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Physique

UCLouvain

BELGIUM



– EINSTEIN’S BOXES

– WHAT IS NONLOCALITY?

– PROOF OF NONLOCALITY THROUGH

ANALOGY

– PROOF OF NONLOCALITY USING QUAN-

TUM MECHANICS

– NONLOCALITY IN DE BROGLIE-BOHM’S

THEORY

– THE PROBLEM WITH RELATIVITY

– MISUNDERSTANDINGS OF BELL



EINSTEIN’S BOXES

A single particle is in Box B. One cuts

the box in two half-boxes,

| state > = | B >

The state becomes

−→ 1√
2
(|B1 > +|B2 >)

where |Bi > = particle “is” in box Bi, i =
1, 2.



The two half-boxes B1 and B2 are then sepa-

rated and sent as far apart as one wants.

If one opens one of the boxes (say B1) and

that one does not find the particle, one knows

that it is in B2. Therefore, the state “collapses”

instantaneously and in a non local way.

One opens box B1 −→ nothing

This is a “measurement”, therefore state −→

|B2 >

(and, if one opens the box B2, one will find

the particle !).



Is the reduction or collapse of the

| state > a real (= physical) operation

or does it represent only our knowledge (=

epistemic) ?

If physical −→ A non local form of causality

exists

(= action at a distance).

If epistemic −→ quantum mechanics “incom-

plete” : there exists other variables than the

quantum state that describe the system.

These variables would tell in which half-

box the particle IS before one opens either

of them.



Einstein certainly thought that this arguments

PROVES the incompleteness of quantum me-

chanics, since, for him (and probably for every-

body else at the time), actions at a distance

were unthinkable.

We saw that, from the point of view of the

de Broglie–Bohm theory, quantum mechanics

IS INCOMPLETE : the complete state in-

cludes other variables, namely the positions of

the particles. And, of course, those variables

specify in which half-box the particle IS before

one opens either of them.

No paradox with the boxes from the point of

view of the de Broglie–Bohm theory!



But let us put aside for now the issue of com-

pleteness and prove non locality directly.



WHAT IS NON LOCALITY ?

Non local causality (causality NOT mere corre-

lation)

Properties

1. Instantaneous

2. a. Extends arbitrarily far

b. The effect does not decrease with the

distance

3. Individuated

4. Can be used to transmit messages

Newton’s gravity : 1, 2a and 4

Post-Newtonian physics (e.g. field theories) : 2a

and 4

Is there a phenomenon with properties : 1-3 ?
(Not 4 → pseudoscience).



PROOF OF NONLOCALITY
THROUGH ANALOGY

X ←−

ALICE BOB

−→ Y

3 questions 1,2,3

2 answers yes/no

Questions and answers vary. But when the

same question is asked at X and Y , Alice and

Bob always give the same answer.

Only two possibilities: either the answers are
predetermined or there exists a form of causality
at a distance after one asks the questions.



This is the Einstein Podolsky and Rosen (EPR-

1935) argument (in Bohm’s formulation). Let

us call that the EPR DILEMMA.

One horn of the dilemma means nonlocality.

The other horn means that the answers are

predetermined.

This dilemma concerns what happens in every

single experiment, not just in the statistics of

their results.

BUT

That second assumption

(alone)

leads to a contradiction with observations made

when the questions are different.

Bell (1964)



PROOF

There are 3 Questions 1 2 3

and 2 possible Answers Yes/No

If the answers are given in advance, there ex-

ists 23 = 8 possibilities :

1 2 3

Y Y Y

Y Y N

Y N Y

Y N N

N Y Y

N Y N

N N Y

N N N

In each case there are at least two questions
with the same answer.



Therefore,

Frequency (answer to 1 = answer to 2)

+ Frequency (answer to 2 = answer to 3)

+ Frequency (answer to 3 = answer to 1) ≥ 1

BUT,

in some experiments,

Frequency (answer to 1 = answer to 2)

= Frequency (answer to 2 = answer to 3)

= Frequency (answer to 3 = answer to 1)

=
1

4

⇒ 3

4
≥ 1

FALSE !

