HOW? IN ORDINARY QUANTUM ME-

CHANICS, THEY ARE A DEUS EX MACHINA.

ONLY A MORE DETAILED THEORY CAN

EXPLAIN HOW THEY ACT.



PROOF OF THEOREM 1 (outline)

To prove the theorem, we do not need to as-

sume that the map is defined on all operators

in A.

The Kochen and Specker proof uses the squares

of spin matrices, Sx, Sy, Sz, for spin associated

to any three dimensional set of orthogonal vec-

tors x, y, z in R3. They have the following prop-

erties:

1. The eigenvalues of S2
x, S2

y and S2
z are 0 and

1.

2. [S2
x, S

2
y] = [S2

y, S
2
z ] = [S2

z, S
2
x] = 0.

3. S2
x + S2

y + S2
z = 2.



1. The eigenvalues of S2
x, S2

y and S2
z are 0 and

1.

2. [S2
x, S

2
y] = [S2

y, S
2
z ] = [S2

z, S
2
x] = 0.

3. S2
x + S2

y + S2
z = 2.

From that and the assumptions:

1. v(A) ∈ {eigenvalues of A}.

2. If [A,B] = AB −BA = 0, then

v(A + B) = v(A) + v(B),

it follows that the triple (v(S2
x), v(S2

y), v(S2
z))

must be either (1, 1, 0) or (1, 0, 1) or (0, 1, 1).



So, the triple (v(S2
x), v(S2

y), v(S2
z)) must be

either (1, 1, 0) or (1, 0, 1) or (0, 1, 1).

But that must hold for every set of three

dimensional orthogonal vectors x, y, z in R3.

Kochen and Specker were able to exhibit a finite

number of such sets so that the above assump-

tion on the values taken by (v(S2
x), v(S2

y), v(S2
z))

leads to a contradiction.

In their original argument, Kochen and Specker

used 117 such sets, but that number was re-

duced to 33 by Asher Peres.



THEOREM 3 (Non-existence of pre-existing

values for positions and momenta. Clifton’s the-

orem):

Let Ψ(x1, x2) ∈ L2(R2) be a function of two

real variables (=the wave function of one parti-

cle in two dimensions or two particles on a line).

The position operators Q1, Q2 act as multi-

plication on functions:

QjΨ(x1, x2) = xjΨ(x1, x2) , j = 1, 2 ,

and the momentum operators P1, P2 act by dif-

ferentiation:

PjΨ(x1, x2) = −i ∂
∂xj

Ψ(x1, x2) , j = 1, 2 .



Consider the set of analytic functions of one

of the operators Q1, Q2, P1, P2. And let B be

the set of products of such functions defining a

self adjoint operator. Then, there does not exist

a map

v : B → R

such that:

1) ∀A ∈ B and for any real valued function f

of a real variable,

v(f (A)) = f (v(A)),

2) ∀A,B ∈ B with [A,B] = AB −BA = 0:

v(AB) = v(A)v(B),

So, measurements of momentum must also

be contextual (since position measurements do

measure the real position).



THEOREM 4 (the von Neumann one, which

is historically the first no hidden variables the-

orem).

@ MAP v : A → R

A= set of matrices or of operators, for exam-

ple spin matrices and their products,

such that ∀ A,B ∈ A

1) v(A) ∈ {eigenvalues of A}

2) v(A + B) = v(A) + v(B)

even if A and B do not commute!.

So, same hypothesis as the Kochen-Specker

theorem, but without the crucial provision:

[A,B] = 0.



PROOF (almost trivial)

Consider the Pauli matrices A = σx, B =

σy, corresponding to a measurement of the spin

along the x and y axes, respectively.

Then
σx+σy√

2
corresponds to measuring the spin

at an angle of 45◦ between the x and y axes.

All those matrices have eigenvalues equal to

±1. Thus v(A) = v(B) = ±1, but also

v(
σx + σy√

2
) = ±1.

So we have v(A + B) = ±
√

2, but v(A) +

v(B) = ±2 or 0. Thus v(A+B) = v(A)+v(B)

does not hold.

End of proof!



The reason why von Neumann postulated v(A+

B) = v(A) + v(B) is probably because it holds

when we average over the hidden variables: as-

suming hidden variables, for a given quantum

state, means that the values of those variables

vary between different experiments and that the

quantum state determines the probability dis-

tribution of those variables. If we average over

those variables and if the average agrees with

the quantum mechanical prediction, we have

E(v(A)) + E(v(B)) = E(v(A) + v(B)) ,

where E denotes the average.



