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WHAT IS THE MEANING OF THE WAVE

FUNCTION?

IN ORTHODOX QUANTUM MECHANICS

Ψ = STATE: VECTOR IN A HILBERT SPACE,

e.g. L2(RN ).

WHICH EVOLVES IN TIME:

Ψ0 −→ Ψt = U(t)Ψ0

U(t) UNITARY OPERATOR

= SOLUTION OF SCHRÖDINGER’S EQUA-

TION



A= AN “OBSERVABLE” = SELF-ADJOINT

OPERATOR ACTING ON THAT HILBERT

SPACE. IF A HAS A BASIS OF EIGENVEC-

TORS:

AΨi = λiΨi

WRITE Ψ IN THAT BASIS

Ψ =
∑
i ciΨi with

∑
i |ci|2 = 1.

THEN, WE HAVE THE BORN RULE ABOUT

PROBABILITIES OF RESULTS OF MEASURE-

MENTS

P(Result = λi when measure A, if state = Ψ)

= |ci|2

AFTER THAT, THE STATE JUMPS OR IS

REDUCED OR COLLAPSES TO Ψi.



The meaning of Ψ comes only from measure-

ments. As John Bell puts it:

It would seem that the theory is exclu-

sively concerned about “results of mea-

surement”, and has nothing to say about

anything else. What exactly qualifies some

physical systems to play the role of “mea-

surer”? Was the wavefunction of the world

waiting to jump for thousands of millions

of years until a single-celled living creature

appeared? Or did it have to wait a little

longer, for some better qualified system. . .

with a Ph D?



A DEEPER PROBLEM.

Existential angst: Am I a vector Ψ in a Hilbert

space? Which is, in part, simply a function

defined on a high-dimensional space, such as

Ψ ∈ L2(RN ) ?

What about you?

That is why I don’t agree with the notion that

the quantum state even could be a “complete

description” of a physical system.

More basic problem than the one of “measure-

ment”.



Once you think about it, it is quite obvious

that ordinary quantum mechanics cannot be the

complete story. It does predict results of mea-

surements, very accurately, but does not say

anything about what is going on in the world.



We need an “ontology” or “beables” (Bell’s

word), namely we need to postulate something

that exists outside of laboratories and that is

not just the quantum state.

These beables are sometimes called “hidden

variables” in the quantum literature, which is

taken to be a negative word (by people who do

not realize that there are problems with ortho-

dox quantum mechanics).



THE DE BROGLIE-BOHM THEORY

The theory of de Broglie (1927) and Bohm (1952),

(also of Bell, Dürr, Goldstein, Zangh̀ı):

1. Is a theory of “hidden variables” (although

they are not at all hidden),

2. That accounts for all the phenomena pre-

dicted by ordinary quantum mechanics,

3. That explains why measurements do not in

general measure pre-existing properties of a

system (in other words, it explains why mea-

suring devices have an “active role”),



LET US THINK OF THE DOUBLE

SLIT EXPERIMENT



OR IN IMAGES:

INTENSITY OF THE FLOW OF PARTI-

CLES WHEN ONLY THE UPPER SLIT IS

OPEN



INTENSITY OF THE FLOW OF PARTI-

CLES WHEN ONLY THE LOWER SLIT IS

OPEN



INTENSITY OF THE FLOW OF PARTI-

CLES WHEN BOTH SLITS ARE OPEN



HOW CAN ELECTRONS BE BOTH PAR-

TICLES AND WAVES?



ELEMENTARY MY DEAR BOHR!

THEY ARE PARTICLES GUIDED BY WAVES.



THE BROGLIE-BOHM THEORY

In the de Broglie-Bohm’s theory, the state of

system is a pair (X,Ψ), whereX = (X1, . . . , XN )

denotes the actual positions of all the particles

in the system under consideration.

Ψ = Ψ(x1, . . . , xN ) is the usual quantum state,

(x1, . . . , xN ) denoting the arguments of the func-

tion Ψ.