⇒ CONTRADICTION



EXPERIMENTS



EXAMPLE OF “DATA”

1Y1Y 1Y3Y 1Y 2N

1N3Y 2N3Y 2N2N

1N2Y 3Y 2N 1Y 2N

1Y 3N 3Y3Y 1N1N

2Y2Y 1N2N 1N2Y

3N1Y 1Y 2N 1N3Y

2N2N 3N3N 1Y3Y

1N1N 3Y 2N 3N2N

1Y 3N 2Y3Y 1Y1Y

2N1Y 3Y 2N 1N3Y

2N2N 3N1N 1Y1Y

2Y1Y 1N1N 1N3Y

2N3Y 3Y 2N 1N2Y

2Y2Y 3N1Y 3Y3Y

1Y 3N 2N1Y 3Y2Y

1N1N 1N2Y 3Y 2N

2N1N 2N2N 1Y1Y

3N3N 3N2Y 1N3Y



PROOF OF NONLOCALITY USING

QUANTUM MECHANICS

A and B are replaced by particles

At X and Y there are are Stern-Gerlach ap-

paratuses that “measure the spin” along some

direction.

Below we will let 1, 2, 3 = 3 possible directions

for that “measurement”.

Yes/No = Up/Down.

But let us consider first a

| state of the two particles >

= 1√
2
(|A 1↑> |B 1↓> −|A 1↓> |B 1↑>)

This is called an “ENTANGLED STATE”.



  

H
1H1

X Y

A B

Meaning of the state:

1√
2

(|A 1↑> |B 1↓> −|A 1↓> |B 1↑>)

One sends two particles A and B, towards

boxes located at X et Y , that are perpendicu-

lar to the plane of the picture. In each box there

is magnetic field H oriented in the vertical di-

rection, denoted 1.



  

H
1H1

X Y

A B

1√
2

(|A 1↑> |B 1↓> −|A 1↓> |B 1↑>)

One possibility is that particle A goes up-

wards, meaning in the direction of the gradi-

ent of the field and particle B goes downwards,

meaning in the direction opposite to the one of

the gradient the field.



  

H
1H1

X Y

A B

Another possibility is that particleA goes down-

wards, meaning in the direction opposite to the

one of the field and particle B goes upwards,

meaning in the direction of the gradient of the

field.

One never sees both particles going in the

direction of the gradient of the field or in the

opposite direction.



Now assume that there is no action at a dis-

tance of any sort, namely no influence of the

measurement on one side on the result on the

other side.

Then, in order to account for those perfect

anti-correlations, we are obliged to assume that

the results on both sides are predetermined by

“instructions” (whether to up or down in a given

direction) carried by the particles.



So, let introduce “random variables” A(1) =

±1, B(1) = ±1, where A(1) = +1 means that

the A particle will go in the direction of the

gradient of the field, and A(1) = −1 means that

the A particle will go in the direction opposite

to the one of the field, and similarly for B(1) =

±1.

These are “random variables” in the sense that

those values vary from one run of the experi-

ment to the next.



The “random variables” A(1) = ±1, B(1) =

±1 are “hidden variables” in the sense that they

are not included or determined by the quantum

state:

= 1√
2
(|A 1↑> |B 1↓> −|A 1↓> |B 1↑>)

They are analogous to the index of the half-

box in Einstein’s boxes experiment.



Consider now three possible orientations for

the gradient of the magnetic field, denoted H1,

H2, H3, in a plane perpendicular to the motion

of the particles.

One repeats many times the experiment, by

choosing “at random” the orientation of the gra-

dient of the field on both sides.

When the orientations are the same on both

sides, the two particles always go in opposite

directions.



Indeed, the state considered here has the same

form in all directions:

| state of the two particles >

= 1√
2
(|A 1 ↑> |B 1 ↓> −|A 1 ↓> |B 1 ↑>)

= 1√
2
(|A 2 ↑> |B 2 ↓> −|A 2 ↓> |B 2 ↑>)

= 1√
2
(|A 3 ↑> |B 3 ↓> −|A 3 ↓> |B 3 ↑>)



The reasoning made above (as a consequence

of simply assuming no action at a distance) im-

plies that we are obliged to assume that the re-

sults on both sides are predetermined by “in-

structions” (whether to up or down in a given

direction) carried by the particles, in all three

directions.



So, let introduce “random variables” A(α) =

±1, B(α) = ±1, for α = 1, 2, 3 labelling the

direction, and where A(α) = +1 means that

the A particle will go in the direction of the

gradient of the field when the latter is oriented

in direction α, and A(α) = −1 means that the

A particle will go in the direction opposite to the

one of the field, and similarly for B(α) = ±1.