E(v(A)) + E(v(B)) = E(v(A) + v(B)) ,

holds because the average value of measurements

of any physical quantity represented by a ma-

trix or operator A when the quantum state is ψ,

is given by 〈ψ|A|ψ〉, and that quantity satisfies

〈ψ|A + B|ψ〉 = 〈ψ|A|ψ〉 + 〈ψ|B|ψ〉.



But saying that, if an identity holds on aver-

age, then we may assume that it holds for every

value over which the average is taken, is like

saying that, if a function f satisfies∫
R
f (x)dµ(x) = 0,

with a certain probability measure µ, then we

may assume that f (x) = 0 for all x. Hardly

a natural assumption for a mathematician to

make!



Moreover, Bell constructed a simple example

of hidden “spin variables” that reproduces the

quantum mechanical results for a single spin.



However, von Neumann was not modest con-

cerning the significance of his theorem; after

stating it, he concluded:

It is therefore not, as is often assumed, a

question of a reinterpretation of quantum

mechanics — the present system of quan-

tum mechanics would have to be objec-

tively false, in order that another descrip-

tion of the elementary processes than the

statistical one be possible.

John von Neumann

Similar conclusions were drawn by Max Born,

Wolfgang Pauli and others.



On the other hand, John Bell had a very crit-

ical attitude

Then in 1932 [mathematician] John von

Neumann gave a “rigorous” mathemati-

cal proof stating that you couldn’t find

a non- statistical theory that would give

the same predictions as quantum mechan-

ics. That von Neumann proof in itself is

one that must someday be the subject of

a Ph.D. thesis for a history student. Its

reception was quite remarkable. The liter-

ature is full of respectful references to “the

brilliant proof of von Neumann”; but I do

not believe it could have been read at that

time by more than two or three people.



Omni: Why is that?

Bell: The physicists didn’t want to be

bothered with the idea that maybe quan-

tum theory is only provisional. A horn of

plenty had been spilled before them, and

every physicist could find something to

apply quantum mechanics to. They were

pleased to think that this great mathe-

matician had shown it was so.



Yet the von Neumann proof, if you actu-

ally come to grips with it, falls apart in

your hands! There is nothing to it. It’s

not just flawed, it’s silly. If you look at

the assumptions made, it does not hold up

for a moment. It’s the work of a mathe-

matician, and he makes assumptions that

have a mathematical symmetry to them.

When you translate them into terms of

physical disposition, they’re nonsense. You

may quote me on that: The proof of von

Neumann is not merely false but foolish.

John Bell



Lesson: be cautious when trying to see the

physical implications of mathematical theorems!

The intellectual attractiveness of a math-

ematical argument, as well as the consid-

erable mental labor involved in following

it, makes mathematics a powerful tool of

intellectual prestidigitation — a glittering

deception in which some are entrapped,

and some, alas, entrappers.

Jacob Schwartz



Bell adds:

But in 1952 I saw the impossible done.

It was in papers by David Bohm. Bohm

showed explicitly how parameters could

indeed be introduced, into nonrelativistic

wave mechanics, with the help of which

the indeterministic description could be

transformed into a deterministic one. More

importantly, in my opinion, the subjectiv-

ity of the orthodox version, the necessary

reference to the ‘observer’, could be elim-

inated.

[. . . ]



But why then had Born not told me of

this ‘pilot wave’? If only to point out

what was wrong with it? Why did von

Neumann not consider it? More extraor-

dinarily, why did people go on producing

‘impossibility’ proofs, after 1952, and as

recently as 1978?

John Bell



THEOREM 5 (Bell’s part of the nonlocality

proof).

REMINDER: Bell’s theorem is also a no hid-

den variable theorem (but remember that, com-

bined with the EPR argument, it is a nonlocal-

ity proof).



Consider three possible orientations for the

magnetic field, denoted H1, H2, H3, in a plane

perpendicular to the motion of the particles.

When the orientations are the same on both

sides, the two particles always go in opposite

directions.