X are the “hidden variables” in this theory;

this is obviously a misnomer, since particle po-

sitions are the only things that we ever directly

observe: think of the double-slit experiment for

example, but we will see that this is true for

ANY measurement.



The dynamics of the de Broglie-Bohm’s theory

is as follows: both objects Ψ and X evolve in

time:

1. SCHRÖDINGER’S EQUATION.

For the quantum state, at all times, and whether

one measures something or not:

Ψ0→ Ψt = U(t)Ψ0

i∂tΨ(x1, . . . , xN , t) = (HΨ)(x1, . . . , xN )

(with ~ = 1 and all masses = 1)

where H is the Hamiltonian:

H = −1

2
∆ + V,

and V is the potential.

THE QUANTUM STATE NEVER COLLAPSES.



2. GUIDING EQUATION:

The evolution of the positions is guided by the

quantum state: writing Ψ = ReiS

d

dt
Xk(t) = ∇kS(X1(t), . . . , XN (t))

for k = 1, . . . , N , where X1(t), . . . , XN (t) are

the actual positions of the particles at time t.



This can also be written as

d

dt
Xk(t) =

Im(Ψ∗ · ∇kΨ)

Ψ∗ · Ψ
(X1(t), . . . , XN (t), t)

∀k = 1, . . . , N .

This latter version can be generalized to par-

ticles with spin, by letting the · in Ψ∗ ·∇kΨ and

in Ψ∗ · Ψ stand for the scalar product between

the spin components.

Of course, in that case, we have to replace

Schrödinger’s equation by Pauli’s or Dirac’s equa-

tion → other talks.



Note that in the equation:

d

dt
Xk(t) =

Im(Ψ∗ · ∇kΨ)

Ψ∗ · Ψ
(X1(t), . . . , XN (t), t),

the numerator of the RHS is the “quantum

probability current”, j
Q
k = Im(Ψ∗ · ∇kΨ):

From Schrödinger’s equation, we have

∂

∂t
Ψ∗ · Ψ(t) = 2Re(Ψ∗ · (−iH)Ψ)(t)

= Im(−Ψ∗·∆Ψ+2Ψ∗·V Ψ)(t) = −Im(Ψ∗·∆Ψ)(t)

= −
N∑
k=1

∇kj
Q
k

since ∇kΨ∗ · ∇kΨ = |∇kΨ|2 is real.



This can be summarized in the fundamental

formula

d

dt
Xk(t) = V Pk (t) =

j
Q
k (t)

ρQ(t)

with ρQ(t) = Ψ∗ · Ψ(t) = |Ψ|2.

In other words, the velocity of the particles

V P (t) in the de Broglie-Bohm’s theory is the ra-

tio of the “quantum probability current” jQ(t)

and the quantum “probability density” ρQ(t).



Double slit experiment: numerical so-

lution in the de Broglie-Bohm theory.

Motion in vacuum highly non classical !! Note

that one can determine a posteriori through which

hole that particle went !



INTENSITY OF THE FLOW OF PARTI-

CLES WHEN BOTH SLITS ARE OPEN WITH

ONE HUNDRED TRAJECTORIES SIMULATED



Note also the presence of a nodal line: by sym-

metry of Ψ, the velocity is tangent to the middle

line; thus, particles cannot cross it.



Related experiment (Science, june 2011).



J. BELL:

It is not clear from the smallness of the scin-

tillation on the screen that we have to do with

a particle? And is it not clear, from the diffrac-

tion and interference patterns, that the motion

of the particle is directed by a wave? De Broglie

showed in detail how the motion of a particle,

passing through just one of two holes in the

screen, could be influenced by waves propagat-

ing through both holes.



And so influenced that the particle does not

go where the waves cancel out, but is attracted

to where they cooperate. This idea seems to

me so natural and simple, to resolve the wave-

particle dilemma in such a clear and ordinary

way, that it is a great mystery to me that it was

so generally ignored.

J. BELL



FOUR QUESTIONS:

- WHAT ABOUT THE STATISTICAL

PREDICTIONS ?

