Übungen

zur Einführung in die Funktionentheorie und die Gewöhnlichen Differentialgleichungen / Mathematik für Physiker IV

Aufgabe 01. Wir betrachten die Einheitskreislinie

$$\mathbb{S}^1 = \{ z \in \mathbb{C} : |z| = 1 \}$$

und \mathbb{C}^* als Gruppe bzgl. der multiplikativen Struktur der komplexen Zahlen.

- (a) Zeigen Sie, dass für alle $z \in \mathbb{C}^*$ das Inverse $z^{-1} \in \mathbb{C}^*$ durch $z^{-1} = \frac{\bar{z}}{|z|^2}$ gegeben ist und dann, dass $\mathbb{S}^1 \subseteq \mathbb{C}^*$ eine Untergruppe ist.
- (b) Für jedes $n \in \mathbb{N}$ nennt man $\omega \in \mathbb{S}^1$ eine n. Einheitswurzel, wenn gilt: $\omega^n = 1$. Bestimmen Sie alle n. Einheitswurzeln in Polarform $\omega = e^{i\varphi}$ (mit $\varphi \in [0, 2\pi)$) und zeigen Sie, dass $U_n := \{\omega \in \mathbb{S}^1 : \omega^n = 1\}$ eine Untergruppe von \mathbb{S}^1 ist. Machen Sie eine Skizze dieser n. Einheitswurzeln.

Aufgabe 02. (a) (Abelsches Lemma) Sei $P = \sum_{n=0}^{\infty} a_n X^n$ eine formale komplexe Potenzreihe (d.i.: $a_n \in \mathbb{C}$, für alle $n \in \mathbb{N}_0$), die in einem $z_0 \in \mathbb{C}^*$ konvergiere. Zeigen Sie, dass dann für alle $z \in \mathbb{C}$ mit $|z| < |z_0|$ gilt: $P(z) = \sum_{n=0}^{\infty} a_n z^n$ konvergiert absolut. (Hinweis: Majorisieren Sie $\sum_{n=0}^{\infty} |a_n z^n|$ mit einer geometrischen Reihe.)

(b) Den Konvergenzradius $R_P \in [0, \infty]$ einer formalen Potenzreihe $P = \sum_{n=0}^{\infty} a_n X^n$ kann man so definieren:

 $R_P := \sup\{r \in [0, \infty) : \text{ es gibt ein } z \in \mathbb{C} \text{ mit } |z| = r, \text{ so dass } P(z) = \sum_n a_n z^n \text{ konvergiert}\}$

 $\in [0, \infty]$. Zeigen Sie:

- (i) Für alle $z \in \mathbb{C}$ mit $|z| < R_P$ konvergiert P(z) absolut;
- (ii) für alle $z \in \mathbb{C}$ mit $|z| > R_P$ divergiert P(z).

Aufgabe 03. Wir betrachten die Einbettung $\tau: \mathbb{R} \to \mathbb{R}^3$, $x \mapsto (x,0,0)$. Zeigen Sie, dass es keine Multiplikation * auf \mathbb{R}^3 gibt, die $(\mathbb{R}^3, +, *)$ zu einem Körper macht und mit der Vektorraumstruktur von $(\mathbb{R}^3, +, \cdot)$ verträglich ist, d.h.: $x \cdot v = \tau(x) * v$, für alle $x \in \mathbb{R}$ und $v \in \mathbb{R}^3$. (Hinweis: Betrachten Sie für jedes $v \in \mathbb{R}^3$ die \mathbb{R} -lineare Abbildung $L_v: \mathbb{R}^3 \to \mathbb{R}^3$, $w \mapsto v * w$, und benutzen Sie, dass jedes reelle Polynom 3. Grades eine reelle Nullstelle besitzt.)

Aufgabe 04. Sei $G \subseteq \mathbb{C}$ ein Gebiet und $f: G \to \mathbb{C}$ reell-differenzierbar in $a \in G$. Begründen Sie, warum auch $\overline{f}: G \to \mathbb{C}$, $z \mapsto \overline{f(z)}$, in a reell-differenzierbar ist und zeigen Sie:

$$\frac{\partial \bar{f}}{\partial z}(a) = \overline{\frac{\partial f}{\partial \bar{z}}(a)}, \quad \frac{\partial \bar{f}}{\partial \bar{z}}(a) = \overline{\frac{\partial f}{\partial z}(a)}.$$

Aufgabe 05. Seien $D, G \subseteq \mathbb{C}$ Gebiete, $f: D \to G \subseteq \mathbb{C}$ in $a \in D$ reell-differenzierbar und $g: G \to \mathbb{C}$ in b = f(a) reell-differenzierbar. Begründen Sie, warum $g \circ f: D \to \mathbb{C}$ in a rell-differenzierbar ist und zeigen Sie:

$$\frac{\partial(g \circ f)}{\partial z}(a) = \frac{\partial g}{\partial w}(b)\frac{\partial f}{\partial z}(a) + \frac{\partial g}{\partial \bar{w}}(b)\frac{\partial \bar{f}}{\partial z}(a),$$

$$\frac{\partial(g \circ f)}{\partial \bar{z}}(a) = \frac{\partial g}{\partial w}(b)\frac{\partial f}{\partial \bar{z}}(a) + \frac{\partial g}{\partial \bar{w}}(b)\frac{\partial \bar{f}}{\partial \bar{z}}(a).$$

Aufgabe 06. (a) Stellen Sie eine Produktregel für reell-differenzierbare Funktionen $f, g: G \to \mathbb{C}$ ($G \subseteq \mathbb{C}$ ein Gebiet) im Wirtinger-Kalkül auf und begründen Sie sie.

(b) Berechnen Sie die Wirtinger-Ableitungen der folgenden reell-differenzierbaren Funktionen $f_i: \mathbb{C} \to \mathbb{C} \ (j=1,..,4)$ und bestimmen Sie, wo diese komplex-differenzierbar sind:

$$f_1(z) = \bar{z}, \quad f_2(z) = |z|^2, \quad f_3(z) = \text{Re}(z), \quad f_4(z) = 2z^2\bar{z} - z\bar{z}^2.$$

Aufgabe 07. (a) Integrieren Sie $f: \mathbb{C} \to \mathbb{C}, z \mapsto z^2$, über den Weg $\gamma: [0, 2\pi] \to \mathbb{C}, \gamma(t) = 1 + e^{it}$.