This holds for the state:

| state of the two particles >

= 1√
2
(|A 1 ↑> |B 1 ↓> −|A 1 ↓> |B 1 ↑>)

= 1√
2
(|A 2 ↑> |B 2 ↓> −|A 2 ↓> |B 2 ↑>)

= 1√
2
(|A 3 ↑> |B 3 ↓> −|A 3 ↓> |B 3 ↑>)



So, introduce “random variables”A(α) = ±1,

B(α) = ±1, for α = 1, 2, 3 labelling the direc-

tion, and where A(α) = +1 means that the

A particle will go in the direction of the field

when the latter is oriented in direction α, and

A(α) = −1 means that the A particle will go

in the direction opposite to the one of the field,

and similarly for B(α) = ±1.



The perfect anti-correlations imply:

A(α) = −B(α)

∀α = 1, 2, 3.

These random variables are “hidden variables”

and Bell showed that simply assuming that they

exist leads to a contradiction.



ANOTHER REMINDER: HOW DOES THE

DE BROGLIE-BOHM THEORY AVOID BE-

ING REFUTED BY THE NO HIDDEN VARI-

ABLES THEOREMS?

BY NOT INTRODUCING “HIDDEN VARI-

ABLES” FOR QUANTITIES OTHER THAN

POSITIONS!



Consider a Stern-Gerlach apparatus “measur-

ing” the spin. Let H be the magnetic field.

The arrow in the picture indicates the direction

of the gradient of that field.

  

H

x

z

 z  ∣1 ∣1  

Initial position of the electron

 z−t 

 zt 

Direction of the gradient of the field

Direction opposite to the gradient of the field

1  

1  

0



The |1 ↑> part of the state always goes in the

direction of the gradient of the field, and the

|1 ↓> part always goes in the opposite direction.

  

H

x

z

 z  ∣1 ∣1  

Initial position of the electron

 z−t 

 zt 

Direction of the gradient of the field

Direction opposite to the gradient of the field

1  

1  

0



But if the particle is initially in the upper

part of the support of the wave function (for

a symmetric wave function), it will always go

upwards. That is because there is a nodal line

in the middle of the figure that the particles

cannot cross.

  

H

x

z

 z  ∣1 ∣1  

Initial position of the electron

 z−t 

 zt 

Direction of the gradient of the field

Direction opposite to the gradient of the field

1  

1  

0



as here



Now, repeat the same experiment, but with

the direction of the gradient of the field reversed,

and let us assume that the particle starts with

exactly the same wave function and the same

position as before.

  

H

x

z

Ψ(z) ( ∣1 ↑>+∣1 ↓> )

Initial position of the electron

Ψ(z−t )

Ψ(z+t )

Direction opposite to the gradient of the field

Direction of the gradient of the field

1  

1 ↑ >



The particle is initially in the upper part of

the support of the wave function, and, thus, it

will still go upwards, because of the nodal line.

  

H

x

z

Ψ(z) ( ∣1 ↑>+∣1 ↓> )

Initial position of the electron

Ψ(z−t )

Ψ(z+t )

Direction opposite to the gradient of the field

Direction of the gradient of the field

1  

1 ↑ >



But going upwards means now going in the

direction opposite to the one of the gradient of

the field (since the latter is reversed).

  

H

x

z

Ψ(z) ( ∣1 ↑>+∣1 ↓> )

Initial position of the electron

Ψ(z−t )

Ψ(z+t )

Direction opposite to the gradient of the field

Direction of the gradient of the field

1  

1 ↑ >



So, the particle whose spin was “up”, will

“have” its spin “down”, although one “mea-

sures” exactly the same quantity (the spin in

the vertical direction), with exactly the same

initial conditions (for both the wave function

and the position of the particle).

  

H

x

z

Ψ(z) ( ∣1 ↑>+∣1 ↓> )

Initial position of the electron

Ψ(z−t )

Ψ(z+t )

Direction opposite to the gradient of the field

Direction of the gradient of the field

1  

1 ↑ >



So, the particle whose spin was “up”, will

“have” its spin “down”, although one “mea-

sures” exactly the same quantity, with exactly

the same initial conditions (for both the wave

function and the position of the particle), but

with two different arrangements of the appara-

tus.

  

H

x

z

Ψ(z) ( ∣1 ↑>+∣1 ↓> )

Initial position of the electron

Ψ(z−t )

Ψ(z+t )

Direction opposite to the gradient of the field

Direction of the gradient of the field

1  

1 ↑ >



SOME REMARKS ON “QUANTUM LOGIC”

An idea that has had some popularity, partly

due to the (deserved) reputation of its founders:

Birkhoff and von Neumann.

If p and q are propositions, then the elemen-

tary calculus of propositions is based on the fol-

lowing operations:

(1) p ∨ q: p or q.