- WHAT ABOUT THE “QUANTUM

MEASUREMENTS” ?

- WHAT ABOUT THE COLLAPSE

OF THE WAVE FUNCTION ?

-WHATABOUT (NON)-LOCALITY?

→ later talk.



HOW DOES THE THEORY OF DE

BROGLIE-BOHM ACCOUNT FOR

THE STATISTICAL PREDICTIONS

OF QUANTUM MECHANICS?



THANKS TO EQUIVARIANCE:

Illustration of the property of equivariance of

the |Ψ(X, t)|2 distribution, in one dimension,

for a Gaussian Ψ. Each dot represents the po-

sition of a particle, both at time 0 and at time

t, connected by trajectories.



The initial density of particles ρP0 is (approx-

imately) given by ρP0 (X) = |Ψ(X, 0)|2, see the

left of the picture.



Then, it is an easy consequence of the de Broglie-

Bohm’s theory that the empirical density of par-

ticles at later times ρPt (x) will satisfy ρPt (x) =

|Ψ(x, t)|2, where Ψ(x, t) is the solution of the

Schrödinger equation and ρPt (x) comes from the

guiding equation:

d
dtX(t) = ∇S(X(t), t),

with Ψ(x, t) = R(x, t)eiS(x,t).

See the right of the picture.



EQUIVARIANCE FOLLOWS FROM WHAT

WE SHOWED PREVIOUSLY:

d

dt
X(t) = V Pk (X, t) =

j
Q
k (X, t)

ρQ(X, t)

with ρQ(X, t) = Ψ∗ · Ψ(X, t) = |Ψ(X, t)|2 and

∂

∂t
ρQ(X, t) = − div(j

Q
k (X, t))

For a fluid of density ρ(x, t) and velocity field

V (x, t), one has the continuity equation:

∂

∂t
ρ(x, t) = − div(V (x, t)ρ(x, t)).

So, if we put here ρ(x, t) = ρP (x, t) and V (x, t) =

V P (x, t) =
j
Q
k (x,t)

ρQ(x,t)
, we get that the identity

ρP (x, t) = ρQ(x, t) = |Ψ(x, t)|2

is preserved in time.



SO, IF WE ASSUME THAT ρ0 = |Ψ0|2 AT

SOME INITIAL TIME, IT WILL HOLD AT

ALL TIMES.

THE STATISTICAL PREDICTIONS OF QUAN-

TUM MECHANICS ARE RECOVERED, AT

LEAST AS FAR AS THE POSITIONS OF THE

PARTICLES ARE CONCERNED.

THE ASSUMPTION THAT ρ0 = |Ψ0|2 IS

CALLED QUANTUM EQUILIBRIUM.



BUT SINCE EVERY OTHER “MEASURE-

MENT” IS ULTIMATELY A MEASUREMENT

OF POSITION (AS WE WILL SEE) WE WILL

ALSO RECOVER THE QUANTUM PREDIC-

TIONS FOR THOSE “MEASUREMENTS”.



HOW DOES THE DE

BROGLIE-BOHM THEORY

ACCOUNT FOR THE

“MEASUREMENT” OF SPIN ?

Consider a Stern-Gerlach apparatus “measur-

ing” the spin. Let H be the magnetic field.

The arrow in the picture indicates the direction

of the gradient of that field.

  

H

x

z

 z  ∣1 ∣1  

Initial position of the electron

 z−t 

 zt 

Direction of the gradient of the field

Direction opposite to the gradient of the field

1  

1  

0



The |1 ↑> part of the state always goes in the

direction of the gradient of the field, and the

|1 ↓> part always goes in the opposite direction.

  

H

x

z

 z  ∣1 ∣1  

Initial position of the electron

 z−t 

 zt 

Direction of the gradient of the field

Direction opposite to the gradient of the field

1  

1  

0



But if the particle is initially in the upper

part of the support of the wave function (for

a symmetric wave function), it will always go

upwards. That is because there is a nodal line

in the middle of the figure that the particles

cannot cross.