- (b) Parametrisieren Sie die geradlinige Verbindungsstrecke von $-1 \in \mathbb{C}$ nach $1 \in \mathbb{C}$ mit einem Weg γ_1 und betrachten Sie mit γ_2 : $[0, \pi] \to \mathbb{C}$, $t \mapsto e^{i(\pi t)}$ einen weiteren Weg von -1 nach 1. Integrieren Sie nun die stetige Funktion $g: \mathbb{C} \to \mathbb{C}$, g(z) = |z|, über die Wege γ_1 und γ_2 .
- (c) Zeigen Sie, dass $h: \mathbb{C} \to \mathbb{C}$, h(z) = Re(z), keine Stammfunktion hat.

Aufgabe 08 (Lemma von Goursat für Dreiecke). Sei $G \subseteq \mathbb{C}$ ein Gebiet und $\Delta \subseteq G$ ein (abgeschlossenes) Dreieck in G. Zeigen Sie: Ist $f: G \to \mathbb{C}$ holomorph, so gilt: $\int_{\partial \Delta} f(z) dz = 0$. (Hinweis: Gehen Sie so vor wie in der Vorlesung für Rechtecke.)

Aufgabe 09. (a) Sei $G \subseteq \mathbb{C}$ ein sternförmiges Gebiet bzgl. eines Punktes $a \in G$ (d.h.: für jedes $z \in G$ ist der geradlinige Weg γ_z : $[0,1] \to \mathbb{C}$, $t \mapsto (1-t)a+tz$, ganz in G. Sei weiter $f: G \to \mathbb{C}$ stetig und derart, dass für alle Dreiecke $\Delta \subseteq G$ gilt: $\int_{\partial \Delta} f(z) dz = 0$. Zeigen Sie, dass dann durch $F: G \to \mathbb{C}$,

$$F(z) = \int_{\gamma_z} f(\zeta) \ d\zeta,$$

eine Stammfunktion von f gegeben ist.

(b) Zeigen Sie nun (Cauchys Integralsatz für sternförmige Gebiete): Ist $G \subseteq \mathbb{C}$ ein sternförmiges Gebiet und $f: G \to \mathbb{C}$ holomorph, so gilt für jeden geschlossenen Weg γ in $G: \int_{\gamma} f(z) \, dz = 0$.

Aufgabe 10. Sei $G = \mathbb{C} \setminus \mathbb{R}_0^- = \{z \in \mathbb{C} : \operatorname{Im}(z) \neq 0 \text{ oder } \operatorname{Re}(z) > 0\}$ und γ_z für jedes $z \in G$ der geradlinige Weg von 1 nach z in G. Wir nennen dann $\log: G \to \mathbb{C}$,

$$\log(z) = \int_{\gamma_z} \frac{d\zeta}{\zeta},$$

den Hauptzweig des Logarithmus.

- (a) Zeigen Sie, dass log ein Zweig des Logarithmus ist, d.h.: Für alle $z \in G$ ist $\exp \circ \log(z) = z$.
- (b) Für jedes $z \in G$ sei $\arg(z) \in (-\pi, \pi)$ der Winkel in $(-\pi, \pi)$, so dass $z = |z|e^{i\arg(z)}$ ist. Zeigen Sie, dass für alle $z \in G$ gilt:

$$\log(z) = \ln|z| + i\arg(z).$$

(Hinweis: Ersetzen Sie in der Definition den Weg γ_z durch den stückweise glatten Weg, der zunächst geradlinig von 1 nach |z| läuft und dann auf dem Kreisbogen vom Radius r=|z| von |z| zu z (auf dem kürzesten Weg) und benutzen Sie Aufgabe 2b.)

(c) Geben Sie zwei Zahlen z_1, z_2 in G an, so dass auch z_1z_2 in G ist und gilt:

$$\log(z_1 z_2) \neq \log(z_1) + \log(z_2).$$

Aufgabe 11. Wir definieren $\cos, \sin: \mathbb{C} \to \mathbb{C}$ durch

$$\cos(z) := \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n}, \qquad \sin(z) := \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1}$$

und nennen diese Funktionen den komplexen Cosinus und den komplexen Sinus.

- (a) Begründen Sie, warum das wohldefiniert ist, d.h., warum die Reihen auf ganz C konvergieren.
- (b) Zeigen Sie, dass für alle $z \in \mathbb{C}$ gilt:

$$e^{iz} = \cos z + i \sin z,$$

$$\cos z = \frac{1}{2} (e^{iz} + e^{-iz}),$$

$$\sin z = \frac{1}{2i} (e^{iz} - e^{-iz}),$$

$$\cos^2 z + \sin^2 z = 1.$$

(c) Bestimmen Sie alle Nullstellen $D = \{z \in \mathbb{C} : \cos z = 0\}$ von cos und setzen Sie tan: $\mathbb{C} \setminus D \to \mathbb{C}$, tan $z := \sin z / \cos z$. zeigen Sie dann, dass cos, sin und tan holomorph sind mit

$$\cos' = -\sin$$
, $\sin' = \cos$, $\tan' = 1 + \tan^2$.

(Hinweis: Benutzen Sie, dass $e^z = 1 \Leftrightarrow z \in 2\pi i \mathbb{Z}$ und $\exp' = \exp i \operatorname{st.}$)

Aufgabe 12. (a) Sei $G \subseteq \mathbb{C}$ ein Gebiet und $f: G \to \mathbb{C}$ holomorph. Zeigen Sie dass $u := \operatorname{Re}(f): G \to \mathbb{R}$ und $v := \operatorname{Im}(f): G \to \mathbb{R}$ harmonisch sind. (v heißt dann konjugiert harmonisch zu u.)

