Universität Tübingen, Mathematisches Institut Dr. Stefan Keppeler

Sommersemester 2021

Groups and Representations

Instruction 2 for the preparation of the lecture on 26 April 2021

1.4 Permutations – the symmetric group

Definition: (symmetric group)

The symmetric group of degree n, S_n , are the bijections of $\{1, 2, ..., n\}$ to itself under composition.

Remarks:

1. Elements of S_n are called permutations.

2.
$$|S_n| = n!$$

We use three notations for permutations:

two-line notation	https://youtu.be/0mjbR0pjkFs $(1\min)$	(1)
cycle notation	$\texttt{https://youtu.be/kvISarU6UWA}~(5\min)$	(2)
birdtrack notation	https://youtu.be/lhllM7IPf3M(4min)	(3)

Examples:

1.
$$S_2 = \{e, (12)\} \cong \mathbb{Z}_2$$

2. $S_3 = \{e, (12), (13), (23), (123), (132)\}$
Construct the group table! Is S_3 abelian?
subgroups: $\{e\}$ and S_3 (trivial)
 $\{e, (12)\}, \{e, (13)\}, \{e, (23)\}, all \cong \mathbb{Z}_2$
 $\{e, (123), (321)\} \cong C_3$

Theorem 1. (Cayley)

Every group of order n is isomorphic to a subgroup of S_n .

Proof: https://youtu.be/r4_oD2o6aqo $(5 \min)$ (4)

Fun exercise (optional): Watch the video An Impossible Bet by minutephysics,

and come up with a good strategy. Don't watch the solution! Think about cycles instead.

1.5 Group actions

Definition: (group action)

Let G be a group and M a set. A (group) action of G on M is a map

$$\begin{aligned} G \times M \to M \\ (g,m) \mapsto gm \,, \end{aligned}$$

which satisfies

$$em = m \quad \forall \ m \in M$$
 and
 $g(hm) = (gh)m \quad \forall \ g, h \in G \text{ and } \forall \ m \in M.$

Remark: Thus, $M \to M$, $m \mapsto gm$, is bijective for each (fixed) $g \in G$. Can you show this?

Definition: (orbit)

The orbit of the point $m \in M$ under an action of a group G on M is defined as

$$Gm = \{gm : g \in G\}.$$

Remarks:

- 1. The orbit of a "typical" point contains n = |G| elements.
- 2. The orbit of a "special" point contains less than n = |G| elements.

Example: equilateral triangle https://youtu.be/1rUaIp5sJr8 (4 min) (6)

Definition: (stabiliser)

Let $G \times M \to M$, $(g, m) \mapsto gm$, be an action of G on M. The set of group elements that map a given $m \in M$ to itself, i.e.

$$G_m = \left\{ g \in G : gm = m \right\},\,$$

is called stabiliser (or isotropy group or little group) of m.

Remark: G_m is a group. (see exercises)

Example: equilateral triangle https://youtu.be/gPot13SMf0o (1 min) (7)

Notice that in all three cases $|Gm| \cdot |G_m| = |G|$. This is true in general for finite groups (*orbit-stabiliser theorem*, see exercises).

1.6 Conjugacy classes and normal subgroups

Definition: (conjugation)

Let G be a group. We say $x \in G$ is conjugate to $y \in G \Leftrightarrow_{\text{Def.}} \exists g \in G : y = gxg^{-1}$. We then write $x \sim y$.

Show that \sim is an equivalence relation, i.e. show reflexivity, symmetry and transitivity.

Examples: S_3 , SO(3) https://youtu.be/LpBfagD302Q (6 min) (8)

Definition: (conjugacy class)

For a group G and $x \in G$ we call $\{gxg^{-1} : g \in G\}$ the conjugacy class of x.

Remarks:

- 1. The class of e contains only e, since $geg^{-1} = e \forall g$.
- 2. For abelian groups each element forms a class of its own, since $gxg^{-1} = x \forall g$.
- 3. In general a class is not a subgroup (cf. below).
- 4. Each element of G is contained in exactly one class. Why?
- 5. |G| is divisible by the number of elements of each conjugacy class. (orbit-stabiliser theorem, see exercises)
- 6. Later: The number of conjugacy classes is equal to the number of non-equivalent irreducible representations of a finite group.

Example: conjugacy classes of S_3 https://youtu.be/FOr3dReVKCk (3 min) (9)

Definition: (conjugate subgroups, normal subgroup)

(i) We call a subgroup $K \subseteq G$ conjugate to a subgroup $H \subseteq G$ if $\exists g \in G$ such that

$$K = gHg^{-1} = \{ghg^{-1} : h \in H\}.$$

(ii) If $ghg^{-1} \in H \ \forall h \in H$ und $\forall g \in G$ then we call H a normal subgroup (or invariant subgroup) of G.

Study the behaviour of the subgroups of S_3 under conjugation!

Remark: A finite group is called *simple* if it has no non-trivial normal subgroup.