Mathematical Statistical Physics: Assignment 11

Problem 45: Moments of a random wave function (hand in, 70 points)
Let \mathbb{S} be the unit sphere in the Hilbert space \mathbb{C}^{d}, u the uniform probability distribution on \mathbb{S}, and $\Psi=\left(\Psi_{1}, \ldots, \Psi_{d}\right) \sim u$. Compute all moments of Ψ of up to fourth order. That is, show for all $k, \ell, m, n \in\{1, \ldots, d\}$ that
(a) $\mathbb{E} \Psi_{k}=0$ (Hint: symmetry)
(b) $\mathbb{E} \Psi_{k}^{*} \Psi_{\ell}=0=\mathbb{E} \Psi_{k} \Psi_{\ell}$ for $k \neq \ell$
(c) $\mathbb{E}\left|\Psi_{k}\right|^{2}=1 / d$
(d) $\mathbb{E} \Psi_{k}^{2}=0$
(e) $\mathbb{E} \Psi_{k} \Psi_{\ell} \Psi_{m}=0$, and likewise if any of the factors is conjugated
(f) $\mathbb{E} \Psi_{k} \Psi_{\ell} \Psi_{m} \Psi_{n}=0$ if an index occurs only once, and likewise for conjugated factors
(g) $\mathbb{E} \Psi_{k}^{4}=0=\mathbb{E} \Psi_{k}^{* 4}=\mathbb{E} \Psi_{k}^{*} \Psi_{k}^{3}=\mathbb{E} \Psi_{k}^{* 3} \Psi_{k}$
(h) $\mathbb{E}\left|\Psi_{k}\right|^{4}=\frac{2}{d(d+1)} \quad$ (the main problem!)
(Instructions: Regard \mathbb{C}^{d} as $\mathbb{R}^{2 d}, \quad \Psi=\left(x_{1}, \ldots, x_{2 d}\right)=\boldsymbol{x}, \quad I_{1}=\int_{\mathbb{S}} u(d \boldsymbol{x}) x_{1}^{4}$,
$I_{2}=\int_{\mathbb{S}} u(d \boldsymbol{x}) x_{1}^{2} x_{2}^{2}$. Integrating in spherical coordinates, ${ }^{1}$

$$
\begin{equation*}
\int_{\mathbb{R}^{2 d}} d \boldsymbol{x} x_{1}^{2} x_{2}^{2} \exp \left(-|\boldsymbol{x}|^{2}\right)=\int_{0}^{\infty} d r r^{2 d-1} r^{4} \exp \left(-r^{2}\right) I_{2} \operatorname{area}(\mathbb{S}) \tag{1}
\end{equation*}
$$

Now the substitution $s=r^{2}$ helps. Use without proof that $\mathbb{E}\left[(X-\mu)^{4}\right]=3 \sigma^{4}$ for $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.)
(i) $\mathbb{E}\left|\Psi_{k}\right|^{2}\left|\Psi_{\ell}\right|^{2}=\frac{1}{d(d+1)}$ for $k \neq \ell \quad$ (Hint: $\mathbb{E}\left[\left(\sum_{k}\left|\Psi_{k}\right|^{2}\right)^{2}\right]=1$ (why?).)
(j) $\mathbb{E} \Psi_{k}^{2} \Psi_{\ell}^{2}=0=\mathbb{E}\left|\Psi_{k}\right|^{2} \Psi_{\ell}^{2}=\mathbb{E} \Psi_{k}^{* 2} \Psi_{\ell}^{2}$ for $k \neq \ell$.

Problem 46: Variance and covariance of a random wave function (hand in, 30 points)
(a) For Ψ as in Problem 45, conclude from the results of Problem 45 that

$$
\operatorname{Var}\left(\left|\Psi_{1}\right|^{2}\right)=\frac{1}{d^{2}} \frac{d-1}{d+1}, \quad \operatorname{Cov}\left(\left|\Psi_{1}\right|^{2},\left|\Psi_{2}\right|^{2}\right)=-\frac{1}{d^{2}(d+1)} .
$$

(b) As we know, for large d, Ψ_{1} is approximately $\mathcal{N}^{2}(\mathbf{0}, I / 2 d)$ distributed. For comparison, let $\boldsymbol{G}=\left(G_{1}, \ldots, G_{d}\right)=\left(X_{1}, \ldots, X_{2 d}\right)$ be a Gaussian random vector in $\mathbb{C}^{d}=\mathbb{R}^{2 d}$, i.e., so that the X_{i} (the real and imaginary parts of the G_{k}) are i.i.d. with $X_{i} \sim \mathcal{N}(0,1 / 2 d)$. Determine $\operatorname{Var}\left(\left|G_{1}\right|^{2}\right)$ and $\operatorname{Cov}\left(\left|G_{1}\right|^{2},\left|G_{2}\right|^{2}\right)$.

[^0]Problem 47: Quantum particle in a box in 1d (don't hand in)
(a) On the interval $[0, L]$, consider the Hamiltonian operator $H \psi(x)=-\psi^{\prime \prime}(x) / 2 m$ with Dirichlet boundary conditions $\psi(0)=0, \psi(L)=0$. Verify that the normalized eigenfunctions read

$$
\begin{equation*}
\varphi_{n}(q)=\left(\frac{2}{L}\right)^{1 / 2} \sin \left(n \frac{\pi}{L} q\right) \tag{2}
\end{equation*}
$$

with $n \in \mathbb{N}$ and eigenvalues

$$
\begin{equation*}
E_{n}=\frac{\pi^{2}}{2 m L^{2}} n^{2} \tag{3}
\end{equation*}
$$

(b) It is known from Fourier series that the functions $1, \sin n x, \cos n x(n \in \mathbb{N})$, after normalization, form an orthonormal basis of $L^{2}([-\pi, \pi])$. How can we conclude that the functions (2) form an orthonormal basis of $L^{2}([0, L])$?

Hand in: Wednesday, July 17, 2019, in the exercise class.

[^0]: ${ }^{1}$ This trick was discovered by N. Ullah, Nuclear Physics 58: 65-71 (1964).