(b) Sei nun $G \subseteq \mathbb{C}$ sogar sternförmiges Gebiet und $u: G \to \mathbb{R}$ harmonisch, $\Delta u = 0$. Zeigen Sie, dass es ein holomorphes $f: G \to \mathbb{C}$ gibt mit Re(f) = u. (Hinweis: Betrachten Sie $g: G \to \mathbb{C}$, $g = \partial_x u - i \partial_y u$.)

Aufgabe 13. (a) Sei γ : $[0,1] \to \mathbb{C}^*$ ein (stetiger) Weg. Zeigen Sie, dass es ein stetiges φ : $[0,1] \to \mathbb{R}$ gibt, so dass für alle $t \in [0,1]$ gilt:

$$\gamma(t) = |\gamma(t)|e^{i\varphi(t)}.$$

(Hinweis: Sei $D_1 := \mathbb{C} \setminus \mathbb{R}_0^-$ und $D_2 = \mathbb{C} \setminus \mathbb{R}_0^+$. Man zerlege [0,1] so in endlich viele Teilintervalle $[t_{j-1},t_j]$ $(j=1,\ldots,m;\ t_0=0,\ t_m=1)$, dass $\gamma([t_{j-1},t_j])$ in D_1 oder in D_2 liegt. Dann benutze man für $\varphi[[t_{j-1},t_j]]$ einen Zweig des Logarithmus $\log_1:D_1\to\mathbb{C}$ bzw. $\log_2:D_2\to\mathbb{C}$.)

(b) Seien $\varphi, \psi: [0, 1] \to \mathbb{R}$ wie in (a) zwei solche *Lifts*. Zeigen Sie, dass es ein $k \in \mathbb{Z}$ gibt, so dass für alle $t \in [0, 1]$ gilt:

$$\psi(t) = \varphi(t) + 2\pi k.$$

(Hinweis: Eine stetige Funktion $k:[0,1]\to\mathbb{Z}\subseteq\mathbb{R}$ muss konstant sein.)

(c) Sei $\gamma: [0,1] \to \mathbb{C}^*$ nun ein geschlossener Weg. Man definiert die Umlaufzahl $n(\gamma) \in \mathbb{Z}$ (bzgl. 0) nach Wahl eines Lifts wie unter (a) durch $n(\gamma) := \frac{1}{2\pi}(\varphi(1) - \varphi(0))$. Begründen Sie, warum $n(\gamma)$ tatsächlich ganzzahlig ist und warum sie wohldefiniert ist (d.h.: nicht von der Wahl des Lifts abhängt.) Zeigen Sie dann für den Fall, dass γ sogar stetig differenzierbar ist:

$$n(\gamma) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z}.$$

Aufgabe 14. Sei $G \subseteq \mathbb{C}^*$ ein Gebiet und $\log: G \to \mathbb{C}$ ein Zweig des Logarithmus auf G. Sei weiter $a \in \mathbb{C}$. Man definiert den zu log gehörenden Zweig der a. Potenz auf G durch $\operatorname{pot}_a: G \to \mathbb{C}$,

$$\operatorname{pot}_a(z) = \exp(a \cdot \log(z)) =: z^a.$$

- (a) Berechnen Sie alle möglichen Werte von i^i , 2^{-i} und $(-1)^{\sqrt{i}}$. (Hinweis: Überlegen Sie zunächst, dass sich zwei Zweige des Logarithmus nur durch eine konstante Funktion $2\pi i \cdot k$, mit $k \in \mathbb{Z}$, unterscheiden können (vgl. auch Aufgabe-13-b).)
- (b) Sei $n \in \mathbb{N}$. Man nennt eine stetige Funktion $f: G \to \mathbb{C}$ einen Zweig der n. Wurzel auf G, wenn für alle $z \in G$ gilt: $f(z)^n = z$. Zeigen Sie, dass es für einen solchen Zweig eine n. Einheitswurzel $\omega \in \mathbb{C}^*$ (siehe Aufgabe-01) gibt, so dass für alle $z \in G$ gilt:

$$f(z) = \omega \exp(\frac{1}{n}\log(z)).$$

Aufgabe 15. Sei $f: \mathbb{C} \to \mathbb{C}$ holomorph und nicht-konstant. Zeigen Sie, dass $f(\mathbb{C})$ dicht in \mathbb{C} liegt. (Erinnerung: $D \subseteq \mathbb{C}$ heißt dicht,, wenn für jede offene Menge $U \subseteq \mathbb{C}$ mit $U \neq \emptyset$ gilt: $D \cap U \neq \emptyset$. Hinweis: Benutzen Sie den Satz von Liouville.)

Aufgabe 16. Sei $f: \mathbb{C} \to \mathbb{C}$ holomorph und es existiere $n \in \mathbb{N}_0$, R > 0, M > 0 so, dass für alle $z \in \mathbb{C}$ mit |z| > R gilt:

$$|f(z)| \le M|z|^n.$$

Zeigen Sie, dass f eine Polynomfunktion vom Grad kleiner oder gleich n ist. (Hinweis: Zeigen Sie mit Hilfe der Cauchy-Ungleichungen, dass $f^{(n+1)} = 0$ ist.)

Für eine formale (komplexe) Potenzreihe $P=\sum_0^\infty a_n X^n$ definiert man ihre formale Ableitung durch

$$P' := \sum_{n=0}^{\infty} (n+1)a_{n+1}X^n.$$

Aufgabe 17. Sei P eine formale Potenzreihe und $R_P \in [0, \infty]$ ihr Konvergenzradius. Zeigen Sie: $R_{P'} = R_P$.

Wir nennen eine holomorphe Funktion $f: G \to \mathbb{C}$ ($G \subseteq \mathbb{C}$ ein Gebiet) einen Zweig des Arcustangens, wenn für alle $z \in G$ gilt: $\tan \circ f(z) = z$.

Aufgabe 18. (a) Sei $D = \mathbb{C} \setminus \{z \in \mathbb{C} : \exists t \in \mathbb{R} : |t| \geq 1 \text{ und } z = it\} \text{ und Arctan: } D \to \mathbb{C},$

$$Arctan(z) = \int_{\gamma_z} \frac{d\zeta}{1 + \zeta^2},$$

wo γ_z der geradlinige Weg von 0 nach z ist. Zeigen Sie, dass Arctan ein Zweig des Arcustangens ist. (Wir nennen ihn den Hauptzweig.)