But, in order to account for the perfect anti-

correlations, we must always have:

A(α) = −B(α)

∀α = 1, 2, 3.



Now, since A(α) takes only two values and

since there are three choices of directions (1, 2,

3), whatever the values of the random variables

A(α), we must, for each set of values, have ei-

ther

A(1) = A(2)

A(1) = A(3)

A(2) = A(3)

(or all three could be equal).



So, by simply assuming that those values ex-

ist, we must have:

Frequency (A(1)= A(2))

+ Frequency (A(1)= A(3))

+ Frequency (A(2)= A(3)) ≥ 1.

But, since we have

A(α) = −B(α)

∀α = 1, 2, 3.

we must have

Frequency (A(1)= -B(2))

+ Frequency (A(1)= -B(3))

+ Frequency (A(2)= -B(3)) ≥ 1.



Let us choose, for example, direction 1 at X

and direction 2 at Y .



If particle A goes in the direction of the gradi-

ent of the field (meaning A(1) = +1), as in the

picture, then particle B will go in the direction

of the gradient of the field (meaningB(2) = +1)

75% of the time and in the opposite direction

(meaning B(2) = −1) 25% of the time (and

vice-versa).

One obtains the same results with the 5 other

choices of pairs of different orientations of the

gradient of the field at X and Y .



But that means that A(1) = −B(2) only a

quarter of the time, i.e.

Frequency (A(1)= -B(2))

= Frequency (A(1)= -B(3))

= Frequency (A(2)= -B(3)) =1
4.

But then:

Frequency (A(1)= -B(2))

+ Frequency (A(1)= -B(3))

+ Frequency (A(2)= -B(3))

=3
4 < 1



This contradicts

Frequency (A(1)= -B(2))

+ Frequency (A(1)= -B(3))

+ Frequency (A(2)= -B(3))

≥ 1,

which followed from only assuming that those

values A(α), B(α) exist.

And that assumption followed from the one of

locality, i.e. no action at a distance of any sort,

namely no influence of the measurement on one

side on the result on the other side.

Therefore, that latter assumption is false.

Ergo: the world in non-local.

The number 1
4 mentioned above, for the anti-

correlations with appropriate choice of the di-

rections 1, 2, 3, is derived in the Appendix.



Let us see how this experiment is described in

the quantum formalism:

|state of both particles >

= 1√
2
(|A 1↑> |B 1↓> −|A 1↓> |B 1↑>)

= 1√
2
(|A 2↑> |B 2↓> −|A 2↓> |B 2↑>)

= 1√
2
(|A 3↑> |B 3↓> −|A 3↓> |B 3↑>)

If one “measures” the spin in direction 1 for the

A particle and if one sees ↑, the state becomes

⇒ |A 1↑> |B 1↓>.

If one sees ↓, the state becomes ⇒ |A 1↓>

|B 1↑>.



The same holds if one measures the spin in

directions 2 or 3; collapse of the quantum state!

But then, the state has changed also non lo-

cally for the B particle.



Same dilemma as for Einstein’s boxes :

reduction of the | state > = physical or epis-

temic ?

If physical −→ non locality

If epistemic −→ “answers” are given in ad-

vance, i.e. the particle at B is 1 ↑ or 1 ↓, 2 ↑ or

2 ↓, 3 ↑ or 3 ↓, before any measurement at A.



The only way to maintain that this collapse is

not physical is to assume what we just said:

That there exist “random variables” A(α) =

±1, B(α) = ±1, on top of the quantum state

that determine which way the particle will go if

one measures its spin (A(α) = +1 means that

the A particle will go in the direction of the

gradient of the field, andA(α) = −1 means that

the A particle will go in the direction opposite to

the one of the gradient of the field, and similarly

for B(α) = ±1).



Then, it would make sense to say that the

quantum state is only about “information”, and

that the collapse of that state occurs only be-

cause we “learn” something about the system.

BUT, what Bell shows it that the mere suppo-

sition that those variables exist leads to a con-

tradiction!



BELL WAS QUITE EXPLICIT

ABOUT WHAT THIS MEANS

“Let me summarize once again the logic that

leads to the impasse. The EPRB correlations

are such that the result of the experiment on

one side immediately foretells that on the other,

whenever the analyzers happen to be parallel.”

