Klausur zu Analysis 2/Mathematik für Physiker 3

Name:	Matrikelnummer:
Vorname:	Studiengang:

Bitte beginnen Sie für jede Aufgabe ein neues Blatt und beschriften dieses mit ihrem Namen und ihrer Matrikelnummer. Die Klausur besteht aus 6 Aufgaben und 12 Teilaufgaben. In jeder Teilaufgabe können bis zu 4 Punkte erreicht werden. Die Bearbeitungszeit beträgt 120 Minuten.

Aufgabe	1a	1b	2a	2b	3a	3b	4a	4b	5a	5b	6a	6b	Summe
Punkte													

Aufgabe 1. (a) Aus Aufgabe 10 wissen wir, dass $\tanh: \mathbb{R} \to (-1,1)$, $\tanh(x) = \sinh(x)/\cosh(x)$, stetig differenzierbar ist, für alle $x \in \mathbb{R}$ die Differentialgleichung $\tanh'(x) = 1 - \tanh^2(x)$ erfüllt und bijektiv ist. Zeigen Sie: Auch seine Umkehrung, der Area-Tangens hyperbolicus, Artanh: $(-1,1) \to \mathbb{R}$ ist stetig differenzierbar und es gilt für alle $y \in (-1,1)$:

$$\operatorname{Artanh}'(y) = \frac{1}{1 - y^2}.$$

(b) Zeigen Sie, dass für alle $y \in (-1, 1)$ gilt:

$$Artanh(y) = \ln \sqrt{\frac{1+y}{1-y}}.$$

Aufgabe 2. Wir betrachten die unendlich oft differenzierbare Funktion $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \exp(x^2)$.

- (a) Bestimmen Sie die Taylorreihe T von f im Nullpunkt und begründen Sie, warum T für alle $x \in \mathbb{R}$ gegen f(x) konvergiert, f(x) = T(x).
- (b) Bestimmen Sie nun die Stammfunktion $F: \mathbb{R} \to \mathbb{R}$ von f mit F(0) = 0 in Form einer Potenzreihe und begründen Sie.

Aufgabe 3. Wir betrachten die zweimal stetig differenzierbare Funktion $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x_1, x_2) = \sin x_1 \sin x_2$.

- (a) Berechnen Sie das Taylorpolynom von f im Nullpunkt von der Ordnung 2.
- (b) Begründen Sie, warum f im Nullpunkt kein lokales Extremum haben kann.

Aufgabe 4. Für ein stetig differenzierbares Vektorfeld $E: G \to \mathbb{R}^3$ ($G \subseteq \mathbb{R}^3$ ein Gebiet) setzt man die *Divergenz von E* durch $\operatorname{div}(E): G: \to \mathbb{R}$ und die *Rotation von E* durch $\operatorname{rot}(E): G \to \mathbb{R}^3$ wie folgt fest:

$$\operatorname{div}(E) := \frac{\partial E_1}{\partial x_1} + \frac{\partial E_2}{\partial x_2} + \frac{\partial E_3}{\partial x_3}, \quad \operatorname{rot}(E) := \left(\frac{\partial E_3}{\partial x_2} - \frac{\partial E_2}{\partial x_3}, \frac{\partial E_1}{\partial x_3} - \frac{\partial E_3}{\partial x_1}, \frac{\partial E_2}{\partial x_1} - \frac{\partial E_1}{\partial x_2}\right).$$

(a) Zeigen Sie, dass für alle zweimal stetig differenzierbaren Felder $E: G \to \mathbb{R}^3$ und Funktionen $f: G \to \mathbb{R}$ gilt:

$$\operatorname{div}(\operatorname{rot}(E)) = 0, \quad \operatorname{rot}(\operatorname{grad}(f)) = 0.$$

(b) Die Maxwellschen Gleichungen für das statische elektrische Feld $E: G \to \mathbb{R}^3$ ($G \subseteq \mathbb{R}^3$ ein Gebiet) sind im Vakuum gegeben durch $\operatorname{div}(E) = 0$ und $\operatorname{rot}(E) = 0$. Zeigen Sie: Ist $E = \operatorname{grad}(f)$, für eine zweimal stetig differenzierbare Funktion $f: G \to \mathbb{R}$, so löst E die Maxwell-Gleichungen, genau wenn f harmonisch ist (d.h.: $\Delta(f) = 0$).

Aufgabe 5. Wir betrachten auf \mathbb{R}^3 die implizite Gleichung

$$e^{xyz}\cos(z) = 1.$$

- (a) Zeigen Sie, dass p = (1, 1, 0) eine Lösung dieser Gleichung ist und dass man sie lokal um p eindeutig durch eine Funktion $(x, y) \mapsto g(x, y)$ nach z auflösen kann.
- (b) Berechnen Sie den Gradienten von q in (1, 1).

Aufgabe 6. Wir betrachten die Ellipse

$$C = \{(x, y) \in \mathbb{R}^2 : \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\}$$

mit den Hauptachsen a > 0 und b > 0 und es sei b < a.

(a) Argumentieren Sie möglichst präzise, warum das Normquadrat $f: \mathbb{R}^2 \to \mathbb{R}$, $(x, y) \mapsto x^2 + y^2$, auf C sein Infimum

$$c = \inf\{x^2 + y^2 \ge 0 : (x, y) \in C\} \in \mathbb{R}$$

annimmt.

(b) Bestimmen Sie nun alle Punkte $P \in C$ mit f(P) = c, die also vom Zentrum (0,0) minimalen Abstand haben, und berechnen Sie c.