Lineare Algebra 1: Übungsblatt 2

Aufgabe 5: Vektorraumaxiome (28 Punkte; Teamaufgabe)

Sei V ein Vektorraum über dem Körper $\mathbb{K}, v \in V, \lambda \in \mathbb{K}$. Zeigen Sie unter Verwendung der Vektorraumaxiome:

a)
$$0 \cdot v = 0$$

c)
$$(-1) \cdot v = -v$$

b)
$$\lambda \cdot 0 = 0$$

d)
$$\lambda \cdot v = 0 \iff \lambda = 0 \text{ oder } v = 0$$

Aufgabe 6: Durchschnitte von Unterräumen (18 Punkte; Teamaufgabe)

- a) Zeigen Sie, dass der Durchschnitt beliebig vieler (auch unendlich vieler) Unterräume eines Vektorraums V wieder ein Unterraum ist.
- b) Wann ist die Vereinigung zweier Unterräume wiederum ein Unterraum? (Mit Beweis.)

Aufgabe 7: Funktionenräume? (30 Punkte)

Die Menge $\mathbb{R}^{\mathbb{R}}$ aller Abbildungen $f: \mathbb{R} \to \mathbb{R}$ ist ein reeller Vektorraum. Bestimmen Sie mit Beweis, welche der folgenden Mengen Unterräume des $\mathbb{R}^{\mathbb{R}}$ sind:

- a) die Menge aller ungeraden Funktionen, d.h. f(-x) = -f(x),
- b) die trigonometrischen Polynome, dies sind die Funktionen $f: \mathbb{R} \to \mathbb{R}$, die sich in der Form

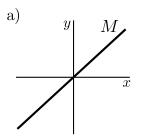
$$f(x) = \frac{1}{2}\alpha_0 + \sum_{k=1}^{n} (\alpha_k \cos(kx) + \beta_k \sin(kx))$$

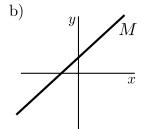
mit $n \in \mathbb{N}$ und $\alpha_k, \beta_k \in \mathbb{R}$ darstellen lassen,

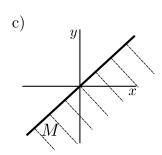
- c) die Menge der Funktionen mit f(0) = 1,
- d) die Menge der Funktionen, so dass $\forall x \in \mathbb{R}$ gilt $f(x) \geq 0$,
- e) die Menge der Funktionen, für die $\forall x, y \in \mathbb{R}$ gilt f(x+y) = f(x)f(y),
- f) die Menge der linearen Funktionen, d.h. $\forall \alpha, \beta, x, y \in \mathbb{R}$ gilt $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$.

Aufgabe 8: Visuelle Repräsentation von Vektorräumen (24 Punkte)

Entscheiden Sie, welche der folgenden visuellen Darstellungen von Mengen $M \subset \mathbb{R}^2$ Unterräume des \mathbb{R}^2 sind. Begründen Sie Ihre Antworten.







Abgabe: Sie laden Ihre Lösung bis 16:00 Uhr am Mittwoch den 06.05.2020 auf https://urm.math.uni-tuebingen.de hoch.