(In EPRB, B refers to Bohm who reformulated

the EPR argument in terms in spin, which we

use here. EPR spoke of position and momen-

tum.)



“If we do not accept the intervention on one

side as a causal influence on the other, we seem

obliged to admit that the results on both sides

are determined in advance anyway, independently

of the intervention on the other side, by signals

from the source and by the local magnet set-

ting. But this has implications for non-parallel

settings which conflict with those of quantum

mechanics. So we cannot dismiss intervention

on one side as a causal influence on the other.”

J. BELL



NONLOCALITY IN THE DE BROGLIE–

BOHM THEORY

We saw that, in the de Broglie–Bohm the-

ory or pilot-wave theory, the complete state of

a closed physical system composed of N par-

ticles is a pair (|quantum state>, X), where

|quantum state> is the usual quantum state,

and X = (X1, . . . , XN ) represents the posi-

tions of the particles that exist, independently

of whether one “looks” at them or one “mea-

sures” them (each Xi ∈ R3).



Both objects, the quantum state and the par-

ticles’ positions, evolve according to determinis-

tic laws, the quantum state guiding the motion

of the particles.

Thus, since the de Broglie–Bohm theory is

deterministic, the result of any quantum mea-

surement will be determined beforehand by the

quantum state and the configuration of the “mea-

suring device”.



But we saw in Matthias’ lecture and in my

first talk, that the result of the “measurement

of spin” is not determined solely by the complete

state of the system (|quantum state>, X), but

also by the way the measuring device is setup.



Consider a Stern-Gerlach apparatus “measur-

ing” the spin. Let H be the magnetic field. The

arrow indicates the direction of the gradient of

the field.

  

H

x

z

 z  ∣1 ∣1  

Initial position of the electron

 z−t 

 zt 

Direction of the gradient of the field

Direction opposite to the gradient of the field

1  

1  

0



The |1 ↑> part of the state always goes in the

direction of the gradient of the field, and the

|1 ↓> part always goes in the opposite direction.

  

H

x

z

 z  ∣1 ∣1  

Initial position of the electron

 z−t 

 zt 

Direction of the gradient of the field

Direction opposite to the gradient of the field

1  

1  

0



But if the particle is initially in the upper

part of the support of the wave function (for

a symmetric wave function), it will always go

upwards. That is because there is a nodal line

in the middle of the figure that the particles

cannot cross.

  

H

x

z

 z  ∣1 ∣1  

Initial position of the electron

 z−t 

 zt 

Direction of the gradient of the field

Direction opposite to the gradient of the field

1  

1  

0



as here



Now, repeat the same experiment, but with

the direction of the gradient of the field reversed,

and let us assume that the particle starts with

exactly the same wave function and the same

position as before.

  

H

x

z

Ψ(z) ( ∣1 ↑>+∣1 ↓> )

Initial position of the electron

Ψ(z−t )

Ψ(z+t )

Direction opposite to the gradient of the field

Direction of the gradient of the field

1  

1 ↑ >



The particle is initially in the upper part of

the support of the wave function, and, thus, it

will still go upwards, because of the nodal line.

  

H

x

z

Ψ(z) ( ∣1 ↑>+∣1 ↓> )

Initial position of the electron

Ψ(z−t )

Ψ(z+t )

Direction opposite to the gradient of the field

Direction of the gradient of the field

1  

1 ↑ >



But going upwards means now going in the

direction opposite to the one of the gradient of

the field (since the latter is reversed).

  

H

x

z

Ψ(z) ( ∣1 ↑>+∣1 ↓> )

Initial position of the electron

Ψ(z−t )

Ψ(z+t )

Direction opposite to the gradient of the field

Direction of the gradient of the field

1  

1 ↑ >



So, the particle whose spin was “up”, will

“have” its spin “down”, although one “mea-

sures” exactly the same observable (the spin in

the vertical direction), with exactly the same

initial conditions (for both the wave function

and the position of the particle).

  

H

x

z

Ψ(z) ( ∣1 ↑>+∣1 ↓> )

Initial position of the electron

Ψ(z−t )

Ψ(z+t )

Direction opposite to the gradient of the field

Direction of the gradient of the field

1  

1 ↑ >



So, with two different arrangements of the ap-

paratus measuring the same spin operator, we

get different results, for the same initial condi-

tions of the particle.