(b) Sei $D \subseteq \mathbb{C}$ wie unter (a), $G = \mathbb{C} \setminus \mathbb{R}_0^-$ und Log: $G \to \mathbb{C}$ der Hauptweig des Logarithmus. Zeigen Sie zunächst, dass $g: \mathbb{C} \setminus \{-i\} \to \mathbb{C}, \ z \mapsto \frac{1+iz}{1-iz}$, das Gebiet D nach G abbildet und dann für alle $z \in D$:

$$Arctan(z) = \frac{1}{2i} Log(\frac{1+iz}{1-iz}).$$

Ein topologischer Raum X heißt

- zusammenhängend, wenn gilt: Sind $U, V \subseteq X$ offen mit $X = U \cup V$ und $U \cap V = \emptyset$, so muss $U = \emptyset$ oder $V = \emptyset$ sein;
- wegzusammenhängend, wenn gilt: Für alle $x_0, x_1 \in X$ gibt es einen Weg $\alpha: I \to X$ (d.h.: α ist stetig, wo I = [0, 1] das Einheitsintervall mit der von \mathbb{R} induzierten Topologie ist) mit $\alpha(0) = x_0$ und $\alpha(1) = x_1$.

Aufgabe 19. (a) Sei X ein zusammenhängender Raum. Zeigen Sie: Ist $A \subseteq X$ nicht-leer, abgeschlossen und offen, so ist A = X.

(b) Zeigen Sie: I=[0,1] ist zusammenhängend. (Hinweis: Ist $I=U\ \dot\cup\ V$ und o.E. $0\in U,$ so betrachte

$$b := \sup\{x \in I : [0, x] \subseteq U\}.)$$

(c) Zeigen Sie: Ist X wegzusammenhängend, so ist X auch zusammenhängend.

Aufgabe 20. Beweisen Sie folgende Variante des Identitätssatzes: Sei $G \subseteq \mathbb{C}$ ein Gebiet und $f: G \to \mathbb{C}$ holomorph. Sei weiter $a \in G$, so dass für alle $n \in \mathbb{N}$ gilt: $f^{(n)}(a) = 0$. Dann ist f konstant. (Hinweis: Betrachten Sie die Teilmenge $A := \{z \in G: f^{(n)}(z) = 0, \forall n \in \mathbb{N}\}$ und zeigen Sie, dass diese nicht-leer, abgeschlossen und offen ist.)

Aufgabe 21. Sei $G \subseteq \mathbb{C}$ ein Gebiet und $F: [a, b] \times G \to \mathbb{C}$, $(t, z) \mapsto F(t, z)$, stetig. Zudem sei $F_t: G \to \mathbb{C}$, $F_t(z) := F(t, z)$, für jedes $t \in [a, b]$ reell-differenzierbar, und $D_2F: [a, b] \times G \to \operatorname{Mat}_2(\mathbb{R})$, $D_2F(t, z) = DF_t(z)$, sei stetig. Zeigen Sie, dass dann $H: G \to \mathbb{C}$,

$$H(z) = \int_{a}^{b} F(t, z) dt,$$

wohldefiniert und reell-differenzierbar ist mit

$$DH(z) = \int_{a}^{b} DF_{t}(z) dt, \quad \forall z \in G.$$

Aufgabe 22. Sei $I \subseteq \mathbb{R}$ ein offenes Intervall und $f: I \to \mathbb{R}$ unendlich-oft differenzierbar. Zeigen Sie: f ist genau dann reell-analytisch, wenn es ein Gebiet $G \subseteq \mathbb{C}$ mit $I \subseteq G$ und einer komplex-analytischen Funktion $\hat{f}: G \to \mathbb{C}$ gibt mit $\hat{f}|I = f$.

Aufgabe 23. (a) Sei $G \subseteq \mathbb{C}$ ein Gebiet, $f, g: G \to \mathbb{C}$ holomorph und $a \in G$ die einzige Nullstelle von g. Weiter sei $g'(a) \neq 0$. Zeigen Sie, dass für $h: G \setminus \{a\} \to \mathbb{C}$, h(z) = f(z)/g(z), gilt

$$\operatorname{Res}_a(h) = \frac{f(a)}{g'(a)}.$$

(b) Bestimmen Sie alle isolierten Singularitäten von f und g und dort ihre Residuen:

$$f(z) = \frac{1}{z(z-\pi)^2}, \qquad g(z) = \frac{1}{z(e^z-1)}.$$

Aufgabe 24. Zeigen Sie:

$$\int_{-\infty}^{\infty} \frac{x^2 dx}{1 + x^4} = \frac{\pi}{\sqrt{2}}, \qquad \int_{0}^{\pi} \frac{dx}{a + \cos x} = \frac{\pi}{\sqrt{a^2 - 1}} \quad \text{(für } a > 1\text{)}.$$

(Hinweis für das zweite Integral: Versuchen Sie dieses Integral als ein komplexes Wegeintegral über die Einheitskreislinie zu beschreiben.)

Aufgabe 25 (Null- und Polstellenzähler). (a) Sei f eine holomorphe Funktion auf einem Gebiet $G \subseteq \mathbb{C}$ und $a \in G$ eine Nullstelle von f der Ordnung $k \in \mathbb{N}$. Zeigen Sie, dass g, mit g(z) = f'(z)/f(z), eine holomorphe Funktion auf G mit einer isolierten Singularität in g ist und es gilt: $\text{Res}_a(g) = k$.