(2) p ∧ q: p and q.

(3) ¬p: the negation of p.



Similar operations can be done with subsets,

A, B, . . . of a set E:

(1) p ∨ q: → A ∪B.

(2) p ∧ q: → A ∩B.

(3) ¬p:→ Ac = E \ A.



Think of A as the set of elements for which

proposition p holds and B as the set of elements

for which proposition q holds.

These algebraic structures, with their obvious

properties, in particular distributiveness:

(1) p ∧ (q ∨ q′) = (p ∧ q) ∨ (p ∧ q′).

(2) p ∨ (q ∧ q′) = (p ∨ q) ∧ (p ∨ q′).

form a Boolean algebra.



Now consider subspaces, E,F , . . . , of a Hilbert

space H. We can do something similar:

(1) p ∨ q: → E ∪ F . The smallest subspace

containing of the union of subspaces E and

F .

(2) p ∧ q: → E ∩ F .

(3) ¬p:→ E⊥. The orthocomplement of E in

H.



It is similar to the previous structure but with-

out distributiveness: for vector spaces E,F,G:

E ∩ (F ∪G) 6= {E ∩ F ) ∪ (E ∩G).

Take for example F the x axis, G the y axis

in R2 and E the line y = x.

Then F ∪G = R2, E ∩ (F ∪G) is the line

y = x but E ∩ F and E ∩ G are equal to the

point 0.



As far as mathematics is concerned, this is OK

and maybe “nice”.

But there is a tendency to associate subspaces

of H with “propositions”. If Ψ is a quantum

state, A an operator and E a subspace of eigen-

vector(s) of A, one would ask:

Does the system whose quantum state

is Ψ have the properties associated with

the eigenvalue(s) associated to E ?

The answer to that question would be given

by a “measurement” of operator A or of the

projector PE on the subspace E.

The answer would be “yes” or “no”.

Hence the idea that quantum mechanics is just

a series of “yes-no” questions.



The next step is to wonder what to do with

the non-Boolean (non distributive) structure of

the “quantum propositions”, i.e. of subspaces

of H.

Again, if it is a mere “way to speak” or anal-

ogy, it is OK.

But if one takes that language literally, one is

again guilty of NRAO!

The no hidden variables theorems show that

subspaces ofH in which the quantum state could

“collapse” after a measurement do not corre-

spond to pre-existing properties of the system.

This is clearly seen in de de Broglie-Bohm.

theory.



The worst step is to decide that we need a new

“quantum logic”. This was suggested seriously

by some physicists and also by philosophers (in-

cluding logicians).



For example, Quine, one of the most famous

analytical philosophers of the second half of the

twentieth century wrote:

Revision even of the logical law of the

excluded middle has been proposed as a

means of simplifying quantum mechanics;

and what difference is there in principle

between such a shift and the shift whereby

Kepler superseded Ptolemy, or Einstein

Newton, or Darwin Aristotle?

Willard Van Orman Quine

This was put forward even more explicitly

by Hilary Putnam (at some point).



This is a huge mistake, because ordinary logic

is the prerequisite of all thinking, in particular

of thinking about the natural world.

Saying that we should modify logic in order to

understand the natural world amounts to say-

ing that we must renounce understanding that

world.

As the philosopher of science Tim Maudlin

once nicely said:

“There is no point in arguing with somebody

who does not believe in logic.”



Again, what John Bell said was exactly to the

point:

When it is said that something is ’mea-

sured’ it is difficult not to think of the re-

sult as referring to some pre-existing prop-

erty of the object in question. This is to

disregard Bohr’s insistence that in quan-

tum phenomena the apparatus as well as

the system is essentially involved. [. . . ]

When one forgets the role of the appara-

tus, as the word ’measurement’ makes all

too likely, one despairs of ordinary logic -

hence ’quantum logic’. When one remem-

bers the role of the apparatus, ordinary

logic is just fine.

John Bell



There is another rather fashionable

approach to quantum mechanics that

runs into trouble because of the no hid-

den variables theorems:



The decoherent or consistent histo-

ries approach to quantum mechanics

(Gell-Mann, Hartle, Griffiths, Omnès).

The basic idea is to assign probabilities to var-

ious “histories” or sequence of events that are

supposed to be real events happening in the

world and not just “results of measurements”.

But it assumes “operator democracy” namely

the idea that all operators should be treated in

the same way (you can already see that this will

be the source of the troubles, if you think of the

no hidden variables theorems).