This is related to (and explains) the nonlocal

character of the de Broglie–Bohm theory.



Two particles,A andB are sent towards boxes,

located at X and Y , that are perpendicular to

the plane of the figure, and in which there is a

magnetic field H whose gradient is oriented up-

wards along the vertical axis, denoted 1. The

wave function associated to the particles are

represented by disks.

  

H
1H1

X Y

A B
OR

Initial position
of particle A

Final position
of particle A

Final position
of particle B

Initial position
of particle A

Initial position
of particle B



In the boxes, the wave function split into two

parts, one going upward in the direction of the

gradient of the field, the other going downward,

in the direction opposite to the one of the field.

The particle positions are indicated by dark dots.

  

H
1H1

X Y

A B
OR

Initial position
of particle A

Final position
of particle A

Final position
of particle B

Initial position
of particle A

Initial position
of particle B



Suppose that we measure the spin of the A

particle first. In the de Broglie–Bohm theory,

if the A particle starts initially above the hor-

izontal line in the middle of the figure (at the

level of the two arrows), it will always go in the

upward direction, namely in the direction of the

gradient of the field.

  

H
1H1

X Y

A B
OR

Initial position
of particle A

Final position
of particle A

Final position
of particle B

Initial position
of particle A

Initial position
of particle B



But then, since the wave function of the two

particles are such that they are (anti)-correlated,

the B particle will have to go in the direction

opposite to the one of the field namely down-

wards.

  

H
1H1

X Y

A B
OR

Initial position
of particle A

Final position
of particle A

Final position
of particle B

Initial position
of particle A

Initial position
of particle B



Now, suppose that we reverse the orientation

of the gradient of the field on the left relative to

the one of the previous figure, but do not change

anything on the right and again measure of the

spin on the left first.

  

H
1H1

X
Y

A B
OR

Initial position
of particle A

Final position
of particle A

Final position
of particle B

Initial position
of particle A

Initial position
of particle B



Measure the spin of the A particle first. In

the de Broglie–Bohm theory, if the A particle

starts initially above the horizontal line in the

middle of the figure (at the level of the two ar-

rows), it will always go in the upward direction,

namely in the direction opposite to the one of

the gradient of the field.

  

H
1H1

X
Y

A B
OR

Initial position
of particle A

Final position
of particle A

Final position
of particle B

Initial position
of particle A

Initial position
of particle B



But then, since the wave function of the two

particles are such that they are (anti)-correlated,

the B particle will have to go in the direction of

the gradient of the field, namely upwards.

  

H
1H1

X
Y

A B
OR

Initial position
of particle A

Final position
of particle A

Final position
of particle B

Initial position
of particle A

Initial position
of particle B



Compare the two figures:

  

H
1H1

X Y

A B
OR

Initial position
of particle A

Final position
of particle A

Final position
of particle B

Initial position
of particle A

Initial position
of particle B

  

H
1H1

X
Y

A B
OR

Initial position
of particle A

Final position
of particle A

Final position
of particle B

Initial position
of particle A

Initial position
of particle B



So by changing the orientation of the gradient

of the field on the left of the previous figure,

while doing nothing whatsoever on the right of

that figure, we affect the trajectory of particleB

(in one situation, it goes down, in the other one

it goes up) which may be arbitrarily far away

from the A particle.

  

H
1H1

X
Y

A B
OR

Initial position
of particle A

Final position
of particle A

Final position
of particle B

Initial position
of particle A

Initial position
of particle B



This is one of the ways that the action at a

distance manifests itself in the de Broglie–Bohm

theory.

  

H
1H1

X
Y

A B
OR

Initial position
of particle A

Final position
of particle A

Final position
of particle B

Initial position
of particle A

Initial position
of particle B



There is a genuine action at a distance here,

since acting on the A particle (by choosing how

to “measure its spin”) instantly affects the be-

havior of particle B.



The fact that the de Broglie–Bohm theory is

nonlocal is a quality rather than a defect, since

we just showed that any theory accounting for

the quantum phenomena must be nonlocal.



