Mathematical Statistical Physics: Assignment 6

Problem 28: Ergodicity on a finite set (hand in, 35 points)
Let Ω be a finite set, $\# \Omega=n$. A dynamical system in discrete time means a bijection $T: \Omega \rightarrow \Omega$.
(a) Show that T preserves the uniform measure $\mathbb{P}(A)=\# A / n$.
(b) Show that \mathbb{P} is the only probability measure preserved by every bijection.
(c) How many dynamical systems on Ω exist?
(d) What does it mean here for T to be ergodic?
(e) What are the ergodic components of a non-ergodic T ?
(f) How many dynamical systems on Ω are ergodic?
(g) Determine the probability that a randomly chosen dynamical system on Ω is ergodic.
(h) The recurrence time of $\omega \in \Omega$ for T is defined as the smallest $t \in \mathbb{N}$ with $T^{t} \omega=\omega$. Determine the recurrence time for ergodic T.
(i) Determine the average recurrence time for random T (ergodic or not) and random ω.

Problem 29: Scattering cross section for billiard balls (hand in, 30 points)
When two billiard balls of radius a and momenta $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}$ collide, the resulting (outgoing) momenta $\boldsymbol{p}_{1}^{\prime}, \boldsymbol{p}_{2}^{\prime}$ depend on the displacement vector $\boldsymbol{\omega}=\left(\boldsymbol{q}_{2}-\boldsymbol{q}_{1}\right) / 2 a \in \mathbb{S}_{1}^{2}$ at the time of the collision:

$$
\begin{equation*}
\boldsymbol{p}_{1}^{\prime}=\boldsymbol{p}_{1}-\left[\left(\boldsymbol{p}_{1}-\boldsymbol{p}_{2}\right) \cdot \boldsymbol{\omega}\right] \boldsymbol{\omega}, \quad \boldsymbol{p}_{2}^{\prime}=\boldsymbol{p}_{2}+\left[\left(\boldsymbol{p}_{1}-\boldsymbol{p}_{2}\right) \cdot \boldsymbol{\omega}\right] \boldsymbol{\omega} . \tag{1}
\end{equation*}
$$

We consider random collisions and want to characterize the probability distribution of $\boldsymbol{p}_{1}^{\prime}, \boldsymbol{p}_{2}^{\prime}$ for given $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}$ by determining that of $\boldsymbol{\omega}$. To this end, we suppose that $\boldsymbol{p}_{2}=\mathbf{0}$ (as can be arranged via a Galilean transformation), $\boldsymbol{q}_{2}=\mathbf{0}$, and $\boldsymbol{p}_{1}=p_{1} \boldsymbol{e}_{x}$ (via translation and rotation). It is reasonable to assume that the y - and z-components of \boldsymbol{q}_{1} are uniformly distributed on the disc of radius $2 a$ around the origin in the $y z$-plane (given that a collision occurs at all); the polar coordinates r and φ of (y, z) are called the collision parameters.
(a) Express \boldsymbol{q}_{1} and $\boldsymbol{\omega}$ as functions of r and φ.
(b) Show that $\boldsymbol{\omega}=\left(\omega_{x}, \omega_{y}, \omega_{z}\right)$ has probability density proportional to $1_{\omega_{x}<0}\left|\omega_{x}\right|$ relative to the uniform measure $u\left(d^{2} \boldsymbol{\omega}\right)$ on the sphere.
(c) Explain why, for arbitrary $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}$, the probability distribution of $\boldsymbol{\omega}$ is proportional to $1_{\boldsymbol{\omega} \cdot\left(\boldsymbol{p}_{1}-\boldsymbol{p}_{2}\right)<0}\left|\boldsymbol{\omega} \cdot\left(\boldsymbol{p}_{1}-\boldsymbol{p}_{2}\right)\right| d^{2} \boldsymbol{\omega}$.

Problem 30: Refrigerator (don't hand in)
Use the second law of thermodynamics to show that a refrigerator necessarily consumes energy rather than generating energy. (We might have thought that the energy removed from the content of the refrigerator is available afterwards.)

Instructions. Let $T_{\text {in }}$ be the temperature inside the refrigerator, $T_{\text {out }}$ the one outside, $Q_{\text {in }}$ the heat energy inside, $Q_{\text {out }}$ the one outside, and δW the usable energy provided by the refrigerator (negative if it consumes energy) while it adds the energy $\delta Q_{\text {in }}<0$ to the content and $\delta Q_{\text {out }}$ to the outside. Use the Clausius relation $\delta S_{i}=\delta Q_{i} / T_{i}, i=$ in, out to show that $\delta W<0$.

Problem 31: Entropy in thermal equilibrium (hand in, 35 points)
Compute the entropy $S(E, V, N)$ of the thermal equilibrium state of an ideal mono-atomic gas from Boltzmann's formula $S(\mathrm{eq})=k \log \Omega(E)$.

Instructions. We have already found the relations

$$
\begin{align*}
\operatorname{vol} \Gamma_{\leq E} & =\frac{1}{N!} V^{N} V_{3 N}(2 m E)^{3 N / 2} \tag{2}\\
V_{d} & =\frac{\pi^{d / 2}}{\Gamma(1+d / 2)} \tag{3}\\
\Omega(E) & =\frac{d}{d E} \operatorname{vol} \Gamma_{\leq E} . \tag{4}
\end{align*}
$$

Use Stirling's formula

$$
\begin{equation*}
\Gamma(x+1)=\sqrt{2 \pi x} e^{-x} x^{x}(1+o(x)) \quad \text { as } x \rightarrow \infty \tag{5}
\end{equation*}
$$

and $n!=\Gamma(n+1)$. Set $E=N e$ and $V=N v$ with constants e, v, sort terms by orders $O(N \log N), O(N), O(\log N), \ldots$, and give the leading order terms as the answer.

Hand in: Wednesday, June 5, 2019, in the exercise class.