A “history” could be something like : “the

spin of the particle is oriented in this direction

at time t1 and in that direction at time t2 etc.”

Or “the particle goes trough the upper slit and

ends up at point x on the second wall”.

The probability of such histories is of course

the same as the one one would have if these

sequence of events were replaced by sequences

of measurements.



But one has to be careful, because of interfer-

ence.

For example, consider the following history for

a spin, with stationary dynamics: at time t0, we

have σz = +1, at time t1, σx = 1, and at time

t2, σz = −1.

This has probability 1
4 (exercise: check).

But we have the same probability for the fol-

lowing history: at time t0, we have σz = +1, at

time t1, σx = −1, and at time t2, σz = −1.

But if we sum over the events “at time t1,

σx = 1” and “at time t1, σx = −1” (these are

the only two possibilities), we get the history:

“at time t0, σz = +1, and at time t2, σz = −1”,

which has probability 0!



Or consider the following pair of “histories”:

“the particle goes through the upper slit and is

detected at a certain place x on the screen”, and

“the particle goes through the lower slit and is

detected at x on the screen”.

The probability of being detected at x should

be the sum of the probabilities of those two se-

quences of events, but the probability of being

detected at x when both slits are open is differ-

ent from the sum of the probabilities of being

detected at x and going through each slit, when

only one slit is open. This means that a pri-

ori there is a difficulty in assigning probabilities

consistently to those histories.



Of course, if one considers two histories made

of different sequences of events: “the parti-

cle is detected at the upper slit and is detected

again at x on the screen”, and “the particle is

detected at the lower slit and is detected again

at x on the screen”, then one can assign prob-

abilities consistently to such a pair of histories,

because the detection at the slits in effect col-

lapses the wave function and thus destroys the

interference phenomenon.



That is why Gell-Mann, Hartle, Griffiths, Omnès

introduce conditions of decoherence between mem-

bers of a family of histories in such a way as to

allow the application of the usual rules of prob-

ability to that family.

We will not discuss in detail those conditions,

because what they try to avoid are inconsisten-

cies that might arise when one attributes prob-

abilities to events occurring at different times

(as in the example of the particle going through

the upper or lower slit and being detected at

a certain place x on the screen) and the prob-

lem that we want to focus on, in the decoher-

ent histories approach, occurs already when one

considers events happening at a single time.



Indeed, and this cannot be stressed enough,

the originality and the merits of the decoherent

histories approach are that it tries to make sense

of probabilities of real events happening in the

world, whether we observe them or not. If it did

not try to do that, then there would be nothing

new, since the formulas for sequences of events

occurring at different times in that approach

are just the usual quantum mechanical ones,

obtained from the combination of Schrödinger

evolution and the collapse rule.



Robert Griffiths is very explicit about the de-

coherent histories goal:

“For example, one can show that a prop-

erly constructed measuring apparatus will

reveal a property that the measured sys-

tem had before the measurement, and might

well have lost during the measurement pro-

cess. The probabilities calculated for mea-

surement outcomes (pointer positions) are

identical to those obtained by the usual

rules found in textbooks. What is differ-

ent is that by employing suitable families

of histories one can show that measure-

ments actually measure something that is

there, rather than producing a mysterious

collapse of a wave function.”



However, by considering as real events the val-

ues taken by arbitrary observables, this leads to

a problem, raised in papers by Sheldon Gold-

stein and others, a problem which exists even if

one considers “histories” occurring at a single

time and for which the decoherence condition

is trivially satisfied.

Using four decoherent histories, based on an

example due to Lucien Hardy, Sheldon Gold-

stein is able to show that the decoherent histo-

ries approach runs into a contradiction.



Consider four quantities A,B,C,D, associ-

ated with a pair of spin 1/2 particles (defined

in the Appendix and that you may analyze as an

exercice), which have the following properties:



(1) A and C can be measured simultaneously

(this means that the matrices representing

those quantities commute) and if one gets

A = 1, then C = 1.

(2) B and D can be measured simultaneously,

and if one gets B = 1, then D = 1.

(3) C and D can be measured simultaneously,

but it never happens that both C = 1 and

D = 1.

(4) A and B can be measured simultaneously,

and it sometimes happens that both A = 1

and B = 1.



(1) A and C can be measured simultaneously

and if one gets A = 1, then C = 1.

(2) B and D can be measured simultaneously,

and if one gets B = 1, then D = 1.

