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Mathematical Statistical Physics: Assignment 4

Problem 18: Equivalence of ensembles (hand in, 50 points)
An “ideal gas” is one whose molecules do not interact with each other. For an ideal gas
without external field in a box Λ, the Hamiltonian is H(q1,p1, . . . , qN ,pN) =

∑N
j=1 p

2
j/2m

on the phase space Γ = (Λ× R3)N . For large N , the micro-canonical distribution µmc [if
you wish with “density” ρmc(x) = N δ(E − H(x))] and the canonical distribution µcan

[with density ρcan(x) = Z−1 exp(−βH(x))] are not very different, provided E = E(β) [or
β = β(E)] is suitably chosen: Both are constant on every energy surface, and both are
narrowly concentrated around a certain energy value. To see this, proceed as follows.

(a) Show that Z = 1
2

vol(Λ)NA3N(2m/β)3N/2Γ(3N/2).

(b) For X ∼ µcan, determine EH(X) and VarH(X). [Hint: Γ(x+ 1) = xΓ(x).]

(c) Which relation E(β) is required to ensure that µmc and µcan have the same expected
energy?

(d) How large is VarH(X) compared to [EH(X)]2?

Problem 19: Heat capacity (hand in, 25 points)
The heat capacity C of a physical body in thermal equilibrium at temperature T is defined
to be dE/dT , where dE is the amount of energy that must be supplied to the body to
increase its temperature by dT . Heat capacity is an extensive property of matter, meaning
that it is additive when disjoined systems get combined. Thus, it is proportional to the
size of the object, and the heat capacity per mass is a constant called the specific heat
capacity or simply the specific heat c.

(a) From the relation e = 3
2
kT , derive a formula for the specific heat of the ideal gas.

(b) Let us consider systems for which, as for the ideal gas, E = CT with temperature
independent C. Suppose that system S1 is isolated and in thermal equilibrium at tem-
perature T1, S2 likewise at T2 < T1. Now we bring S1 and S2 in thermal contact and
wait for S1 ∪S2 to reach thermal equilibrium. Determine the resulting temperature of
S1 ∪S2. (Hint: Since S1 ∪S2 is isolated, its energy is conserved.)



Problem 20: Net force exerted by pressure (hand in, 25 points)
Show that in the absence of external fields, the net force exerted by the pressure of a gas
according to the Maxwellian distribution on the walls of the container vanishes. (As a
consequence, the center of mass of the container does not move if it was at rest initially.)
Instructions: Our derivation of the equation of state of an ideal gas, pV = NkT , shows,
among other things, that the pressure is constant along the wall. The shape Λ ⊂ R3 of
the container can be arbitrary, but we may assume that the boundary ∂Λ is piecewise
smooth. The force on the surface element d2x ⊂ ∂Λ has magnitude p d2x and direction
outward normal to the wall ∂Λ. We want to show that the total force is 0.

Problem 21: Alternative proof of Theorem 7 (optional extra credit, 50 points)
We only aim at a weaker version of Theorem 7 that claims, instead of L1 convergence,
merely setwise convergence. A sequence µn of measures is said to converge setwise (or
strongly) to µ iff µn(A) → µ(A) for every measurable set A. It is clear that convergence
in the total variation distance implies setwise convergence; the converse is not true.

Now let Z = (Z1, . . . , Zd) ∼ N d(0, I), set Xj =
√
dZj/|Z|, and let ε, δ ∈ (0, 1) be

arbitrary.

(a) Show that for sufficiently large d,

P
(

1− δ < |Z|
2

d
< 1 + δ

)
> 1− ε . (1)

Hint: Clearly, EZ2
j = Var(Zj) = 1. Use without proof that Var(Z2

j ) = 3.

(b) Show that if µ is a probability measure on (Ω,F ) and µ(E) > 1− ε for some event
E ∈ F , then the total variation distance between µ and the conditional distribution
µ(·|E) = µ(· ∩ E)/µ(E) is at most 2ε.

(c) Let µ, ν be probability measures on Ω1 × Ω2 and µ1, ν1 their marginals on Ω1 (i.e.,
after integrating out Ω2). Let dist denote the total variation distance. Show that

dist(µ1, ν1) ≤ dist(µ, ν) . (2)

(d) It is known that for every probability measure µ and every decreasing sequence
A1 ⊇ A2 ⊇ . . ., µ(An)→ µ(

⋂
mAm) decreasingly as n→∞. For C ⊆ Rk, let

Cδ :=
{
λx : x ∈ C, λ ∈

[√
1− δ,

√
1 + δ

]}
. (3)

Show that for every probability measure µ, µ(Cδ)→ µ(C) as δ → 0.

(e) In order to prove Theorem 7 for σ = 1 and setwise convergence, compare the distri-
bution µX of X1, . . . , Xk to the conditional distribution µZE of Z1, . . . , Zk given the event
E = {1− δ < |Z|2/d < 1 + δ}, and that in turn to the distribution µZ of Z1, . . . , Zk.

Hand in: Wednesday, May 22, 2019, in the exercise class.
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