MATHEMATICAL STATISTICAL PHYSICS: ASSIGNMENT 6

Problem 28: Ergodicity on a finite set (hand in, 35 points)

Let Ω be a finite set, $\#\Omega = n$. A dynamical system in discrete time means a bijection $T: \Omega \to \Omega$.

(a) Show that T preserves the uniform measure $\mathbb{P}(A) = \#A/n$.

(b) Show that \mathbb{P} is the only probability measure preserved by every bijection.

(c) How many dynamical systems on Ω exist?

(d) What does it mean here for T to be ergodic?

(e) What are the ergodic components of a non-ergodic T?

(f) How many dynamical systems on Ω are ergodic?

(g) Determine the probability that a randomly chosen dynamical system on Ω is ergodic.

(h) The recurrence time of $\omega \in \Omega$ for T is defined as the smallest $t \in \mathbb{N}$ with $T^t \omega = \omega$. Determine the recurrence time for ergodic T.

(i) Determine the average recurrence time for random T (ergodic or not) and random ω .

Problem 29: Scattering cross section for billiard balls (hand in, 30 points)

When two billiard balls of radius a and momenta p_1, p_2 collide, the resulting (outgoing) momenta p'_1, p'_2 depend on the displacement vector $\boldsymbol{\omega} = (\boldsymbol{q}_2 - \boldsymbol{q}_1)/2a \in \mathbb{S}_1^2$ at the time of the collision:

$$\boldsymbol{p}_1' = \boldsymbol{p}_1 - [(\boldsymbol{p}_1 - \boldsymbol{p}_2) \cdot \boldsymbol{\omega}] \boldsymbol{\omega}, \qquad \boldsymbol{p}_2' = \boldsymbol{p}_2 + [(\boldsymbol{p}_1 - \boldsymbol{p}_2) \cdot \boldsymbol{\omega}] \boldsymbol{\omega}.$$
 (1)

We consider random collisions and want to characterize the probability distribution of p'_1, p'_2 for given p_1, p_2 by determining that of $\boldsymbol{\omega}$. To this end, we suppose that $p_2 = \mathbf{0}$ (as can be arranged via a Galilean transformation), $q_2 = \mathbf{0}$, and $p_1 = p_1 \boldsymbol{e}_x$ (via translation and rotation). It is reasonable to assume that the y- and z-components of q_1 are uniformly distributed on the disc of radius 2a around the origin in the yz-plane (given that a collision occurs at all); the polar coordinates r and φ of (y, z) are called the collision parameters.

(a) Express q_1 and $\boldsymbol{\omega}$ as functions of r and φ .

(b) Show that $\boldsymbol{\omega} = (\omega_x, \omega_y, \omega_z)$ has probability density proportional to $1_{\omega_x < 0} |\omega_x|$ relative to the uniform measure $u(d^2\boldsymbol{\omega})$ on the sphere.

(c) Explain why, for arbitrary $\boldsymbol{p}_1, \boldsymbol{p}_2$, the probability distribution of $\boldsymbol{\omega}$ is proportional to $1_{\boldsymbol{\omega} \cdot (\boldsymbol{p}_1 - \boldsymbol{p}_2) < 0} \left| \boldsymbol{\omega} \cdot (\boldsymbol{p}_1 - \boldsymbol{p}_2) \right| d^2 \boldsymbol{\omega}$.

Problem 30: *Refrigerator* (don't hand in)

Use the second law of thermodynamics to show that a refrigerator necessarily consumes energy rather than generating energy. (We might have thought that the energy removed from the content of the refrigerator is available afterwards.)

Instructions. Let $T_{\rm in}$ be the temperature inside the refrigerator, $T_{\rm out}$ the one outside, $Q_{\rm in}$ the heat energy inside, $Q_{\rm out}$ the one outside, and δW the usable energy provided by the refrigerator (negative if it consumes energy) while it adds the energy $\delta Q_{\rm in} < 0$ to the content and $\delta Q_{\rm out}$ to the outside. Use the Clausius relation $\delta S_i = \delta Q_i/T_i$, $i = {\rm in}$, out to show that $\delta W < 0$.

Problem 31: Entropy in thermal equilibrium (hand in, 35 points)

Compute the entropy S(E, V, N) of the thermal equilibrium state of an ideal mono-atomic gas from Boltzmann's formula $S(eq) = k \log \Omega(E)$.

Instructions. We have already found the relations

$$\operatorname{vol} \Gamma_{\leq E} = \frac{1}{N!} V^{N} V_{3N} (2mE)^{3N/2}$$
(2)

$$V_d = \frac{\pi^{d/2}}{\Gamma(1+d/2)} \tag{3}$$

$$\Omega(E) = \frac{d}{dE} \operatorname{vol} \Gamma_{\leq E} \,. \tag{4}$$

Use Stirling's formula

$$\Gamma(x+1) = \sqrt{2\pi x} e^{-x} x^x (1+o(x)) \quad \text{as } x \to \infty$$
(5)

and $n! = \Gamma(n+1)$. Set E = Ne and V = Nv with constants e, v, sort terms by orders $O(N \log N), O(N), O(\log N), \ldots$, and give the leading order terms as the answer.

Hand in: Wednesday, June 5, 2019, in the exercise class.