MATHEMATICAL STATISTICAL PHYSICS: ASSIGNMENT 9

Problem 39: ρ_t from the continuity equation (hand in, 20 points)

Recall the continuity equation: If $X_0 \in \mathbb{R}^d$ is chosen randomly with (smooth) probability density $\rho_0 : \mathbb{R}^d \to [0, \infty)$ and $t \mapsto X_t$ is the solution of $dX_t/dt = F(t, X_t)$ with (smooth) time-dependent vector field $F : \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^d$, then the probability density ρ_t of X_t obeys the continuity equation (5.14), i.e.,

$$\partial_t \rho_t(\boldsymbol{x}) = -\sum_{i=1}^d \partial_{x_i} \left(\rho_t(\boldsymbol{x}) F_i(t, \boldsymbol{x}) \right).$$

Now let F be the Hamiltonian motion on the phase space $\Gamma = \mathbb{R}^d$. Show that $t \mapsto \rho_t(X_t)$ is constant, in agreement with Problem 37(b) for $M = T^t$.

Problem 40: Properties of the collision transformation (hand in, 50 points) At a collision of two billiard balls with collision parameter $\boldsymbol{\omega} = (\boldsymbol{q}_2 - \boldsymbol{q}_1)/2a$, the velocities change from $\boldsymbol{v} = \boldsymbol{v}_1$ and $\boldsymbol{v}_* = \boldsymbol{v}_2$ to

$$\boldsymbol{v}' = \boldsymbol{v} - [(\boldsymbol{v} - \boldsymbol{v}_*) \cdot \boldsymbol{\omega}] \boldsymbol{\omega}$$
(1)

$$\boldsymbol{v}'_* = \boldsymbol{v}_* + [(\boldsymbol{v} - \boldsymbol{v}_*) \cdot \boldsymbol{\omega}] \boldsymbol{\omega}$$
 (2)

Let $R_{\boldsymbol{\omega}}$ be the linear mapping $\mathbb{R}^6 \to \mathbb{R}^6$ with $R_{\boldsymbol{\omega}}(\boldsymbol{v}, \boldsymbol{v}_*) = (\boldsymbol{v}', \boldsymbol{v}'_*)$. Show that

- (a) $R_{\boldsymbol{\omega}}$ is orthogonal, $R_{\boldsymbol{\omega}} \in O(6)$. (*Hint*: By the polarization identity $\boldsymbol{u} \cdot \boldsymbol{v} = \frac{1}{4} (|\boldsymbol{u} + \boldsymbol{v}|^2 |\boldsymbol{u} \boldsymbol{v}|^2)$, it suffices for orthogonality of a linear mapping A that $|A\boldsymbol{u}| = |\boldsymbol{u}|$ for all \boldsymbol{u} .)
- (b) det $R_{\omega} = -1$. (You may use without proof that the determinant of a block matrix $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$, where A, B, C, D all commute with each other, is¹ det(AD BC).)
- (c) $R_{\omega}^2 = I_6$
- (d) $R_{-\omega} = R_{\omega}$
- (e) $\boldsymbol{\omega} \cdot (\boldsymbol{v}' \boldsymbol{v}'_*) = -\boldsymbol{\omega} \cdot (\boldsymbol{v} \boldsymbol{v}_*).$

¹J. R. Silvester: Determinants of Block Matrices. The Mathematical Gazette 84(501): 460–467 (2000)

Problem 41: Boltzmann equation with external potential (hand in, 30 points) In an external potential V_1 , the Boltzmann equation reads

$$\left(\frac{\partial}{\partial t} + \boldsymbol{v} \cdot \nabla_{\boldsymbol{q}} - \frac{1}{m} \nabla V_1(\boldsymbol{q}) \cdot \nabla_{\boldsymbol{v}}\right) f(\boldsymbol{q}, \boldsymbol{v}, t) = Q(\boldsymbol{q}, \boldsymbol{v}, t)$$
(3)

with the same collision term as given in the lectures,

$$Q(\boldsymbol{q}, \boldsymbol{v}, t) = \lambda \int_{\mathbb{R}^3} d^3 \boldsymbol{v}_* \int_{\mathbb{S}^2} d^2 \boldsymbol{\omega} \, \mathbf{1}_{\boldsymbol{\omega} \cdot (\boldsymbol{v} - \boldsymbol{v}_*) > 0} \, \boldsymbol{\omega} \cdot (\boldsymbol{v} - \boldsymbol{v}_*) \times \left[f(\boldsymbol{q}, \boldsymbol{v}', t) \, f(\boldsymbol{q}, \boldsymbol{v}'_*, t) - f(\boldsymbol{q}, \boldsymbol{v}, t) \, f(\boldsymbol{q}, \boldsymbol{v}_*, t) \right]. \quad (4)$$

Show that the Maxwell-Boltzmann distribution is a stationary solution of this equation.

Problem 42: A class of solutions of the Boltzmann equation (don't hand in) By comparing coefficients of powers of \boldsymbol{v} , show that functions of the form

$$f_t(\boldsymbol{q}, \boldsymbol{v}) = \exp\left(A_t(\boldsymbol{q}) + \boldsymbol{B}_t(\boldsymbol{q}) \cdot \boldsymbol{v} + C_t(\boldsymbol{q})\frac{\boldsymbol{v}^2}{2m}\right)$$
(5)

with $A = A_1 + A_2 \cdot q + C_3 q^2$, $B = B_1 - A_2 t - (2C_3 + C_2)q + B_0 \times q$, $C = C_1 + c_2 t + C_3 t^2$ are solutions of the Boltzmann equation without external field.

Hand in: Wednesday, July 3, 2019, in the exercise class.