MATHEMATICAL STATISTICAL PHYSICS: ASSIGNMENT 3

Problem 13: Another proof of the belt theorem (hand in, 30 points)

Let $\mathbf{X} = (X_1, \ldots, X_d)$ be a random, uniformly distributed point on \mathbb{S}_1^{d-1} . Use rotational and reflection symmetry to compute the expectation and variance of X_1 . Then use the Chebyshev inequality to bound $\mathbb{P}(-\delta < X_1 < \delta)$ and prove the belt theorem as stated in Problem 5 on Assignment 1.

Problem 14: A variant of the belt theorem (hand in, 20 points)

Let \mathbf{X}, \mathbf{Y} be independent, uniformly distributed random unit vectors in \mathbb{R}^d . Show that for every $\varepsilon, \delta \in (0, 1)$ there is $d_0 \in \mathbb{N}$ such that, for all $d > d_0, |\mathbf{X} \cdot \mathbf{Y}| < \delta$ with probability at least $1 - \varepsilon$. ("In high dimension, independent vectors are nearly orthogonal.") *Hint*: Conditionalize on \mathbf{X} and use the belt theorem.

Problem 15: Again near-orthogonality in high dimension (don't hand in) (a) In the setting of the previous problem, explain why $\mathbb{E}[(\boldsymbol{X} \cdot \boldsymbol{Y})^2] = 1/d$.

(b) Consider $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{S}_1^{d-1}$ with the "average" value $(\boldsymbol{x} \cdot \boldsymbol{y})^2 = 1/d$. Compute the angle α between \boldsymbol{x} and \boldsymbol{y} for d = 3 and asymptotically for large d (to leading non-constant order in d).

Problem 16: Marginal of the uniform distribution on the sphere (hand in, 50 points) Let u_R^{d-1} be the uniform probability measure on the sphere \mathbb{S}_R^{d-1} of radius R > 0 in \mathbb{R}^d , and let $(X_1, \ldots, X_d) \sim u_R^{d-1}$. Show that the marginal distribution of X_1, \ldots, X_k , k < d, has density given by

$$\rho_{k,d,R}(\boldsymbol{x}) = \frac{A_{d-k}}{A_d R^{d-2}} \, \mathbf{1}_{\boldsymbol{x}^2 \le R^2} \left(R^2 - \boldsymbol{x}^2 \right)^{(d-k)/2 - 1}. \tag{1}$$

Instructions: (a) Let $f_{k,d,R}(x_1...x_k)$ be the k-marginal of $1_{x_1^2+...+x_d^2< R^2}$. Show that

$$\rho_{k,d,R}(\boldsymbol{x}) = R^{1-d} A_d^{-1} \frac{\partial}{\partial R} f_{k,d,R}(\boldsymbol{x}) \quad \text{for } |\boldsymbol{x}| < R.$$
(2)

(b) Let B_r^k denote the ball of radius r around the origin in \mathbb{R}^k . Show that for 0 < r < R,

$$f_{k,d,R}(r,0...0) = \frac{1}{A_k r^{k-1}} \frac{\partial}{\partial r} \operatorname{vol}_d \left((B_r^k \times \mathbb{R}^{d-k}) \cap B_R^d \right).$$
(3)

(c) Verify that

$$\operatorname{vol}_d \left((B_r^k \times \mathbb{R}^{d-k}) \cap B_R^d \right) = \int_0^r dr_1 \int_0^{\sqrt{R^2 - r_1^2}} dr_2 \, r_1^{k-1} \, A_k \, r_2^{d-k-1} \, A_{d-k} \,. \tag{4}$$

(d) Conclude (5).

Problem 17: Another way to compute the area of \mathbb{S}_1^{d-1} (don't hand in) The integral

$$\int_{\mathbb{R}^d} d^d \boldsymbol{x} \ e^{-\boldsymbol{x}^2} \tag{5}$$

can be computed in two ways: as a product of d 1-dimensional integrals (whose values we know), or in spherical coordinates (where the angle integrals yield the area A_d of \mathbb{S}_1^{d-1}). Exploit this to show that

$$A_d = \frac{2\pi^{d/2}}{\Gamma(d/2)} \,. \tag{6}$$

Hand in: Wednesday, May 15, 2019, in the exercise class.