MATHEMATICAL STATISTICAL PHYSICS: Assignment 2

Problem 8: Conservation laws (hand in, 40 points)

Prove Proposition 1, i.e., the conservation laws of energy, momentum, and angular momentum, assuming the equation of motion (2.1).

Problem 9: Elastic collision of two billiard balls in \mathbb{R}^3 (don't hand in)

Prior to the collision, the two balls of radius a > 0 and mass m > 0 move at constant velocities. Let the locations at the time of collision be q_1 and q_2 with $|q_1 - q_2| = 2a$, the momenta prior to the collision p_1 and p_2 with $(p_2 - p_1) \cdot (q_2 - q_1) < 0$ (they move towards each other, not away), and let $\boldsymbol{\omega}$ be the unit vector from ball 1 to ball 2, $\boldsymbol{\omega} = (q_2 - q_1)/2a$. Assume that the balls cannot spin. Show that conservation of energy, momentum, and angular momentum allow only two possibilities for the momenta p'_1 and p'_2 after the collision: Either $p'_1 = p_1$ and $p'_2 = p_2$ (which is impossible if the balls cannot pass through each other), or the $\boldsymbol{\omega}$ components of the p_k get exchanged while the components perpendicular to $\boldsymbol{\omega}$ remain unchanged. Show further that the latter case means

$$m{p}_1' = m{p}_1 - [(m{p}_1 - m{p}_2) \cdot m{\omega}] m{\omega}, \quad m{p}_2' = m{p}_2 + [(m{p}_1 - m{p}_2) \cdot m{\omega}] m{\omega}.$$

("Elastic" means conserving energy. Here, $E = p_1^2/2m + p_2^2/2m$ and $L = q_1 \times p_1 + q_2 \times p_2$.)

Problem 10: Normalizing factor of the Gaussian in d dimensions (hand in, 20 points) Determine the normalizing factor \mathcal{N} in the expression

$$\rho(\boldsymbol{x}) = \mathscr{N} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^T C^{-1}(\boldsymbol{x} - \boldsymbol{\mu})\right)$$

for the density of $\mathcal{N}^d(\boldsymbol{\mu}, C)$, the Gaussian distribution in \mathbb{R}^d with mean $\boldsymbol{\mu}$ and covariance matrix C. You can use the answer for d = 1 without proof.

Problem 11: Distance of measures (hand in, 20 points)

The *total variation distance* of two finite measures μ, ν on the same σ -algebra \mathscr{A} is defined by

$$d(\mu,\nu) = \sup_{A \in \mathscr{A}} \left(\mu(A) - \nu(A) \right) + \sup_{A \in \mathscr{A}} \left(\nu(A) - \mu(A) \right).$$

Now let μ, ν be probability measures.

(a) (10 points) Show that $d(\mu, \nu) = 2 \sup_{A \in \mathscr{A}} |\mu(A) - \nu(A)|$. (*Hint*: $\nu(A) - \mu(A) = \mu(A^c) - \nu(A^c)$.)

(b) (10 points) Show that if μ and ν possess densities f and g relative to the measure λ on \mathscr{A} , then the total variation distance coincides with the L^1 norm of f - g,

$$d(\mu,\nu) = \int \lambda(dx) \left| f(x) - g(x) \right|.$$

Problem 12: Speeds of molecules (hand in, 20 points)

(a) (10 points) Determine the most probable value v_{max} of the speed v = |v| according to the Maxwellian distribution

$$\rho(\boldsymbol{v}) = \mathscr{N} \exp\left(-\frac{m|\boldsymbol{v}|^2}{2kT}\right),$$

with given m and T. (*Hint*: The distribution density ρ_v of v is not $\mathscr{N} \exp(-mv^2/2kT)$. Why not?)

(b) (5 points) Is v_{max} greater or less than $\sqrt{\mathbb{E}(\boldsymbol{v}^2)}$?

(c) (5 points) Determine v_{max} for N_2 , the main constituent of air with $m = 4.6 \cdot 10^{-26}$ kg, at an absolute temperature of T = 300 Kelvin.

Hand in: Wednesday, May 8, 2019, in the exercise class.