  

H

x

z

 z  ∣1 ∣1  

Initial position of the electron

 z−t 

 zt 

Direction of the gradient of the field

Direction opposite to the gradient of the field

1  

1  

0



as here



Now, repeat the same experiment, but with

the direction of the gradient of the field reversed,

and let us assume that the particle starts with

exactly the same wave function and the same

position as before.

  

H

x

z

Ψ(z) ( ∣1 ↑>+∣1 ↓> )

Initial position of the electron

Ψ(z−t )

Ψ(z+t )

Direction opposite to the gradient of the field

Direction of the gradient of the field

1  

1 ↑ >



The particle is initially in the upper part of

the support of the wave function, and, thus, it

will still go upwards, because of the nodal line.

  

H

x

z

Ψ(z) ( ∣1 ↑>+∣1 ↓> )

Initial position of the electron

Ψ(z−t )

Ψ(z+t )

Direction opposite to the gradient of the field

Direction of the gradient of the field

1  

1 ↑ >



But going upwards means now going in the

direction opposite to the one of the gradient of

the field (since the latter is reversed).

  

H

x

z

Ψ(z) ( ∣1 ↑>+∣1 ↓> )

Initial position of the electron

Ψ(z−t )

Ψ(z+t )

Direction opposite to the gradient of the field

Direction of the gradient of the field

1  

1 ↑ >



So, the particle whose spin was “up”, will

“have” its spin “down”, although one “mea-

sures” exactly the same quantity (the spin in

the vertical direction), with exactly the same

initial conditions (for both the wave function

and the position of the particle).

  

H

x

z

Ψ(z) ( ∣1 ↑>+∣1 ↓> )

Initial position of the electron

Ψ(z−t )

Ψ(z+t )

Direction opposite to the gradient of the field

Direction of the gradient of the field

1  

1 ↑ >



So, with two different arrangements of the ap-

paratus measuring the same spin operator, we

get different results, for the same initial condi-

tions of the particle.



WHATABOUT “MOMENTUMMEA-

SUREMENTS”?

Consider a wave function

Ψ(x, 0) = π−1/4 exp(−x2/2),

and a set of particles whose density is given

by

|Ψ(x, 0)|2 = π−1/2 exp(−x2).

Since Ψ(x, 0) is real, the phase S in Ψ(x, 0) =

R(x, 0)eiS(x,0) vanishes and the guiding equa-

tion impies that all the particles are at rest:

d

dt
X(t) =

∂S(X(t), t)

∂x
= 0.



Nevertheless the measurement of momentum

p must have a probability density given by the

square of the Fourier transform of

Ψ(x, 0) = π−1/4 exp(−x2/2) :

|Ψ̂(p)|2 = π−1/2 exp(−p2).

Isn’t that a contradiction?



But how does one measure that momen-

tum? One way to do it is to let the particle

move and to detect its asymptotic position X(t)

as t → ∞. One has then p = limt→∞
X(t)
t

(with the mass m = 1).



Under a free evolution, the initial wave func-

tion Ψ(x, 0) = π−1/4 exp(−x2/2) will acquire

an imaginary part.

That in turn will make the particle move, be-

cause of the guiding equation:

d

dt
X(t) =

∂S(X(t), t)

∂x

.



I may skip the details of the (easy) compu-

tation (see Appendix 1), but if one does it, one

finds that, indeed, the variable p = limt→∞
X(t)
t

has the

|Ψ̂(p)|2 = π−1/2 exp(−p2)

distribution predicted by quantum mechanics,

if the initial positon of the particle has the

|Ψ(x, 0)|2 = π−1/2 exp(−x2)

distribution.



Therefore the apparatuses do not register some-

thing pre-existing to the “measurements”, but

play an active role.

When one “measures the spin”, one does not

find a pre-existing property of the particle alone

(see Matthias lecture)!

When one “measures” the momentum, one

finds a value which is not the instantaneous mo-

mentum.

So, in general (i.e. except for measurements

of positions),

“MEASUREMENTS” DON’TMEA-

SURE

AND “OBSERVATIONS” DON’T OB-

SERVE.)