- (b) Sei f nun holomorph auf einem Gebiet $G \subseteq \mathbb{C}$ mit einem Pol der Ordnung $k \in \mathbb{N}$ in einem Punkt $a \in G$. Zeigen Sie, dass g, mit g = f'/f, holomorph mit isolierter Singularität in a ist und es gilt: $\operatorname{Res}_a(g) = -k$.
- (c) Eine holomorphe Funktion f auf einem Gebiet $G \subseteq \mathbb{C}$ heißt meromorph, wenn sie höchstens isolierte Singularitäten hat und diese nicht wesentlich sind. Sei nun $K \subseteq G$ Kompaktum mit glattem Rand, f sei meromorph auf G und keine der isolierten Singularitäten und Nullstellen von f liege auf ∂K . Mit $N_0 \in \mathbb{N}$ bezeichnen wir dann die Gesamtzahl der Nullstellen von f

innerhalb von K, gewichtet jeweils mit ihren Vielfachheiten, $N_0 = \sum_{a \in f^{-1}(0)} \operatorname{ord}_a(f)$. Ähnlich sein $N_{\infty} \in \mathbb{N}$ die Gesamtzahl der Polstellen von f innerhalb von K, gewichtet mit ihren Vielfachheiten, $N_{\infty} = \sum_{a \in f^{-1}(\infty)} \operatorname{ord}_a(f)$. Zeigen Sie, dass dann gilt:

$$\frac{1}{2\pi i} \int_{\partial K} \frac{f'(z) dz}{f(z)} = N_0 - N_{\infty}.$$

Aufgabe 26 (Satz von Rouché). Sei $G \subseteq \mathbb{C}$ ein Gebiet und es seien $f, g: G \to \mathbb{C}$ holomorph. Weiter sei $K \subseteq G$ ein Kompaktum mit glattem Rand und $N(f), N(g) \in \mathbb{N}$ bezeichne die Anzahl der Nullstellen von f bzw. g in K (gezählt mit Vielfachheiten). Schließlich gelte für alle $z \in \partial K$:

$$|g(z) - f(z)| < |f(z)|.$$

Zeigen Sie, dass dann gilt: N(f) = N(g). (Hinweis: Betrachten Sie die Homotopie $(h_t)_{t \in [0,1]}$ mit $h_t = f + t(g - f)$ und untersuchen Sie $N(h_t)$ in Abhängigkeit von t.)

Sei $G \subseteq \mathbb{R}^n$ ein Gebiet. Ein dynamisches System auf G ist ein stetig differenzierbares $\varphi \colon \Omega \to G$, $(t,x) \mapsto \varphi^t(x)$, wobei gilt:

- (a) $\Omega \subseteq \mathbb{R} \times G$ ist offen mit $\{0\} \times G \subseteq \Omega$ und $I(x) := \{t \in \mathbb{R} : (t, x) \in \Omega\}$ ist ein offenes Intervall;
- **(b)** (i) $\varphi^0(x) = x$ für alle $x \in G$;
 - (ii) Ist $(t, x) \in \Omega$, so ist für $s \in \mathbb{R}$ das Paar $(t + s, x) \in \Omega$, genau wenn $(s, \varphi^t(x)) \in \Omega$ ist, und es gilt dann:

$$\varphi^s(\varphi^t(x)) = \varphi^{s+t}(x).$$

Man nennt dann für jedes $x \in G$ die Kurve $\varphi(x): I(x) \to G$, $t \mapsto \varphi^t(x)$, die Dynamik von x.

Aufgabe 27. Sei $\varphi: \Omega \to G$ ein dynamisches System auf einem Gebiet $G \subseteq \mathbb{R}^n$. Man definiert das zugehörige Vektorfeld $f = f_{\varphi}: G \to \mathbb{R}^n$ auf G durch

$$f(x) = \frac{d}{dt}|_{t=0}\varphi^t(x).$$

Zeigen Sie: Für jedes $x_0 \in G$ löst die Kurve $\varphi(x_0): I(x_0) \to G$ das Anfangswertproblem

$$\dot{x} = f(x), \quad x(0) = x_0.$$

Aufgabe 28. Sei $\varphi: \Omega \to G$ ein dynamisches System auf einem Gebiet $G \subseteq \mathbb{R}^n$. Ein Punkt $a \in G$ heißt Gleichgewichtslage von φ , wenn für alle $t \in I(a)$ gilt: $\varphi^t(a) = a$.

- (a) Zeigen Sie: ist $f: G \to \mathbb{R}^n$ das zu φ gehörende Vektorfeld, so gilt: $a \in G$ ist genau dann Gleichgewichtslage von φ , wenn f(a) = 0 ist. [Nachtrag: Benutzen Sie für die Rückrichtung, dass φ 2-mal stetig differenzierbar und damit f lokal Lipschitz-stetig ist sowie die Eindeutigkeit der Lösung des Anfangswertproblems dann nach Picard Lindelöf.]
- (b) Sei nun $x_0 \in G$ mit $I(x_0) = (t_-(x_0), t_+(x_0) \text{ und } t_+(x_0) = \infty$. Weiter sei $a \in G$ und es gelte

$$\lim_{t \to \infty} \varphi^t(x_0) = a.$$

Zeigen Sie, dass a eine Gleichgewichtslage von φ sein muss.

Aufgabe 29. Wir betrachten das (nur) stetige Vektorfeld $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt{|x|}$, auf \mathbb{R} . Zeigen Sie, dass das Anfangswertproblem

$$\dot{x} = f(x), \quad x(0) = 0$$

auf \mathbb{R} verschiedene Lösungen $\alpha, \beta : \mathbb{R} \to \mathbb{R}$ hat.

Aufgabe 30. Bestimmen Sie mit der Methode der Trennung der Variablen alle maximalen Lösungskurven der gewöhnlichen Differentialgleichung

$$\dot{x} = x^2$$

und skizzieren Sie das Phasendiagramm auf \mathbb{R} .