THE TROUBLE WITH RELATIV-

ITY

COMING FROM THE RELATIVITY

OF SIMULTANEITY



Consider three frames of reference: the green,

bue and red lines indicate events that are simul-

taneous with respect to each of these reference

frames



The x axis corresponds to all the events simul-

taneous with A relative to the green reference

frame.

The x′ axis corresponds to all the events si-

multaneous with A relative to the red reference

frame.

The x” axis corresponds to all the events si-

multaneous with A relative to the blue reference

frame.



Event B is simultaneous with A relative to

the green reference frame but occurs before A

relative to the blue reference frame and occurs

after A relative to the red reference frame



  

t

xA'

A

t
B
=0

B

The x axis represents the t = 0 axis in a ref-

erence frame where A is at rest. Suppose that

one can send a message instantaneously from A

to B (B is in the present of A).

But if in B one considers a reference frame

in motion with respect to the one where A is

at rest, then the present in that reference frame

could be represented by the line tB = 0.



  

t

xA'

A

t
B
=0

B

If one can send a message instantaneously from

A to B, then B can send a message instanta-

neously to A′, which is the past of A.

That would of course create “causal loops”.



What happens in the quantum formalism:

|state of both particles >

= 1√
2
(|A 1↑> |B 1↓> −|A 1↓> |B 1↑>)

If one measures the spin in direction 1 at X ,

before measuring it at B, and if one sees ↑, the

state becomes ⇒ |A 1↑> |B 1↓>.

If one sees ↓, the state becomes ⇒ |A 1↓>

|B 1↑>.

One then changes instantaneously the state

of B.

But if one measured the spin in direction 1 at

Y , before measuring it at Y , one would change

instantaneously the state of A.

But who measures first depends on the ref-

erence frame !!!



The only solution would be to have an “epis-

temic” view of the quantum state so that there

will be no real action at a distance and the mea-

surements would simply reveal pre-existing val-

ues of the spin.

However, Bell showed that this “solution” im-

plies a contradiction (3
4 ≥ 1).

But if there are instantaneous actions, then

relativity implies the existence of actions on the

past in certain reference frames.



All our intuitive notion of causality

collapses, because this notion is based

on the idea that causes precede effects

in an absolute sense that does not de-

pend on the reference frame.

Unless one introduces a privileged reference

frame in which “true” causality holds.

The least one can say is that this contradicts

the spirit of relativity!!



What about QFT or relativistic quantum me-

chanics ?

In standard textbooks, the reduction or col-

lapse of the quantum state is never discussed

in relativistic terms −→ the question raised by

EPR and Bell is not even raised.



Luckily, one cannot use EPR-Bell to

send messages

If one could, then, as we just saw, relativity

implies that one could send messages into one’s

own past.

BUT:

— Each side sees a perfectly random sequence

of YES/NO.

— There is no way to control, by acting on one

side, which answer will be received.

— So, one cannot use this mechanism to send

messages.



— BUT if each person tells the other which

“measurements” have been made (1, 2 or 3),

then, they both know which result has been

obtained on the other side when the same

measurement is made on both sides.

⇒ Then, they both share a common se-

quence of YES/NO , which is form of “in-

formation”. Since that information cannot

possibly come from the source (because of

Bell), some sort of nonlocal transmission of

information has taken place.

— That is the basis of quantum cryptography

and quantum information.



But the problem of causality remains.

It cannot be solved by just saying “one cannot

send messages”.

Messages are far too anthropocentric.

If one chooses a privileged reference frame in

which true causality holds, then, the argument

showing that one cannot send messages also im-

plies that this reference frame is unobservable.

CHOOSE YOUR POISON!



BELL WAS WIDELY

MISUNDERSTOOD

Some theoretical work of John Bell revealed

that the EPRB experimental setup could be

used to distinguish quantum mechanics from

hypothetical hidden variable theories. . . After

the publication of Bell’s work, various teams of

experimental physicists carried out the EPRB

experiment. The result was eagerly awaited, al-

though virtually all physicists were betting on

the correctness of quantum mechanics, which

was, in fact, vindicated by the outcome.

M. GELL-MANN





The situation is like that of Bertlmann’s socks,

described by John Bell in one of his papers.

Bertlmann is a mathematician who always wears

one pink and one green sock. If you see just one

of his feet and spot a green sock, you know im-

mediately that his other foot sports a pink sock.

