MATHEMATICAL STATISTICAL PHYSICS: ASSIGNMENT 5

Problem 22: Identical particles and topology (hand in, 30 points) Let $\Gamma_1 = \mathbb{R}^6$. Show that ${}^N\Gamma_1$ is topologically non-trivial in the following sense: There are closed curves in ${}^N\Gamma_1$ that cannot in ${}^N\Gamma_1$ be contracted (i.e., continuously deformed to a

point). Such a topological space is said to be non-simply connected.

Problem 23: More about identical particles and topology (don't hand in) Let $\Gamma_1 = \mathbb{R}^d$. Show that $\Gamma_1^{N\neq}$ is simply connected, i.e., closed curves can be contracted, iff $d \geq 3$.

Problem 24: Poincaré recurrence (hand in, 40 points) Let $\Omega = \mathbb{S}_1^1$ be the unit circle in $\mathbb{R}^2 = \mathbb{C}$, and let $T : \Omega \to \Omega$ be multiplication by $e^{i\alpha}$. Use the Poincaré recurrence theorem to show:

(a) $\forall \delta > 0 : \exists n \in \mathbb{N} : \forall x \in \Omega : d(x, T^n x) < \delta$, where d is the distance in arc length along the circle.

(b) For $\alpha \notin \pi \mathbb{Q}$ and every $x \in \Omega$, the set $T^{\mathbb{N}}x$ is dense in Ω .

Problem 25: Dense trajectory (hand in, 30 points)

Let Ω be the 2-dimensional torus and φ_1 and φ_2 the angular coordinates on it (longitude and latitude). For given constants $\alpha_1, \alpha_2 \in \mathbb{R}$, consider the ODE

$$\frac{d\varphi_1}{dt} = \alpha_1 \,, \quad \frac{d\varphi_2}{dt} = \alpha_2 \,.$$

(a) Give an explicit formula for the flow map: $T^t(\varphi_1, \varphi_2) = ?$

(b) Use Problem 24 to show that if $\alpha_2 \neq 0$ and $\alpha_1/\alpha_2 \notin \mathbb{Q}$, then the curve $t \mapsto T^t(\varphi_1, \varphi_2)$ is dense on the torus.

Problem 26: Dense trajectory in higher dimension (don't hand in) Consider the corresponding situation on the *n*-dimensional torus $\mathbb{S}^1 \times \cdots \times \mathbb{S}^1$:

$$\frac{d\varphi_i}{dt} = \alpha_i \,, \quad i = 1, \dots, n \,.$$

Under which condition on $(\alpha_1, \ldots, \alpha_n)$ is the curve $t \mapsto T^t(\varphi_1, \ldots, \varphi_n)$ dense on the torus?

Problem 27: *Recurrence times* (don't hand in)

In order to estimate the order of magnitude of realistic recurrence times, we reason as follows. An ideal gas comprising $N = 10^{23}$ particles (or a gas of 10^{23} hard spheres, the difference does not matter) in a box Λ starts in such a phase point x_0 that all particles are located in the left half Λ_L of the box; apart from that, let x_0 be typical of energy $E = N\overline{e}$; i.e., take x_0 to be a typical element of $M_L = \Gamma_E \cap (\Lambda_L^N \times \mathbb{R}^{3N})$. We want to know how long it takes, after x(t) has left M_L , until x(t) returns to M_L .

(a) Determine $\mu_E(M_L)$.

(b) Think of Γ_E as partitioned into cells C_1, \ldots, C_r of equal volume (i.e., of equal measure μ_E), of which M_L is one. Assume that every cell gets traversed in time τ , and that the trajectory x(t) visits all cells in a random-looking order. How many years will pass before the return to M_L if $\tau = 10$ s? If $\tau = 10^{-20}$ s?

Hand in: Wednesday, May 29, 2019, in the exercise class.