(3) C and D can be measured simultaneously,

but it never happens that both C = 1 and

D = 1.

(4) A and B can be measured simultaneously,

and it sometimes happens that both A = 1

and B = 1.

Each of these four statements corresponds to

a decoherent history in a trivial way, since both

quantities, in each of the pairs involved here, can

be measured simultaneously, and we are consid-

ering everything at a single time.



So one can assign probabilities to those events

in a consistent way. For example, since “A and

C can be measured simultaneously and if one

gets A = 1, then C = 1”, the probability that

C = 1, given that A = 1, is equal to 1.



(1) A and C can be measured simultaneously

and if one gets A = 1, then C = 1.

(2) B and D can be measured simultaneously,

and if one gets B = 1, then D = 1.

(3) C and D can be measured simultaneously,

but it never happens that both C = 1 and

D = 1.

(4) A and B can be measured simultaneously,

and it sometimes happens that both A = 1

and B = 1.

But these four statements cannot all be true,

because when it happens thatA = 1 andB = 1,

as it sometimes does, by (4), one must have, by

(1) and (2), that C = 1 and D = 1, which is

impossible because of (3).



Of course, each of the statements above is

true if they all refer to results of measurements.

But then no contradiction arises, because the

measurements to which they refer are different

and cannot be performed simultaneously since

they do perturb the system (as reflected by the

collapse rule in ordinary quantum mechanics

and understood through the analysis of mea-

surements in the context of the de Broglie–Bohm

theory).

The contradiction here is similar to what hap-

pens with the no hidden variables theorems:

thinking that “measured values” correspond to

real events in the world!



As stressed by Goldstein, the inconsistency is

a problem, but only from the decoherent history

point of view:

It is important to appreciate that, for or-

thodox quantum theory (and, in fact, even

for Bohmian mechanics), the four state-

ments above, if used properly, are not in-

consistent, because they then would re-

fer merely to the outcomes of four differ-

ent experiments, so that the probabilities

would refer, in effect, to four different en-

sembles.



However, the whole point of decoherent

histories is that such statements refer di-

rectly, not to what would happen were

certain experimental procedures to be per-

formed, but to the probabilities of occur-

rence of the histories themselves, regard-

less of whether any such experiments are

performed.

Sheldon Goldstein



The response from Gell-Mann and Hartle and

from Griffiths consists basically in saying that

there is no decoherent history including the four

operatorsA, B, C, andD. This is true, because

A and D cannot be measured simultaneously,

nor can B and C. But that answer misses the

point, which is that each decoherent history is

supposed to be a statement about real events

happening in the world, to which truth values

can be assigned. So each of the above state-

ments is meant to be true, but they cannot all

be true, since, taken together, they lead to a

contradiction.



The next step taken in particular by Griffiths

is similar to “quantum logic”: redefine the rules

through which truth values are assigned:

If a proposition p is true, and a proposition q

is true, then (in ordinary logic) the proposition

p ∧ q is true.

The only way to maintain that each of the

above propositions A − D is true is to “ban”

this rule since propositionsA−D taken together

lead to a contradiction.

But that is SILLY!



The decoherent history approach commits two

“sins” at once:

NRAO

Alternative logic.



Finally, one may contrast the decoherent his-

tory approach and the de Broglie–Bohm the-

ory. After all, by assigning probabilities, at each

time, to particle positions, the de Broglie–Bohm

theory also assigns probabilities to certain “his-

tories”, namely the particle trajectories.



Indeed, they do assign probability densities to

the history of a particle going through the upper

slit and ending at a given point x on the screen

and to the history of a particle going through

the lower slit and ending at the same point x on

the screen, but in a consistent way.



Looking at this figure, we see that, if the point

x is in the upper half of the screen, then the

probability of going through the lower slit and

ending at x is zero, while the conditional proba-

bility of going through the upper slit, given that

one ends at x, is one.



So, there is no inconsistency in these assign-

ments of probabilities: the probability density

of ending at x is (for this assignment of prob-

abilities) the sum of the probability densities

of going through the lower slit and ending at

x (which is zero) and of of going through the

upper slit and ending at x (which equals the

probability density of ending at x).



This may sound counterintuitive, but this as-

signment of probabilities is consistent and its

counterintuitive nature arises solely from a quan-

tum mechanical “intuition” that is deeply linked

with results of measurements.



Finally, let me mention that there exists a gen-

eral notion of what a measurement is in quan-

tum mechanics: a Positive Operator Valued Mea-

sure (POVM); see Tumulka’s lectures, p. 99.



