Mathematical Statistical Physics: Assignment 8

Problem 37: Addendum to Problem 33 (hand in, 50 points)
Let us revisit Problem 33 in more detail:
(a) Let $M: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be a diffeomorphism with Jacobian determinant $|\operatorname{det} D M(\boldsymbol{x})|=1$ at all $\boldsymbol{x} \in \mathbb{R}^{d}$. Explain why M preserve volumes, $\operatorname{vol}(M(A))=\operatorname{vol}(A)$.
(b) Suppose the point X_{0} in \mathbb{R}^{d} is chosen randomly with (smooth) probability density $\rho_{0}: \mathbb{R}^{d} \rightarrow[0, \infty)$. Show that $M\left(X_{0}\right)$ has density $\rho_{1}(\boldsymbol{x})=\rho_{0}\left(M^{-1}(\boldsymbol{x})\right)$.
(c) Now consider a Hamiltonian system on \mathbb{R}^{d}, suppose for simplicity that for each $t \in \mathbb{R}$ the flow map T^{t} is a diffeomorphism $\mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, and recall that T^{t} has Jacobian determinant 1 (Liouville's theorem). Let ρ_{t} be the density of $X_{t}=T^{t}\left(X_{0}\right)$. Use the transformation formula for integrals to rewrite the integral

$$
\begin{equation*}
S_{\mathrm{Gibbs}}\left(\rho_{t}\right)=-k \int_{\mathbb{R}^{d}} d \boldsymbol{x} \rho_{t}(\boldsymbol{x}) \log \rho_{t}(\boldsymbol{x}), \tag{1}
\end{equation*}
$$

then conclude that it equals $S_{\text {Gibbs }}\left(\rho_{0}\right)$.

Problem 38: Grand-canonical distribution (hand in, 50 points)
As the canonical distribution of \mathscr{S} arose as the marginal of the micro-canonical distribution for $\mathscr{S} \cup \mathscr{B}$, so does the grand-canonical distribution; we consider an ideal gas in a container $\Lambda \subset \mathbb{R}^{3}$ subdivided into a region Λ_{A} and its complement $\Lambda_{B}=\Lambda \backslash \Lambda_{A}$. There are no walls between Λ_{A} and Λ_{B}, so particles can pass freely. We write $A:=\Lambda_{A} \times \mathbb{R}^{3}$ and $B:=\Lambda_{B} \times \mathbb{R}^{3}$ for the corresponding subsets of Γ_{1}; the total phase space is $\Gamma={ }^{N} \Gamma_{1}$; the phase space of system A is now a phase space of a variable number of particles, $\Gamma_{A}=\cup_{n=0}^{N}{ }^{n} A$. For $x \in \Gamma$ let $x_{A}=x \cap A$ and $x_{B}=x \cap B$, so $x=x_{A} \cup x_{B}$; correspondingly, Γ can be regarded as a subset of $\Gamma_{A} \times \Gamma_{B}$. We have that $H\left(x_{1}, \ldots, x_{N}\right)=\sum_{j=1}^{N} H_{1}\left(x_{j}\right)$ and $H_{A}\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=1}^{n} H_{1}\left(x_{j}\right)$ for $n=0 \ldots N$. For simplicity, we start from a canonical (rather than micro-canonical) distribution $\rho_{\text {can }}$ on Γ, i.e., (ideal gas): N points in Γ_{1} are chosen i.i.d. according to the Maxwell-Boltzmann distribution $\rho_{1}=Z_{1}^{-1} e^{-\beta H_{1}}$. The marginal ρ_{A} of $\rho_{\text {can }}$ on Γ_{A} ranges over different particle numbers; so does $Z_{A}^{-1} e^{-\beta H_{A}}$, but it is not the same distribution! Show that instead in the limit $\Lambda \rightarrow \infty, N \rightarrow \infty, \Lambda_{A}$ fixed, $N \int_{A} \rho_{1} \rightarrow c>0$ (with suitable constant c),

$$
\begin{equation*}
\rho_{A}\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{Z} \exp -\beta\left(H_{A}\left(x_{1} \ldots x_{n}\right)-\mu n\right) \tag{2}
\end{equation*}
$$

with suitable constant $\mu \in \mathbb{R}$. This is the grand-canonical distribution. (If we write phase points in Γ_{A} as ordered, then a further factor $1 / n$! appears in (2).)

Hand in: Wednesday, June 26, 2019, in the exercise class.