Yet no signal is propagated from one foot to the

other. Likewise no signal passes from one pho-

ton to the other in the experiment that confirms

quantum mechanics. No action at a distance

takes place.

M. GELL-MANN



Einstein’s view was what would now be

called a hidden variables theory. Hidden

variables theories might seem to be the

most obvious way to incorporate the Un-

certainty Principle into physics. They form

the basis of the mental picture of the uni-

verse, held by many scientists, and almost

all philosophers of science. But these hid-

den variable theories are wrong. The British

physicist, John Bell, who died recently,

devised an experimental test that would

distinguish hidden variable theories. When

the experiment was carried out carefully,

the results were inconsistent with hidden

variables.

S. HAWKING



BUT NOT EVERYBODY GOT IT WRONG.

After giving an argument similar to the one of

Bell, Feynman wrote:

That’s all. That’s the difficulty. That’s why

quantum mechanics can’t seem to be imitable

by a local classical computer.

I’ve entertained myself always by squeezing

the difficulty of quantum mechanics into a smaller

and smaller place, so as to get more and more

worried about this particular item. It seems to

be almost ridiculous that you can squeeze it to a

numerical question that one thing is bigger than

another.

R. FEYNMAN



A nice summary:

Contemporary physicists come in two varieties.

Type 1 physicists are bothered by EPR and

Bell’s theorem. Type 2 (the majority) are not,

but one has to distinguish two subvarieties. Type

2a physicists explain why they are not bothered.

Their explanations tend either to miss the point

entirely . . . or to contain physical assertions that

can be shown to be false. Type 2b are not both-

ered and refuse to explain why. Their position

is unassailable. (There is a variant of type 2b

who say that Bohr straightened out the whole

business, but refuse to explain how.)

D. MERMIN



CONCLUSION

I know that most men, including those at ease

with problems of the highest complexity, can

seldom accept even the simplest and most obvi-

ous truth if it be such as would oblige them to

admit the falsity of conclusions which they have

delighted in explaining to colleagues, which they

have proudly taught to others, and which they

have woven, thread by thread, into the fabric of

their lives.

TOLSTOY



APPENDIX

Let us derive the number 1
4 mentioned above,

for the anti-correlations and an appropriate choice

of the directions 1, 2, 3.

Compute first Eα,β ≡ 〈Ψ|σAα ⊗σBβ |Ψ〉, where

α, β are unit vectors in the directions (1, 2, or 3,

specified below) in which the spin is measured at

X or Y , and σAα⊗σBβ is a tensor product of ma-

trices, each one acting on the A or B part of the

quantum state, with σAα = α1σ1 +α2σ2 +α3σ3,

where, for i = 1, 2, 3, αi are the components of

α and σi the usual Pauli matrices.



The matrix σAα is the spin operator that is

“measured” when one “measures the spin” in

direction α for the A particle and similarly for

σBβ .

So, Eα,β = 〈Ψ|σAα⊗σBβ |Ψ〉 is the expectation

value of the measurement of the spin in direc-

tion α at X and in direction β at Y , when the

quantum state is Ψ.



The quantity Eα,β = 〈Ψ|σAα ⊗ σBβ |Ψ〉is bilin-

ear in α, β and rotation invariant, so it must be

of the form λα · β, for some λ ∈ R.

For α = β, the result must be −1, because of

the anti-correlations (if the spin is up at A, it

must be down at B and vice versa). So λ = −1,

and thus Eα,β = − cos θ, where θ is the angle

between the directions α and β.



If we introduce the “hidden variables”A(α), B(β) =

±1, and consider Eα,β as an expectation value

over those variables, we have:

Eα,β = P (A(α) = B(β))−P (A(α) = −B(β))

= 1− 2P (A(α) = −B(β))

and thus

P (A(α) = −B(β)) =
1− Eα,β

2
=

1 + cos θ

2
.

since Eα,β = − cos θ.



One then chooses the directions

1 ←→ 0 degree ,

2 ←→ 120 degree ,

3 ←→ 240 degree .

Since cos 120 = cos 240 = −1
2, we get

P (A(α) = −B(β)) =
1 + cos θ

2
=

1

4

Thus we have perfect anticorrelations only 1
4

of the time when α and β are different. With

our convention, this means that one gets the

same answer when one asks different questions

on both sides only 1
4 of the time.
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