Here is how Bell summarized the situation:

“[. . . ] the word [measurement] comes loaded

with meaning from everyday life, mean-

ing which is entirely inappropriate in the

quantum context. When it is said that

something is ‘measured’ it is difficult not

to think of the result as referring to some

pre-existing property of the object in ques-

tion. This is to disregard Bohr’s insistence

that in quantum phenomena the appara-

tus as well as the system is essentially in-

volved.”



Bell is here referring to statements of Bohr

such as:

“[. . . ] the impossibility of any sharp dis-

tinction between the behavior of atomic

objects and the interaction with the mea-

suring instruments which serve to de-

fine the conditions under which the phe-

nomena appear.”

The de Broglie-Bohm theory vindicates the

intuition of Bohr and others about the role of

the measuring device, but by making it a conse-

quence of the theory and not some philosophical

a priori.



It is often the orthodoxy that adopts a naive

realism with respect to operators: the only thing

we ever “see” are particles’ positions, and the

calculus with operators allows us to compute

the statistics of those positions in certain types

of interactions (called, misleadingly, measure-

ments). But that does not mean that one has

“measured” an operator (assuming that this ex-

pression makes sense).



WHAT ABOUT THE COLLAPSE

OF THE WAVE FUNCTION IN THE

DE BROGLIE-BOHM THEORY?

The wave function of the universe never col-

lapses in the de Broglie-Bohm theory, but there

is nevertheless an effective collapse.

In order to observe something, we need the

particle to interact with a macroscopic system,

because that is the only sort of thing we can

perceive. A macroscopic system means that N

is large, of the order of Avogadro’s number N ∼

1023. Such a system could be any detector in a

laboratory, a pointer pointing up or down, a cat

that can be alive or dead, etc.



Consider a very simplified measurement pro-

cess: the state

Ψ0 = ϕ0(z)

 1√
2

 1

0

 +
1√
2

 0

1

 ,

describes the original state of a particle whose

spin is going to be measured, viz.,

1√
2

 1

0

 +
1√
2

 0

1

 ,

and the state ϕ0(z) of the measuring device.



z = 0

upward 

+ 

downward 

Ψ0 = ϕ0(z)

 1√
2

 1

0

 +
1√
2

 0

1

 ,

Here z is a macroscopic variable, indicating

the position of the measuring device (for exam-

ple, the position of its center of mass along the

vertical axis), and ϕ0(z) is centered at z = 0,

i.e. the pointer is as in the first picture in the

figure.



z = 0

upward 

+ 

downward 

The state resulting after the measurement is

1√
2

 1

0

ϕ↑(z) +
1√
2

 0

1

ϕ↓(z) ,

where ϕ↑(z) and ϕ↓(z) correspond to the last

two pictures in the figure, i.e., the pointer point-

ing upward or downward.

This follows immediately from the linearity of

Schrödinger’s equation.



z = 0

upward 

+ 

downward 

Thus, the system is in a superposition of two

macroscopically distinct states: one in which

the pointer is pointing upward and one in which

it is pointing downward. The problem is that we

never see the pointer in such a superposed state:

we see it either up or down, but not both.



But, in this example

1√
2

 1

0

ϕ↑(z) +
1√
2

 0

1

ϕ↓(z) ,

analyzed in the de Broglie-Bohm theory, the

particle will be in the support of only one of

the terms.

However, in principle, we must keep both terms

because they may recombine later. But is such

a recombination possible in practice for macro-

scopic systems? The answer is no, and the rea-

son is that one would have to get the support

of the quantum state to overlap again for each

of the N variables.



And while this is possible for small N , it is

quite a different matter to do it for N ∼ 1023.

Thus, if we can be sure that no overlap will oc-

cur in the future between the two terms, we can

simply keep the term in the support of which

the particle happens to lie (and we know which

one it is because of the coupling between the

particle and the macroscopic device, by simply

looking at the latter), as far as the predictions

for the future behavior of the system are con-

cerned.



