Mathematical Statistical Physics: Assignment 3

Problem 13: Another proof of the belt theorem (hand in, 30 points)
Let $\boldsymbol{X}=\left(X_{1}, \ldots, X_{d}\right)$ be a random, uniformly distributed point on \mathbb{S}_{1}^{d-1}. Use rotational and reflection symmetry to compute the expectation and variance of X_{1}. Then use the Chebyshev inequality to bound $\mathbb{P}\left(-\delta<X_{1}<\delta\right)$ and prove the belt theorem as stated in Problem 5 on Assignment 1.

Problem 14: A variant of the belt theorem (hand in, 20 points)
Let $\boldsymbol{X}, \boldsymbol{Y}$ be independent, uniformly distributed random unit vectors in \mathbb{R}^{d}. Show that for every $\varepsilon, \delta \in(0,1)$ there is $d_{0} \in \mathbb{N}$ such that, for all $d>d_{0},|\boldsymbol{X} \cdot \boldsymbol{Y}|<\delta$ with probability at least $1-\varepsilon$. ("In high dimension, independent vectors are nearly orthogonal.")
Hint: Conditionalize on \boldsymbol{X} and use the belt theorem.

Problem 15: Again near-orthogonality in high dimension (don't hand in)
(a) In the setting of the previous problem, explain why $\mathbb{E}\left[(\boldsymbol{X} \cdot \boldsymbol{Y})^{2}\right]=1 / d$.
(b) Consider $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{S}_{1}^{d-1}$ with the "average" value $(\boldsymbol{x} \cdot \boldsymbol{y})^{2}=1 / d$. Compute the angle α between \boldsymbol{x} and \boldsymbol{y} for $d=3$ and asymptotically for large d (to leading non-constant order in d).

Problem 16: Marginal of the uniform distribution on the sphere (hand in, 50 points) Let u_{R}^{d-1} be the uniform probability measure on the sphere \mathbb{S}_{R}^{d-1} of radius $R>0$ in \mathbb{R}^{d}, and let $\left(X_{1}, \ldots, X_{d}\right) \sim u_{R}^{d-1}$. Show that the marginal distribution of $X_{1}, \ldots, X_{k}, k<d$, has density given by

$$
\begin{equation*}
\rho_{k, d, R}(\boldsymbol{x})=\frac{A_{d-k}}{A_{d} R^{d-2}} 1_{\boldsymbol{x}^{2} \leq R^{2}}\left(R^{2}-\boldsymbol{x}^{2}\right)^{(d-k) / 2-1} \tag{1}
\end{equation*}
$$

Instructions: (a) Let $f_{k, d, R}\left(x_{1} \ldots x_{k}\right)$ be the k-marginal of $1_{x_{1}^{2}+\ldots+x_{d}^{2}<R^{2}}$. Show that

$$
\begin{equation*}
\rho_{k, d, R}(\boldsymbol{x})=R^{1-d} A_{d}^{-1} \frac{\partial}{\partial R} f_{k, d, R}(\boldsymbol{x}) \quad \text { for }|\boldsymbol{x}|<R . \tag{2}
\end{equation*}
$$

(b) Let B_{r}^{k} denote the ball of radius r around the origin in \mathbb{R}^{k}. Show that for $0<r<R$,

$$
\begin{equation*}
f_{k, d, R}(r, 0 \ldots 0)=\frac{1}{A_{k} r^{k-1}} \frac{\partial}{\partial r} \operatorname{vol}_{d}\left(\left(B_{r}^{k} \times \mathbb{R}^{d-k}\right) \cap B_{R}^{d}\right) . \tag{3}
\end{equation*}
$$

(c) Verify that

$$
\begin{equation*}
\operatorname{vol}_{d}\left(\left(B_{r}^{k} \times \mathbb{R}^{d-k}\right) \cap B_{R}^{d}\right)=\int_{0}^{r} d r_{1} \int_{0}^{\sqrt{R^{2}-r_{1}^{2}}} d r_{2} r_{1}^{k-1} A_{k} r_{2}^{d-k-1} A_{d-k} \tag{4}
\end{equation*}
$$

(d) Conclude (5).

Problem 17: Another way to compute the area of \mathbb{S}_{1}^{d-1} (don't hand in) The integral

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} d^{d} \boldsymbol{x} e^{-\boldsymbol{x}^{2}} \tag{5}
\end{equation*}
$$

can be computed in two ways: as a product of d 1-dimensional integrals (whose values we know), or in spherical coordinates (where the angle integrals yield the area A_{d} of \mathbb{S}_{1}^{d-1}). Exploit this to show that

$$
\begin{equation*}
A_{d}=\frac{2 \pi^{d / 2}}{\Gamma(d / 2)} \tag{6}
\end{equation*}
$$

Hand in: Wednesday, May 15, 2019, in the exercise class.