Aufgabe 31. Sei $n \in \mathbb{N}$, $G \subseteq \mathbb{R}^n$ ein Gebiet und $f: G \to \mathbb{R}^n$ ein lokal Lipschitz-stetiges Vektorfeld auf G. Sei ferner für jedes $y \in G$ mit $\alpha_y: I(y) \to G$ die maximale Lösung des Anfangswertproblems

$$\dot{x} = f(x), \quad x(0) = y$$

auf G notiert. Sei nun $y_0 \in G$ und $t \in I(y_0)$ sowie $y_1 = \alpha_{y_0}(t)$. Zeigen Sie, dass $s \in I(y_1)$ ist, genau wenn $t + s \in I(y_0)$ ist und dann gilt:

$$\alpha_{y_1}(s) = \alpha_{y_0}(s+t).$$

Aufgabe 32. Für $\omega > 0$ bezeichnet man das Anfangswertproblem

$$\ddot{x} + \omega^2 x = 0$$
, $x(0) = x_0$, $\dot{x}(0) = y_0$

als "harmonischen Oszillaor". Bestimmen Sie den Phasenraum G für das Problem und dann das zugehörige maximale dynamische System $\varphi \colon \Omega \to G$ (Hinweis: Machen Sie einen "Ansatz" für x als Linearkombination der Lösungen $t \mapsto \cos(\omega x)$ und $t \mapsto \sin(\omega x)$.)

Aufgabe 33. Sei $f: G \to \mathbb{R}^n$ ein lokal Lipschitz-stetiges Vektorfeld auf einem Gebiet $G \subseteq \mathbb{R}^n$. Zu $x_0 \in G$ sein $\alpha: I \to G$ die maximale Lösungskurve zum Anfangswertproblem $\dot{x} = f(x)$, $x(0) = x_0$ auf G. Es existiere nun ein $T \in I$ mit T > 0, so dass $\alpha(T) = x_0$ ist. (Wenn T > 0 die kleinste positive reelle Zahl mit dieser Eigenschaft ist, nennen wir x_0 einen periodischen Punkt der Periode T.) Zeigen Sie, dass in diesem Fall $I = \mathbb{R}$ ist und für alle $t \in \mathbb{R}$ gilt:

$$\alpha(t+T) = \alpha(t).$$

Aufgabe 34. Sei $G \subseteq \mathbb{R}^n$ ein Gebiet und $\varphi \colon \Omega \to G$, $(t,x) \mapsto \varphi^t(x)$, ein dynamisches System auf G sowie $f \colon G \to \mathbb{R}^n$ sein zugehöriges Vektorfeld. Eine stetig differenzierbare Funktion $H \colon G \to \mathbb{R}$ heißt ein 1. Integral für φ , wenn für alle $(t,x) \in \Omega$ gilt: $H(\varphi^t(x)) = H(x)$. Zeigen Sie, dass H genau dann ein 1. Integral ist, wenn die Ableitung $X_f H \colon G \to \mathbb{R}$ von H in Richtung f, d.i.

$$X_f H(x) := \sum_{j=1}^n f_j(x) \frac{\partial H}{\partial x_j}(x),$$

verschwindet, $X_f H = 0$.

Aufgabe 35. Sei $n \in \mathbb{N}$, $I \subseteq \mathbb{R}$ ein offenes Intervall und a_1, \ldots, a_n : $I \to \mathbb{R}$ stetig differenzierbar. Wir betrachten die *lineare Differentialgleichung n. Ordnung*

$$x^{(n)} + a_1 x^{(n-1)} + \dots + a_{n-1} \dot{x} + a_n x = 0$$
(1)

auf \mathbb{R} .

(a) Zeigen Sie, dass der Lösungsraum $L_{(h)} := \{x \in \mathcal{C}^n(I, \mathbb{R}) : x \text{ löst } (??)\}$ ein n-dimensionaler Untervektorraum von $\mathcal{C}^n(I, \mathbb{R})$ ist.

(b) Seien $x_1, \ldots, x_n \in L_{(h)}$. Dann bilden wir die sogenannte Wronski-Determinante von (x_1, \ldots, x_n) $W: I \to \mathbb{R}$ durch

$$W(t) = \det \begin{pmatrix} x_1 & \cdots & x_n \\ \vdots & & \vdots \\ x_1^{(n-1)} & \cdots & x_n^{(n-1)} \end{pmatrix} (t).$$

Zeigen Sie: Falls W eine Nullstelle hat, so ist W schon überall Null und es gilt: (x_1, \ldots, x_n) ist Basis von $L_{(h)}$, genau wenn $W \neq 0$ ist.

Aufgabe 36. Die Differentialgleichung der (ungedämpften) erzwungenen Schwingung ist gegeben durch

$$\ddot{x} + \omega_0^2 x = A\cos(\omega t)$$

mit Konstanten $\omega_0, \omega, A \in \mathbb{R}_+$. Berechnen Sie die allgemeine Lösung im Nicht-Resonanzfall $\omega \neq \omega_0$. (Hinweis: Wenn Sie die Rechnung mit der Variation der Konstanten vermeiden wollen, versuchen Sie eine spezielle Lösung zu erraten ("Ansatz").)

Aufgabe 37. Sei $n \in \mathbb{N}$, $I \subseteq \mathbb{R}$ offen sowie $A: I \to \operatorname{Mat}_n\mathbb{R}$ stetig differenzierbar. Sei weiter $\Phi: I \to \operatorname{Mat}_n\mathbb{R}$ eine Lösung von $\dot{\Phi} = A\Phi$ auf $\operatorname{Mat}_n\mathbb{R}$. Zeigen Sie, dass dann die Funktion $\Delta: I \to \mathbb{R}$, $\Delta(t) = \det(\Phi(t))$, die Differentialgleichung

$$\dot{x} = \operatorname{spur}(A)x$$

löst. (Hinweis: Schreiben Sie $\Phi = (\varphi_1, \dots, \varphi_n)^T$ mit den Zeilen $\varphi_i: I \to \mathbb{R}^n$ $(i = 1, \dots, n)$ und benutzen Sie die Produktregel in der Leibnizformel für $\det(\Phi)$ sowie $\dot{\varphi}_i = \sum_j a_{ij} \varphi_j$ $(i = 1, \dots, n)$ aus $\dot{\Phi} = A\Phi$.)