It is sometimes thought that, for such an effec-

tive collapse to occur, one needs the measuring

device to interact with an environment, such as

the air molecules surrounding it, and ultimately

the entire universe. But that is not true: any

sufficiently macroscopic device suffices, even if

the latter were perfectly isolated from the rest

of the universe (which is never the case, but that

is not relevant since what we say would be true

even if perfect isolation were possible).



So, in some sense, we do “collapse” the quan-

tum state when we look at the result of an ex-

periment. But this is only a practical matter.

We can still consider that the true quantum

state is and remains forever given by the time

evolution of the full quantum state

1√
2

 1

0

ϕ↑(z) +
1√
2

 0

1

ϕ↓(z) ,

It is simply that one of the terms of the quan-

tum state no longer guides the motion of the

particle, either now or at any time in the fu-

ture.



The measuring process here is an entirely phys-

ical process, with no role whatsoever left to the

observer.

This effect, namely the fact that the two terms

in

1√
2

 1

0

ϕ↑(z) +
1√
2

 0

1

ϕ↓(z) ,

will not overlap or interfere in the future, is

called decoherence and has been the subject of

an extensive literature. But, for our purposes,

the basic idea, already given by David Bohm in

1952 and outlined here, is sufficient.



Some people think that decoherence alone solves

the measurement problem (see Matthias’s lec-

ture), the argument being that, since the two

terms in

1√
2

 1

0

ϕ↑(z) +
1√
2

 0

1

ϕ↓(z) ,

do not overlap or interfere in the future, we just

pick up the one we see in order to predict the

future behavior of the particle.

But that puts back the observer on center

stage since there is no fact of the matter distin-

guishing the two terms except what we ob-

serve, unlike what happens in the de Broglie-

Bohm theory, where the difference between the

two terms is that the particle is in the support

of only one of them.



SUMMARY:

The main virtue of the de Broglie–Bohm the-

ory is that it is a clear theory about what is

going on in the world, whether we look at it or

not. So the vagueness and subjectivity of the

notion of “observer” or of “measurement” sim-

ply disappear in this theory.



The de Broglie–Bohm theory and ordinary quan-

tum mechanics are not the same theory (al-

though they make the same predictions), be-

cause the de Broglie–Bohm theory is a theory

about microscopic reality outside the laborato-

ries, while ordinary quantum mechanics is not :

it is an algorithm for very accurately predict-

ing results of experiments, an algorithm that is,

in fact, a consequence of the de Broglie–Bohm

theory.

The de Broglie–Bohm theory is simply the ra-

tional completion of ordinary quantum mechan-

ics!



To quote Bell again:

“Why this necessity to refer to ‘apparatus’

when we would discuss quantum phenom-

ena? The physicists who first came upon

such phenomena found them so bizarre

that they despaired of describing them in

terms of ordinary concepts like space and

time, position and velocity. The founding

fathers of quantum theory decided even

that no concepts could possibly be found

which could permit direct description of

the quantum world. So the theory which

they established aimed only to describe

systematically the response of the appa-

ratus. And what more, after all, is needed

for applications? [. . . ]”



“The ‘Problem’ then is this: how exactly

is the world to be divided into a speak-

able apparatus . . . that we can talk about

. . . and unspeakable quantum system that

we can not talk about? How many elec-

trons, or atoms, or molecules, make an

‘apparatus’? The mathematics of the or-

dinary theory requires such a division, but

says nothing about how it is to be made.

In practice the question is resolved by prag-

matic recipes which have stood the test of

time. But should not fundamental theory

permit exact mathematical formulation?”



“Now in my opinion the founding fathers

were in fact wrong on this point. The

quantum phenomena do not exclude a

uniform description of micro and macro

worlds . . . system and apparatus. It is not

essential to introduce a vague division of

the world of this kind. This was indicated

already in 1926 by de Broglie, when he

answered the conundrum

wave or particle ?

by

wave and particle.”



“But by the time this was fully clarified by

Bohm in 1952, few theoretical physicists

wanted to hear about it. The orthodox

line seemed fully justified by practical suc-

cess. Even now the de Broglie-Bohm pic-

ture is generally ignored, and not taught

to students. I think this is a great loss.

