Übungen zur Einführung in die Funktionentheorie und die Gewhnlichen Differentialgleichungen / Mathematik für Physiker IV

Aufgabe 01. Wir betrachten die Einheitskreislinie

$$\mathbb{S}^1 = \{ z \in \mathbb{C} : |z| = 1 \}$$

und \mathbb{C}^* als Gruppe bzgl. der multiplikativen Struktur der komplexen Zahlen.

- (a) Zeigen Sie, dass für alle $z \in \mathbb{C}^*$ das Inverse $z^{-1} \in \mathbb{C}^*$ durch $z^{-1} = \frac{\bar{z}}{|z|^2}$ gegeben ist und dann, dass $\mathbb{S}^1 \subseteq \mathbb{C}^*$ eine Untergruppe ist.
- (b) Für jedes $n \in \mathbb{N}$ nennt man $\omega \in \mathbb{S}^1$ eine n. Einheitswurzel, wenn gilt: $\omega^n = 1$. Bestimmen Sie alle n. Einheitswurzeln in Polarform $\omega = e^{i\varphi}$ (mit $\varphi \in [0, 2\pi)$) und zeigen Sie, dass $U_n := \{\omega \in \mathbb{S}^1 : \omega^n = 1\}$ eine Untergruppe von \mathbb{S}^1 ist. Machen Sie eine Skizze dieser n. Einheitswurzeln.

Aufgabe 02. (a) (Abelsches Lemma) Sei $P = \sum_{n=0}^{\infty} a_n X^n$ eine formale komplexe Potenzreihe (d.i.: $a_n \in \mathbb{C}$, für alle $n \in \mathbb{N}_0$), die in einem $z_0 \in \mathbb{C}^*$ konvergiere. Zeigen Sie, dass dann für alle $z \in \mathbb{C}$ mit $|z| < |z_0|$ gilt: $P(z) = \sum_{0}^{\infty} a_n z^n$ konvergiert absolut. (Hinweis: Majorisieren Sie $\sum_{0}^{\infty} |a_n z^n|$ mit einer geometrischen Reihe.)

(b) Den Konvergenzradius $R_P \in [0, \infty]$ einer formalen Potenzreihe $P = \sum_{n=0}^{\infty} a_n X^n$ kann man so definieren:

 $R_P := \sup\{r \in [0, \infty) : \text{ es gibt ein } z \in \mathbb{C} \text{ mit } |z| = r, \text{ so dass } P(z) = \sum_n a_n z^n \text{ konvergient}\}$

 $\in [0, \infty]$. Zeigen Sie:

- (i) Für alle $z \in \mathbb{C}$ mit $|z| < R_P$ konvergiert P(z) absolut;
- (ii) für alle $z \in \mathbb{C}$ mit $|z| > R_P$ divergiert P(z).

Aufgabe 03. Wir betrachten die Einbettung $\tau: \mathbb{R} \to \mathbb{R}^3$, $x \mapsto (x,0,0)$. Zeigen Sie, dass es keine Multiplikation * auf \mathbb{R}^3 gibt, die $(\mathbb{R}^3, +, *)$ zu einem Körper macht und mit der Vektorraumstruktur von $(\mathbb{R}^3, +, \cdot)$ verträglich ist, d.h.: $x \cdot v = \tau(x) * v$, für alle $x \in \mathbb{R}$ und $v \in \mathbb{R}^3$. (Hinweis: Betrachten Sie für jedes $v \in \mathbb{R}^3$ die \mathbb{R} -lineare Abbildung $L_v: \mathbb{R}^3 \to \mathbb{R}^3$, $w \mapsto v * w$, und benutzen Sie, dass jedes reelle Polynom 3. Grades eine reelle Nullstelle besitzt.)

Abgabe: Sonntag, 25. April 2021, 18 Uhr via "urm" an Ihren Tutor