MATH STAT PHYS: IN-CLASS PROBLEM SHEET 1

Problem 1: Probability densities

Let $D = \{(x,y) \in \mathbb{R}^2 : 0 \leq x \leq y \leq 1\}$. The random variables X, Y have joint distribution density $\rho(x,y) = \mathcal{N} \mathbf{1}_D(x,y)$, where $\mathbf{1}_D$ denotes the characteristic function (indicator function) of the set D.

(a) Determine the normalization constant \mathcal{N} .

(b) Determine the marginal distribution density $\rho_X(x)$ of the random variable X.

(c) Let $Z = X^2$. Determine the distribution density $\rho_Z(z)$ of the random variable Z.

(d) Determine $\mathbb{E}Z$ in two ways: First by computing $\int dz \, z \, \rho_Z(z)$, and second by computing $\int dx \, x^2 \, \rho_X(x)$.

Problem 2: Convex sets and functions

A subset K of the real vector space V is called *convex* iff for any two points $x, y \in K$ the line segment connecting them lies in K, i.e., iff $\forall t \in [0, 1]$: $tx + (1 - t)y \in K$.

- (a) Show: If $K \subseteq V$ is convex, and if $x_1, \ldots, x_k \in K$ and $\alpha_1, \ldots, \alpha_k \geq 0$ with $\alpha_1 + \ldots + \alpha_k = 1$, then $\sum_{i=1}^k \alpha_i x_i \in K$. Such a linear combination is called a *convex* combination.
- (b) For any subset $M \subseteq V$ let H(M) be the intersection of all convex sets containing M as a subset. Show that H(M) is convex. It is called the *convex hull* of M.
- (c) Show that H(M) is the set of all convex combinations of elements of M.

Let $G \subseteq V$. A function $f : G \to \mathbb{R}$ is called *convex* iff the set M above its graph, $M = \{(x, y) \in G \times \mathbb{R} | y \ge f(x)\}$, is convex.

- (d) Show that convexity of G is necessary for convexity of f.
- (e) Show that f is convex iff for all $x, y \in G$, $f_{xy}(t) := f(tx + (1-t)y)$ defines a convex function $f_{xy}: [0,1] \to \mathbb{R}$.