For that picture exercises the mind in a

very salutary way.

The de Broglie-Bohm picture disposes of

the necessity to divide the world somehow

into system and apparatus.”

John Bell



John Bell also recalled the arguments claiming

to show that a theory such as the de Broglie–

Bohm one is impossible and added:

“But in 1952 I saw the impossible done.

It was in papers by David Bohm. Bohm

showed explicitly how parameters could

indeed be introduced, into nonrelativistic

wave mechanics, with the help of which

the indeterministic description could be

transformed into a deterministic one.”



“More importantly, in my opinion, the

subjectivity of the orthodox version, the

necessary reference to the ‘observer’, could

be eliminated.”

John Bell



Bell was also wondering:

“Why is the pilot wave picture ignored

in textbooks? Should it not be taught,

not as the only way, but as an antidote

to the prevailing complacency? To show

that vagueness, subjectivity, and indeter-

minism are not forced on us by experi-

mental facts, but by deliberate theoretical

choice?”

John Bell



Let me end by quoting an ex-physics student,

whose sentiments are close to mine when I was

a student:

“My interest has always been to under-

stand what the world is like. This is the

main reason that I majored in physics: if

physics is the study of nature, then to un-

derstand nature one should learn physics

first. But my hopes were disappointed

by what is (or at least seems to be) com-

monly accepted in many physics depart-

ments all over the world: after quantum

mechanics, we should give up the idea that

physics provides us with a picture of real-

ity.”



“At first, I believed this was really the case

and I was so disappointed that I decided

to forget about my “romantic” dream. At

some point, [. . . ] I realized that some

of the things I took for granted were not

so obviously true, and I started to regain

hope that quantum mechanics was not re-

ally the “end of physics” as I meant it.”



“Therefore, I decided to go to graduate

school in physics to figure out what the

situation really was. While taking my

PhD in the foundations of quantum me-

chanics, I understood that what physicists

thought was an unavoidable truth was in-

stead a blunt mistake: quantum mechan-

ics does not force us to give up anything,

and certainly not the possibility to inves-

tigate reality through physics.”

Valia Allori



APPENDIX 1: COMPUTATION OF THE

MOMENTUM DISTRIBUTION.

The solution of Schrödinger’s equation,

i
∂Ψ(x, t)

∂t
= −1

2

∂2Ψ(x, t)

∂x2

with initial wave function

Ψ(x, 0) = π−1/4 exp(−x2/2),

is:

Ψ(x, t) =
1

(1 + it)1/2

1

π1/4
exp

[
− x2

2(1 + it)

]
.



So,

Ψ(x, t) =
1

(1 + it)1/2

1

π1/4
exp

[
− x2

2(1 + it)

]
.

If one writes Ψ(x, t) = R(x, t) exp [iS(x, t)],

one has (up to a constant in x):

S(x, t) =
tx2

2(1 + t2)
,

and the guiding equation ( ddtX(t) =
∂S(X(t),t)

∂x )

becomes:
d

dt
X(t) =

tX(t)

1 + t2
,

whose solution is:

X(t) = X(0)
√

1 + t2



X(t) = X(0)
√

1 + t2

gives the explicit dependence of the position of

the particle as a function of time. If the particle

is initially at X(0) = 0, it does not move; oth-

erwise, it moves asymptotically, when t → ∞,

as X(t) ∼ X(0)t.



Thus,

p = lim
t→∞

X(t)

t
= lim
t→∞

X(0)
√

1 + t2

t
= X(0),

Since we started with

Ψ(x, 0) = π−1/4 exp(−x2/2),

hence, a density distribution of X(0) = x:

|Ψ(x, 0)|2 = π−1/2 exp(−x2),

we get that the density distribution for p is

given by:

π−1/2 exp(−p2) = |Ψ̂(p, 0)|2,

which is the quantum prediction!

But this does not measure the instantaneous

momentum (equal to zero).
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