Aufgabe 38. Die Differentialgleichung für die gedämpfte Schwingung wird für Konstanten $\gamma, \omega \in \mathbb{R}_+$ gegeben durch

$$\ddot{x} + \gamma \dot{x} + \omega^2 x = 0 \tag{2}$$

(wobei $\gamma > 0$ die Dämpfung beschreibt). Geben Sie eine Basis des Lösungsraumes im so genannten Kriechfall an, wo $\Delta := 4\omega^2 - \gamma^2 < 0$ ist. (Die Fälle $\Delta = 0$ und $\Delta > 0$ behandeln wir später.) (Hinweis: Schreiben Sie (??) als ein System $\dot{z} = Az$ mit $A \in \operatorname{Mat}_2\mathbb{R}$ und versuchen Sie A zu diagonalsieren. Machen Sie dann einen geeigneten linearen Koordintenwechsel z = Sw mit $S \in \operatorname{GL}_2\mathbb{R}$. Oder machen Sie gleich einen "Ansatz" $x(t) = e^{\lambda t}$ (mit $\lambda \in \mathbb{R}$).)

Aufgabe 39. (a) Berechnen Sie ein Lösungs-Fundamentalsystem für $\dot{x} = Ax$ auf \mathbb{R}^2 mit

$$A = \left(\begin{array}{cc} 0 & 3\\ 1 & -2 \end{array}\right).$$

(b) Wie lautet die allgemeine Lösung der linearen Differentialgleichung $\dot{x}=Bx$ auf \mathbb{R}^2 mit

$$B = \left(\begin{array}{cc} 0 & -2 \\ 1 & 2 \end{array}\right)?$$

Aufgabe 40. Berechnen Sie eine Basis für den Lösungsraum der Differentialgleichung für die gedämpfte Schwingung (vgl. Aufgabe-38)

$$\ddot{x} + \gamma \dot{x} + \omega^2 x = 0$$

(mit $\gamma, \omega \in \mathbb{R}_+$) auf \mathbb{R} nun auch in den folgenden Fällen für die Diskrininante $\Delta = 4\omega^2 - \gamma^2$:

- (a) $\Delta > 0$ (Schwingungsfall)
- **(b)** $\Delta = 0$ (aperiodischer Grenzfall)

Aufgabe 41. Ein Newton-System auf einem Intervall $I \subseteq \mathbb{R}$ ist gegeben durch

$$m\ddot{x} = f(x) \tag{3}$$

mit m > 0 (der Masse eines Teilchens) und $f: I \to \mathbb{R}$ stetig differenzierbar (dem Kraftfeld, in dem sich das Teilchen bewegt).

(a) Ist $V: I \to \mathbb{R}$ stetig differenzierbar mit V' = -f (ein so genanntes Potential für f), so zeigen Sie, dass durch $H: I \times \mathbb{R} \to \mathbb{R}$,

$$H(x,y) = \frac{1}{2}my^2 + V(x),$$

ein 1. Integral für (??) gegeben ist (vgl. Aufgabe-34).

(b) Im Falle des harmonischen Oszillators (vgl. Aufgabe-32) ist f(x) = -kx (mit k > 0). Wählen Sie ein Potential für f und beschreiben Sie dann die Niveaulinien für das zugehörige 1. Integral H. Wie sieht die Dynamik des Systems auf den Niveaulinien $\{H = c\}$ (für $c \in \mathbb{R}$) aus? Beschreiben Sie qualitativ.

Aufgabe 42. Sei exp: $\mathrm{Mat}_n\mathbb{C} \to \mathrm{GL}_n\mathbb{C}$, $A \mapsto e^A$, die komplexe Matrizen-Exponentialfunktion.

(a) Berechnen Sie e^{A_i} (i = 1, 2) für

$$A_1 = \begin{pmatrix} 0 & 3 \\ 1 & -2 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & -2 \\ 1 & 2 \end{pmatrix}.$$

(b) Zeigen Sie für alle $A \in \operatorname{Mat}_n \mathbb{C}$:

$$\det e^A = e^{\operatorname{spur}A}.$$

(Hinweis: Erinnern Sie sich, dass die Spalten von $\Phi(t) = e^{tA}$ Lösungs-Fundamentalsystem von $\dot{z} = Az$ sind und Aufgabe-37.)

Aufgabe 43. Sei exp: $\mathrm{Mat}_n\mathbb{C} \to \mathrm{GL}_n\mathbb{C}$ die (komplexe Matrizen-) Exponentialfunktion.

(a) Geben Sie zwei Matrizen $A, B \in \operatorname{Mat}_2\mathbb{C}$ an, so dass

$$\exp(A+B) \neq \exp(A)\exp(B)$$

und begründen Sie dies.

- (b) Zeigen Sie: Ist $\lambda \in \mathbb{C}$ ein Eigenwert von A, so ist $e^{\lambda} \in \mathbb{C}$ ein Eigenwert von $\exp(A)$.
- (c) Begründen Sie, warum exp: $\mathrm{Mat}_n\mathbb{C} \to \mathrm{GL}_n\mathbb{C}$ stetig differenzierbar ist und es gilt:

$$D \exp_0 = \mathrm{id}_{\mathrm{Mat}_n \mathbb{C}}.$$

Aufgabe 44. Die Bewegung eines Pendels (mit starrer Stange) unter dem Einfluss der Erdanziehung geschieht (nach Normierung einer Konstanten) durch Lösung der folgenden Differentialgleichung des "mathematischen Pendels" auf \mathbb{R} :

$$\ddot{x} + \sin x = 0.$$

(x beschreibt hier das Bogenmaß des Winkels der Auslenkung.)

- (a) Geben Sie ein 1. Integral H auf dem Phasenraum \mathbb{R}^2 der Gleichung an (vgl. Aufgabe-41).
- (b) Diskutieren Sie nun die Niveaulinien $\{H=c\}\ (c\in\mathbb{R})$ und die Bahnen, die auf ihnen liegen, qualitativ. Machen Sie eine Skizze des Phasendiagramms.

Aufgabe 45. Seien $\omega, \omega_0, \gamma \in \mathbb{R}_+$. Wir betrachten die Differentialgleichung der "erzwungenen Schwingung" auf \mathbb{R} (vgl. Aufgabe-36)

$$\ddot{x} + \gamma \dot{x} + \omega_0^2 x = \cos(\omega t).$$

(a) Sei $x: \mathbb{R} \to \mathbb{R}$ eine Lösung. Zeigen Sie, dass sich x(t) für große t immer mehr der erzwungenen Schwingung

$$y(t) = A\cos(\omega t - \alpha)$$

(mit geeigneter Amplitude A und Phasenverschiebung α) annähert. (Hinweis: Lösen Sie die komplexe Gleichung mit rechter Seite $\exp(i\omega t)$ und gehen Sie dann zum Realteil über.)

