Mathematical Statistical Physics: Assignment 9

Problem 39: ρ_{t} from the continuity equation (hand in, 20 points)
Recall the continuity equation: If $X_{0} \in \mathbb{R}^{d}$ is chosen randomly with (smooth) probability density $\rho_{0}: \mathbb{R}^{d} \rightarrow[0, \infty)$ and $t \mapsto X_{t}$ is the solution of $d X_{t} / d t=F\left(t, X_{t}\right)$ with (smooth) time-dependent vector field $F: \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, then the probability density ρ_{t} of X_{t} obeys the continuity equation (5.14), i.e.,

$$
\partial_{t} \rho_{t}(\boldsymbol{x})=-\sum_{i=1}^{d} \partial_{x_{i}}\left(\rho_{t}(\boldsymbol{x}) F_{i}(t, \boldsymbol{x})\right) .
$$

Now let F be the Hamiltonian motion on the phase space $\Gamma=\mathbb{R}^{d}$. Show that $t \mapsto \rho_{t}\left(X_{t}\right)$ is constant, in agreement with Problem 37(b) for $M=T^{t}$.

Problem 40: Properties of the collision transformation (hand in, 50 points)
At a collision of two billiard balls with collision parameter $\boldsymbol{\omega}=\left(\boldsymbol{q}_{2}-\boldsymbol{q}_{1}\right) / 2 a$, the velocities change from $\boldsymbol{v}=\boldsymbol{v}_{1}$ and $\boldsymbol{v}_{*}=\boldsymbol{v}_{2}$ to

$$
\begin{align*}
\boldsymbol{v}^{\prime} & =\boldsymbol{v}-\left[\left(\boldsymbol{v}-\boldsymbol{v}_{*}\right) \cdot \boldsymbol{\omega}\right] \boldsymbol{\omega} \tag{1}\\
\boldsymbol{v}_{*}^{\prime} & =\boldsymbol{v}_{*}+\left[\left(\boldsymbol{v}-\boldsymbol{v}_{*}\right) \cdot \boldsymbol{\omega}\right] \boldsymbol{\omega} . \tag{2}
\end{align*}
$$

Let $R_{\boldsymbol{\omega}}$ be the linear mapping $\mathbb{R}^{6} \rightarrow \mathbb{R}^{6}$ with $R_{\boldsymbol{\omega}}\left(\boldsymbol{v}, \boldsymbol{v}_{*}\right)=\left(\boldsymbol{v}^{\prime}, \boldsymbol{v}_{*}^{\prime}\right)$. Show that
(a) $R_{\boldsymbol{\omega}}$ is orthogonal, $R_{\boldsymbol{\omega}} \in O(6)$. (Hint: By the polarization identity $\boldsymbol{u} \cdot \boldsymbol{v}=\frac{1}{4}(\mid \boldsymbol{u}+$ $\left.\boldsymbol{v}\right|^{2}-|\boldsymbol{u}-\boldsymbol{v}|^{2}$), it suffices for orthogonality of a linear mapping A that $|A \boldsymbol{u}|=|\boldsymbol{u}|$ for all \boldsymbol{u}.)
(b) $\operatorname{det} R_{\boldsymbol{\omega}}=-1$. (You may use without proof that the determinant of a block matrix $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$, where A, B, C, D all commute with each other, is ${ }^{1} \operatorname{det}(A D-B C)$.)
(c) $R_{\omega}^{2}=I_{6}$
(d) $R_{-\omega}=R_{\omega}$
(e) $\boldsymbol{\omega} \cdot\left(\boldsymbol{v}^{\prime}-\boldsymbol{v}_{*}^{\prime}\right)=-\boldsymbol{\omega} \cdot\left(\boldsymbol{v}-\boldsymbol{v}_{*}\right)$.

[^0]Problem 41: Boltzmann equation with external potential (hand in, 30 points) In an external potential V_{1}, the Boltzmann equation reads

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}+\boldsymbol{v} \cdot \nabla_{\boldsymbol{q}}-\frac{1}{m} \nabla V_{1}(\boldsymbol{q}) \cdot \nabla_{\boldsymbol{v}}\right) f(\boldsymbol{q}, \boldsymbol{v}, t)=Q(\boldsymbol{q}, \boldsymbol{v}, t) \tag{3}
\end{equation*}
$$

with the same collision term as given in the lectures,

$$
\begin{align*}
& Q(\boldsymbol{q}, \boldsymbol{v}, t)=\lambda \int_{\mathbb{R}^{3}} d^{3} \boldsymbol{v}_{*} \int_{\mathbb{S}^{2}} d^{2} \boldsymbol{\omega} 1_{\boldsymbol{\omega} \cdot\left(\boldsymbol{v}-\boldsymbol{v}_{*}\right)>0} \boldsymbol{\omega} \cdot\left(\boldsymbol{v}-\boldsymbol{v}_{*}\right) \times \\
& {\left[f\left(\boldsymbol{q}, \boldsymbol{v}^{\prime}, t\right) f\left(\boldsymbol{q}, \boldsymbol{v}_{*}^{\prime}, t\right)-f(\boldsymbol{q}, \boldsymbol{v}, t) f\left(\boldsymbol{q}, \boldsymbol{v}_{*}, t\right)\right] . } \tag{4}
\end{align*}
$$

Show that the Maxwell-Boltzmann distribution is a stationary solution of this equation.

Problem 42: A class of solutions of the Boltzmann equation (don't hand in) By comparing coefficients of powers of \boldsymbol{v}, show that functions of the form

$$
\begin{equation*}
f_{t}(\boldsymbol{q}, \boldsymbol{v})=\exp \left(A_{t}(\boldsymbol{q})+\boldsymbol{B}_{t}(\boldsymbol{q}) \cdot \boldsymbol{v}+C_{t}(\boldsymbol{q}) \frac{\boldsymbol{v}^{2}}{2 m}\right) \tag{5}
\end{equation*}
$$

with $A=A_{1}+\boldsymbol{A}_{2} \cdot \boldsymbol{q}+C_{3} \boldsymbol{q}^{2}, \boldsymbol{B}=\boldsymbol{B}_{1}-\boldsymbol{A}_{2} t-\left(2 C_{3}+C_{2}\right) \boldsymbol{q}+\boldsymbol{B}_{0} \times \boldsymbol{q}, C=C_{1}+c_{2} t+C_{3} t^{2}$ are solutions of the Boltzmann equation without external field.

Hand in: Wednesday, July 3, 2019, in the exercise class.

[^0]: ${ }^{1}$ J. R. Silvester: Determinants of Block Matrices. The Mathematical Gazette 84(501): 460-467 (2000)