Lesson from this lecture: be realist, but be-

ware of naive realism about operators!

And, when dealing with “fancy” mathematics,

remember Jacob Schwartz’ advice:

The intellectual attractiveness of a math-

ematical argument, as well as the consid-

erable mental labor involved in following

it, makes mathematics a powerful tool of

intellectual prestidigitation — a glittering

deception in which some are entrapped,

and some, alas, entrappers.

Jacob Schwartz



APPENDIX 1 PROOF OF MERMIN’S NON

HIDDEN VARIABLES THEOREM

We use the standard Pauli matrices σx , σy:

σx =

 0 1

1 0

 ,

σy =

 0 −i

i 0

 ,

We consider a couple of each of those matrices,

σix, σiy, i = 1, 2, where tensor products are im-

plicit: σ1
x ≡ σ1

x ⊗ 1, σ2
x ≡ 1⊗ σ2

x, etc., with 1

the unit matrix. These operators act on C4.



The following identities are well known and

easy to check:

i)

(σix)2 = (σiy)2 = (σiz)
2 = 1 ,

for i = 1, 2.

ii) Different Pauli matrices anticommute:

σiασ
i
β = −σiβσ

i
α ,

for i = 1, 2, and α, β = x, y, z, α 6= β.

iii) Pauli matrices associated with different vari-

ables commute:

σ1
ασ

2
β = σ2

βσ
1
α ,

where α, β = x, y, z.



Consider now the identity

σ1
xσ

2
yσ

1
yσ

2
xσ

1
xσ

2
xσ

1
yσ

2
y = −1 ,

which follows, using first σiασ
i
β = −σiβσ

i
α,

and σ1
ασ

2
β = σ2

βσ
1
α,

to move σ1
x in the product from the first place

(starting from the left) to the fourth place, a

move that involves one anticommutation and

two commutations , viz.,

σ1
xσ

2
yσ

1
yσ

2
xσ

1
xσ

2
xσ

1
yσ

2
y = −σ2

yσ
1
yσ

2
xσ

1
xσ

1
xσ

2
xσ

1
yσ

2
y

Then, use

(σix)2 = (σiy)2 = (σiz)
2 = 1

repeatedly, to see that the right-hand side of

the above equation equals −1.



We now define the operators

C = σ1
xσ

2
y , D = σ1

yσ
2
x , E = σ1

xσ
2
x , F = σ1

yσ
2
y ,

X = CD , Y = EF .

Using again σiασ
i
β = −σiβσ

i
α,

and σ1
ασ

2
β = σ2

βσ
1
α,

we observe:

α) [C,D] = 0

β) [E,F ] = 0

γ) [X, Y ] = 0

The identity

σ1
xσ

2
yσ

1
yσ

2
xσ

1
xσ

2
xσ

1
yσ

2
y = −σ2

yσ
1
yσ

2
xσ

1
xσ

1
xσ

2
xσ

1
yσ

2
y

can be rewritten as

XY = −1 .



But, using v(AB) = v(A)v(B) when A and

B commute (assumption of the theorem) and

the commutations just computed, we get:

a) v(XY ) = v(X)v(Y ) = v(CD)v(EF )

b) v(CD) = v(C)v(D)

c) v(EF ) = v(E)v(F )

d) v(C) = v(σ1
x)v(σ2

y)

e) v(D) = v(σ1
y)v(σ2

x)

f) v(E) = v(σ1
x)v(σ2

x)

g) v(F ) = v(σ1
y)v(σ2

y)

So,

v(XY ) = v(X)v(Y ) = v(CD)v(EF )

= v(C)v(D)v(E)v(F )

= v(σ1
x)v(σ2

y)v(σ1
y)v(σ2

x)v(σ1
x)v(σ2

x)v(σ1
y)v(σ2

y) ,



Since

XY = −1 .

and the only eigenvalue of the matrix −1 is −1,

and that, for any operator A, v(A) must belong

to its set of eigenvalues, we get

v(XY ) = −1.

But we just saw that:

v(XY ) =

v(σ1
x)v(σ2

y)v(σ1
y)v(σ2

x)v(σ1
x)v(σ2

x)v(σ1
y)v(σ2

y) ,

where the right-hand side equals

v(σ1
x)2v(σ2

y)2v(σ1
y)2v(σ2

x)2,

since all the factors in the product appear twice.