(b) Bestimmen Sie die allgemeine Lösung im ungedämpften Fall ($\gamma = 0$) nun auch im Falle der Resonanz ($\omega = \omega_0$). (Hinweis: Ansatz: $x(t) = A \cdot t \exp(i\omega t)$.)

Aufgabe 46. Sei exp: $\mathrm{Mat}_n\mathbb{R} \to \mathrm{GL}_n\mathbb{R}$, $A \mapsto e^A$, die reelle (Matrizen-) Exponentialfunktion und sei

$$\operatorname{GL}_n^+\mathbb{R} = \{ S \in \operatorname{GL}_n\mathbb{R} : \det S > 0 \}.$$

- (a) Zeigen Sie, dass $\exp(A) \in \operatorname{GL}_n^+\mathbb{R}$ ist, für alle $A \in \operatorname{Mat}_n\mathbb{R}$.
- (b Zeigen Sie, dass $S = \operatorname{diag}(-1, -4)$) $\in \operatorname{GL}_n^+\mathbb{R}$ nicht im Bild von exp liegt.

Aufgabe 47. Zeigen Sie, dass exp: $Mat_2\mathbb{C} \to GL_2\mathbb{C}$ surjektiv ist.

Aufgabe 48. Sei $G \subseteq \mathbb{R}^n$ ein Gebiet, $f: G \to \mathbb{R}^n$ zweimal stetig differenzierbar, $y: I \to G$ eine Lösung von $\dot{x} = f(x)$ auf G sowie $A: I \to \operatorname{Mat}_n \mathbb{R}$, A(t) = Df(y(t)). Zeigen Sie: Zu jeder Lösung $\xi: I \to \mathbb{R}^n$ der in y linearisierten Gleichung $\dot{\xi} = A(t)\xi$ auf \mathbb{R}^n gibt es eine Variation von Lösungen (x_{ε}) von y, so dass ξ das Variationsvektorfeld von (x_{ε}) ist.

Aufgabe 49. Sei $r \in [1, \infty]$, f ein \mathcal{C}^r -Vektorfeld auf einem Gebiet $G \subseteq \mathbb{R}^n$ und sei $x: I \to \mathbb{R}$ eine Lösung von $\dot{x} = f(x)$. Zeigen Sie, dass x eine \mathcal{C}^{r+1} -Abbildung ist.

Aufgabe 50. (a) Wir betrachten noch einmal (vgl. Aufgabe-40) die Differentialgleichung für die gedämpfte Schwingung $(\gamma, \omega \in \mathbb{R}_+)$

$$\ddot{x} + \gamma \dot{x} + \omega^2 x = 0$$

auf \mathbb{R} . Zeigen Sie, dass die Gleichgewichtslage $(x_0, y_0) = (0, 0)$ ein Attraktor des Systems ist.

(b) Zeigen Sie, dass die Gleichgewichtslage $(x_0, y_0) = (0, 0)$ des "mathematischen Pendels"(vgl. Aufgabe-44)

$$\ddot{x} + \sin x = 0$$

stabil, aber kein Attraktor ist.

Aufgabe 50. (a) Wir betrachten noch einmal (vgl. Aufgabe-40) die Differentialgleichung für die gedämpfte Schwingung $(\gamma, \omega \in \mathbb{R}_+)$

$$\ddot{x} + \gamma \dot{x} + \omega^2 x = 0$$

auf \mathbb{R} . Zeigen Sie, dass die Gleichgewichtslage $(x_0,y_0)=(0,0)$ ein Attraktor des Systems ist.

(b) Zeigen Sie, dass die Gleichgewichtslage $(x_0, y_0) = (0, 0)$ des "mathematischen Pendels"(vgl. Aufgabe-44)

$$\ddot{x} + \sin x = 0$$

stabil, aber kein Attraktor ist.

Aufgabe 51. Sei $\varphi: \Omega \to G$, $(t, x) \mapsto \varphi^t(x)$, ein dynamisches System auf einem Gebiet $G \subseteq \mathbb{R}^n$. Wir setzen für jedes $t \in \mathbb{R}$

$$G_t := \{x \in G : t \in I(x)\} \subseteq G.$$

(a) Zeigen Sie, dass $G_t \subseteq G$ offen ist, für alle $t \in \mathbb{R}$, und, dass für die Abbildung

$$\varphi^t: G_t \to G, \quad x \mapsto \varphi^t(x),$$

gilt: $\operatorname{im}(\varphi^t) = G_{-t}$ und $\varphi^t : G_t \to G_{-t}$ ist ein Diffeomorphismus.

(b) Zeigen Sie, dass $\varphi^0 = \mathrm{id}_G$ ist und für alle $s, t \in \mathbb{R}$ (dort, wo beide Seiten der Gleichung definiert sind) gilt:

$$\varphi^s \circ \varphi^t = \varphi^{s+t}.$$

(Man nennt die Familie von Diffeomorphismen $(\varphi^t)_{t\in\mathbb{R}}$ den zu φ gehörenden Fluss auf G.)

Aufgabe 52. Berechnen Sie die charakteristischen Exponenten der Gleichgewichtslage $p = (0,0) \in \mathbb{R}^2$ beim

- (a) harmonischen Oszillator $\ddot{x} + \omega^2 x = 0 \ (\omega > 0);$
- (b) bei der gedämpften (harmonischen) Schwingung $\ddot{x} + \gamma \dot{x} + \omega^2 x = 0 \ (\omega > 0, \ \gamma > 0);$
- (c) beim mathematischen Pendel $\ddot{x} + \sin x = 0$;
- (d) und bei der (oberen) Gleichgewichtslage $q=(\pi,0)\in\mathbb{R}^2$ des mathematischen Pendels.