MATHEMATICAL STATISTICAL PHYSICS: ASSIGNMENT 8

Problem 37: Addendum to Problem 33 (hand in, 50 points) Let us revisit Problem 33 in more detail:

- (a) Let $M : \mathbb{R}^d \to \mathbb{R}^d$ be a diffeomorphism with Jacobian determinant $|\det DM(\boldsymbol{x})| = 1$ at all $\boldsymbol{x} \in \mathbb{R}^d$. Explain why M preserve volumes, $\operatorname{vol}(M(A)) = \operatorname{vol}(A)$.
- (b) Suppose the point X_0 in \mathbb{R}^d is chosen randomly with (smooth) probability density $\rho_0 : \mathbb{R}^d \to [0, \infty)$. Show that $M(X_0)$ has density $\rho_1(\boldsymbol{x}) = \rho_0(M^{-1}(\boldsymbol{x}))$.
- (c) Now consider a Hamiltonian system on \mathbb{R}^d , suppose for simplicity that for each $t \in \mathbb{R}$ the flow map T^t is a diffeomorphism $\mathbb{R}^d \to \mathbb{R}^d$, and recall that T^t has Jacobian determinant 1 (Liouville's theorem). Let ρ_t be the density of $X_t = T^t(X_0)$. Use the transformation formula for integrals to rewrite the integral

$$S_{\text{Gibbs}}(\rho_t) = -k \int_{\mathbb{R}^d} d\boldsymbol{x} \, \rho_t(\boldsymbol{x}) \, \log \rho_t(\boldsymbol{x}) \,, \tag{1}$$

then conclude that it equals $S_{\text{Gibbs}}(\rho_0)$.

Problem 38: Grand-canonical distribution (hand in, 50 points)

As the canonical distribution of \mathscr{S} arose as the marginal of the micro-canonical distribution for $\mathscr{S} \cup \mathscr{B}$, so does the grand-canonical distribution; we consider an ideal gas in a container $\Lambda \subset \mathbb{R}^3$ subdivided into a region Λ_A and its complement $\Lambda_B = \Lambda \setminus \Lambda_A$. There are no walls between Λ_A and Λ_B , so particles can pass freely. We write $A := \Lambda_A \times \mathbb{R}^3$ and $B := \Lambda_B \times \mathbb{R}^3$ for the corresponding subsets of Γ_1 ; the total phase space is $\Gamma = {}^N \Gamma_1$; the phase space of system A is now a phase space of a variable number of particles, $\Gamma_A = \bigcup_{n=0}^N {}^n A$. For $x \in \Gamma$ let $x_A = x \cap A$ and $x_B = x \cap B$, so $x = x_A \cup x_B$; correspondingly, Γ can be regarded as a subset of $\Gamma_A \times \Gamma_B$. We have that $H(x_1, \ldots, x_N) = \sum_{j=1}^N H_1(x_j)$ and $H_A(x_1, \ldots, x_n) = \sum_{j=1}^n H_1(x_j)$ for $n = 0 \ldots N$. For simplicity, we start from a canonical (rather than micro-canonical) distribution ρ_{can} on Γ , i.e., (ideal gas): N points in Γ_1 are chosen i.i.d. according to the Maxwell-Boltzmann distribution $\rho_1 = Z_1^{-1} e^{-\beta H_1}$. The marginal ρ_A of ρ_{can} on Γ_A ranges over different particle numbers; so does $Z_A^{-1} e^{-\beta H_A}$, but it is not the same distribution! Show that instead in the limit $\Lambda \to \infty$, $N \to \infty$, Λ_A fixed, $N \int_A \rho_1 \to c > 0$ (with suitable constant c),

$$\rho_A(x_1, \dots, x_n) = \frac{1}{Z} \exp -\beta (H_A(x_1 \dots x_n) - \mu n)$$
(2)

with suitable constant $\mu \in \mathbb{R}$. This is the grand-canonical distribution. (If we write phase points in Γ_A as ordered, then a further factor 1/n! appears in (2).)

Hand in: Wednesday, June 26, 2019, in the exercise class.