Mathematical Statistical Physics: Assignment 2

Problem 8: Conservation laws (hand in, 40 points)
Prove Proposition 1, i.e., the conservation laws of energy, momentum, and angular momentum, assuming the equation of motion (2.1).

Problem 9: Elastic collision of two billiard balls in \mathbb{R}^{3} (don't hand in)
Prior to the collision, the two balls of radius $a>0$ and mass $m>0$ move at constant velocities. Let the locations at the time of collision be \boldsymbol{q}_{1} and \boldsymbol{q}_{2} with $\left|\boldsymbol{q}_{1}-\boldsymbol{q}_{2}\right|=2 a$, the momenta prior to the collision \boldsymbol{p}_{1} and \boldsymbol{p}_{2} with $\left(\boldsymbol{p}_{2}-\boldsymbol{p}_{1}\right) \cdot\left(\boldsymbol{q}_{2}-\boldsymbol{q}_{1}\right)<0$ (they move towards each other, not away), and let $\boldsymbol{\omega}$ be the unit vector from ball 1 to ball 2 , $\boldsymbol{\omega}=\left(\boldsymbol{q}_{2}-\boldsymbol{q}_{1}\right) / 2 a$. Assume that the balls cannot spin. Show that conservation of energy, momentum, and angular momentum allow only two possibilities for the momenta $\boldsymbol{p}_{1}^{\prime}$ and $\boldsymbol{p}_{2}^{\prime}$ after the collision: Either $\boldsymbol{p}_{1}^{\prime}=\boldsymbol{p}_{1}$ and $\boldsymbol{p}_{2}^{\prime}=\boldsymbol{p}_{2}$ (which is impossible if the balls cannot pass through each other), or the $\boldsymbol{\omega}$ components of the \boldsymbol{p}_{k} get exchanged while the components perpendicular to $\boldsymbol{\omega}$ remain unchanged. Show further that the latter case means

$$
\boldsymbol{p}_{1}^{\prime}=\boldsymbol{p}_{1}-\left[\left(\boldsymbol{p}_{1}-\boldsymbol{p}_{2}\right) \cdot \boldsymbol{\omega}\right] \boldsymbol{\omega}, \quad \boldsymbol{p}_{2}^{\prime}=\boldsymbol{p}_{2}+\left[\left(\boldsymbol{p}_{1}-\boldsymbol{p}_{2}\right) \cdot \boldsymbol{\omega}\right] \boldsymbol{\omega} .
$$

("Elastic" means conserving energy. Here, $E=\boldsymbol{p}_{1}^{2} / 2 m+\boldsymbol{p}_{2}^{2} / 2 m$ and $\boldsymbol{L}=\boldsymbol{q}_{1} \times \boldsymbol{p}_{1}+\boldsymbol{q}_{2} \times \boldsymbol{p}_{2}$.)

Problem 10: Normalizing factor of the Gaussian in d dimensions (hand in, 20 points) Determine the normalizing factor \mathscr{N} in the expression

$$
\rho(\boldsymbol{x})=\mathscr{N} \exp \left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} C^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)
$$

for the density of $\mathcal{N}^{d}(\boldsymbol{\mu}, C)$, the Gaussian distribution in \mathbb{R}^{d} with mean $\boldsymbol{\mu}$ and covariance matrix C. You can use the answer for $d=1$ without proof.

Problem 11: Distance of measures (hand in, 20 points)
The total variation distance of two finite measures μ, ν on the same σ-algebra \mathscr{A} is defined by

$$
d(\mu, \nu)=\sup _{A \in \mathscr{A}}(\mu(A)-\nu(A))+\sup _{A \in \mathscr{A}}(\nu(A)-\mu(A)) .
$$

Now let μ, ν be probability measures.
(a) (10 points) Show that $d(\mu, \nu)=2 \sup _{A \in \mathscr{A}}|\mu(A)-\nu(A)|$.
(Hint: $\nu(A)-\mu(A)=\mu\left(A^{c}\right)-\nu\left(A^{c}\right)$.)
(b) (10 points) Show that if μ and ν possess densities f and g relative to the measure λ on \mathscr{A}, then the total variation distance coincides with the L^{1} norm of $f-g$,

$$
d(\mu, \nu)=\int \lambda(d x)|f(x)-g(x)|
$$

Problem 12: Speeds of molecules (hand in, 20 points)
(a) (10 points) Determine the most probable value $v_{\max }$ of the speed $v=|\boldsymbol{v}|$ according to the Maxwellian distribution

$$
\rho(\boldsymbol{v})=\mathscr{N} \exp \left(-\frac{m|\boldsymbol{v}|^{2}}{2 k T}\right)
$$

with given m and T. (Hint: The distribution density ρ_{v} of v is not $\mathscr{N} \exp \left(-m v^{2} / 2 k T\right)$. Why not?)
(b) (5 points) Is $v_{\text {max }}$ greater or less than $\sqrt{\mathbb{E}\left(\boldsymbol{v}^{2}\right)}$?
(c) (5 points) Determine $v_{\text {max }}$ for N_{2}, the main constituent of air with $m=4.6 \cdot 10^{-26} \mathrm{~kg}$, at an absolute temperature of $T=300$ Kelvin.

Hand in: Wednesday, May 8, 2019, in the exercise class.

