Übungen

zur Einführung in die Funktionentheorie und die Gewöhnlichen Differentialgleichungen / Mathematik für Physiker IV

Aufgabe 35. Sei $n \in \mathbb{N}$, $I \subseteq \mathbb{R}$ ein offenes Intervall und a_1, \ldots, a_n : $I \to \mathbb{R}$ stetig differenzierbar. Wir betrachten die *lineare Differentialgleichung n. Ordnung*

$$x^{(n)} + a_1 x^{(n-1)} + \dots + a_{n-1} \dot{x} + a_n x = 0$$
(1)

auf \mathbb{R} .

- (a) Zeigen Sie, dass der Lösungsraum $L_{(h)} := \{x \in \mathcal{C}^n(I, \mathbb{R}) : x \text{ löst } (1)\}$ ein *n*-dimensionaler Untervektorraum von $\mathcal{C}^n(I, \mathbb{R})$ ist.
- (b) Seien $x_1, \ldots, x_n \in L_{(h)}$. Dann bilden wir die sogenannte Wronski-Determinante von (x_1, \ldots, x_n) $W: I \to \mathbb{R}$ durch

$$W(t) = \det \begin{pmatrix} x_1 & \cdots & x_n \\ \vdots & & \vdots \\ x_1^{(n-1)} & \cdots & x_n^{(n-1)} \end{pmatrix} (t).$$

Zeigen Sie: Falls W eine Nullstelle hat, so ist W schon überall Null und es gilt: (x_1, \ldots, x_n) ist Basis von $L_{(h)}$, genau wenn $W \neq 0$ ist.

Aufgabe 36. Die Differentialgleichung der (ungedämpften) erzwungenen Schwingung ist gegeben durch

$$\ddot{x} + \omega_0^2 x = A\cos(\omega t)$$

mit Konstanten $\omega_0, \omega, A \in \mathbb{R}_+$. Berechnen Sie die allgemeine Lösung im Nicht-Resonanzfall $\omega \neq \omega_0$. (Hinweis: Wenn Sie die Rechnung mit der Variation der Konstanten vermeiden wollen, versuchen Sie eine spezielle Lösung zu erraten ("Ansatz").)

Aufgabe 37. Sei $n \in \mathbb{N}$, $I \subseteq \mathbb{R}$ offen sowie $A: I \to \operatorname{Mat}_n\mathbb{R}$ stetig differenzierbar. Sei weiter $\Phi: I \to \operatorname{Mat}_n\mathbb{R}$ eine Lösung von $\dot{\Phi} = A\Phi$ auf $\operatorname{Mat}_n\mathbb{R}$. Zeigen Sie, dass dann die Funktion $\Delta: I \to \mathbb{R}$, $\Delta(t) = \det(\Phi(t))$, die Differentialgleichung

$$\dot{x} = \operatorname{spur}(A)x$$

löst. (Hinweis: Schreiben Sie $\Phi = (\varphi_1, \dots, \varphi_n)^T$ mit den Zeilen $\varphi_i: I \to \mathbb{R}^n$ $(i = 1, \dots, n)$ und benutzen Sie die Produktregel in der Leibnizformel für $\det(\Phi)$ sowie $\dot{\varphi}_i = \sum_j a_{ij} \varphi_j$ $(i = 1, \dots, n)$ aus $\dot{\Phi} = A\Phi$.)

Aufgabe 38. Die Differentialgleichung für die gedämpfte Schwingung wird für Konstanten $\gamma, \omega \in \mathbb{R}_+$ gegeben durch

$$\ddot{x} + \gamma \dot{x} + \omega^2 x = 0 \tag{2}$$

(wobei $\gamma > 0$ die Dämpfung beschreibt). Geben Sie eine Basis des Lösungsraumes im so genannten Kriechfall an, wo $\Delta := 4\omega^2 - \gamma^2 < 0$ ist. (Die Fälle $\Delta = 0$ und $\Delta > 0$ behandeln wir später.) (Hinweis: Schreiben Sie (2) als ein System $\dot{z} = Az$ mit $A \in \operatorname{Mat}_2\mathbb{R}$ und versuchen Sie A zu diagonalsieren. Machen Sie dann einen geeigneten linearen Koordintenwechsel z = Sw mit $S \in \operatorname{GL}_2\mathbb{R}$. Oder machen Sie gleich einen "Ansatz" $x(t) = e^{\lambda t}$ (mit $\lambda \in \mathbb{R}$).)

Abgabe: Sonntag, 4. Juli 2021, 18 Uhr via "urm" an Ihren Tutor