But this last expression, being the square of a

real number, is positive, and so cannot equal

−1.



APPENDIX 2

We will give here explicit formulas for matri-

ces A,B,C,D used by Goldstein to prove that

the different histories are inconsistent, but our

presentation is due to Mermin .

Consider a basis (|e1〉, |e2〉) of vectors for a

two-dimensional spin space associated with a

first particle and a basis (|f1〉, |f2〉) associated

with a second particle. Consider then the quan-

tum state (the products between states are ten-

sor products)

|Ψ〉 = a|e1〉|f2〉 + a|e2〉|f1〉 − b|e1〉|f1〉 , (1)

with the normalization

2a2 + b2 = 1 , (2)

where a, b will be chosen below.



Introduce the vectors

|g〉 = c|e1〉 + d|e2〉 , (3)

|h〉 = c|f1〉 + d|f2〉 , (4)

where c2 + d2 = 1 and c, d are chosen so that

〈gf1|Ψ〉 = 〈e1h|Ψ〉 = 0, which means that

ad− bc = 0 . (5)



Let Pe1 denote the projection operator on the

vector |e1〉, and similarly for the other vectors.

We define A,B,C,D as follows:

(1) A = Ph ,

(2) B = Pg ,

(3) C = Pe2 = 1− Pe1 ,

(4) D = Pf2
= 1− Pf1

,

where |h〉 = c|f1〉 + d|f2〉, |g〉 = c|e1〉 + d|e2〉,

and in the last two identities we use the fact

that (|e1〉, |e2〉), (|f1〉, |f2〉) are basis vectors of

a two-dimensional space.



All these operators are projection operators,

so their only eigenvalues are 0 and 1. We will

write A = 1, B = 0 to mean that the result

of the measurement of A gives 1, of B gives

0, etc. It is easy to check that all the pairs

(A,C), (B,D), (C,D), and (A,B) commute,

since they operate on different particles, while

A does not commute with D, and B does not

commute with C, since they project onto non-

orthogonal vectors.



If we measure these operators when the quan-

tum state is (??), we get:

(1) If A = Ph = 1, then since 〈e1h|Ψ〉 = 0,

we must have Pe1 = 0, and this means that

C = Pe2 = 1− Pe1 = 1.

(2) If B = Pg = 1, then since 〈gf1|Ψ〉 = 0,

we must have Pf1
= 0, which means that

D = Pf2
= 1− Pf1

= 1.



(3) CD = Pe2Pf2
= 0, because the state |e2〉|f2〉

is absent from the sum (??). Thus, if one

projects |Ψ〉 onto |f2〉, one gets |e1〉|f2〉, and

Pe2 acting on that latter state is zero. This

means that one cannot have both the results

C = Pe2 = 1 and D = Pf2
= 1.

(4) Ph = 1 and Pg = 1, meaning A = 1, B = 1,

has a nonzero probability of occurring. The

probability is

|〈gh|Ψ〉|2 = |(c〈e1|+d〈e2|)(c〈f1|+d〈f2|)Ψ〉|2

(6)

= (2acd− bc2)2 = b2c4 , (7)

where in the last equality we have used ad =

bc (??).



By ad = bc and 2a2 + b2 = 1 and the fact

that c2 +d2 = 1, one gets b2 = (1− c2)/(1 +

c2), and the maximum of (1−c2)c4/(1+c2) is

reached for c2 = (
√

5−1)/2 (the reciprocal of

the golden mean), which yields a probability

of about 9%.



Another way to state this result is that, if we

want to attribute “hidden variables” taking the

values 0 or 1 for each “observable” A,B,C,D

and if we assume that they would be revealed

by the measurement of those observables, then,

if the quantum state is (??), we run into a con-

tradiction. As shown by Mermin, this argument

can be used to give another proof of EPR–Bell:

since the two particles can be arbitrarily far

from each other, if we assume no action at a

distance, those hidden variables associated with

the observables A,B,C,D must exist (B,C re-

fer to the first particle and A,D to the second

one) – this is the EPR part of the argument

– and what we have shown here is that this as-

sumption leads to a contradiction – the Bell part



of the argument.



The decoherent histories approach would not

directly claim that the four observablesA,B,C,D

have pre-existing values (because they do not all

commute with each other), but they would at-

tribute such values to each decoherent history

corresponding to each commuting pair (A,C),

(B,D), (C,D), and (A,B). But then, we get

four statements that are mutually contradictory.
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