Universität Tübingen, Mathematisches Institut Dr. Stefan Keppeler

Sommersemester 2021

Groups and Representations

Instruction 3 for the preparation of the lecture on 28 April 2021

1.7 Cosets and quotient groups

Definition: (coset)

Let G be a group and $H \subseteq G$ a subgroup. For $g \in G$ the set

$$gH = \{gh : h \in H\}$$

is called a left coset of H (in G). Similarly, we call $Hg = \{hg : h \in H\}$ a right coset of H.

Remarks:

- 1. $gH, Hg \subseteq G$.
- 2. If $g \in H \Rightarrow gH = Hg = H$. Why?
- 3. |gH| = |H|. Why?
- 4. In the following we consider mostly left cosets.
- 5. Two cosets g_1H and g_2H are either identical ($\Leftrightarrow g_1^{-1}g_2 \in H$) or disjoint.

Proof: https://youtu.be/yJI8Rlju87g (2min) (1)

6. Can you see that this implies that |H| divides |G|?

Example:

 S_3 and subgroups $H_1 = \{e, (12)\}$ (not normal) and https://youtu.be/SIA9F0klJKQ (10 min) (2) $H_2 = \{e, (123), (132)\}$ (normal)

Definition: (quotient group)

Let H be a normal subgroup of G. We define the quotient group $(G/H, \cdot)$ as the set of cosets,

 $G/H = \{gH : g \in G\},$ with group law $(g_1H) \cdot (g_2H) = (g_1g_2)H.$

Remarks:

1. $|G/H| = \frac{|G|}{|H|}$ 2. $(G/H, \cdot)$ is actually a group:

$$https://youtu.be/N75Wz4j_Aa8 (3min)$$
(3)

Where did we need that H is normal?

Example:

1.8 Direct product

Definition: (direct product)

For two groups (A, \circ) and (B, \bullet) the direct product is the Cartesian product $A \times B$ with group law

$$(a_1, b_1) \cdot (a_2, b_2) = (a_1 \circ a_2, b_1 \bullet b_2).$$

Remarks:

- 1. $e_{A \times B} = (e_A, e_B)$ and $(a, b)^{-1} = (a^{-1}, b^{-1})$
- 2. for finite groups: $|A \times B| = |A||B|$
- 3. $G = A \times B$ has a normal subgroup isomorphic to A, and $G/A \cong B$ (and vice versa):

https://youtu.be/0ppFs0QuI9w (5min) (5)

Caveat: In general, for a normal subgroup H of G, $G \not\cong H \times (G/H)$. Why not?

1.9 Example: The homomorphism from $SL(2,\mathbb{C})$ to the Lorentz group

Let M be the Minkowski space, i.e. $M = \mathbb{R}^4$ with the Lorentz metric¹

$$||x||^2 = x_0^2 - x_1^2 - x_2^2 - x_3^2.$$

We call $x = (x_0, x_1, x_2, x_3)$ a four-vector. A (homogeneous) Lorentz transformation Λ is a linear map $M \to M$, which preserves the Lorentz metric, i.e.

$$\|\Lambda x\|^2 = \|x\|^2 \qquad \forall \ x \in M \,.$$

The Lorentz group L = O(3, 1) is the group of all (homogeneous) Lorentz transformations. We identify each $x \in M$ with a Hermitian 2×2 matrix:

$$\begin{aligned} X &= x_0 \mathbb{1} + x_1 \sigma_1 + x_2 \sigma_2 + x_3 \sigma_3 \,, \quad \text{where} \\ \mathbb{1} &= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \,, \quad \sigma_1 &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \,, \quad \sigma_2 &= \begin{pmatrix} 0 & -\mathbf{i} \\ \mathbf{i} & 0 \end{pmatrix} \,, \quad \sigma_3 &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \,, \\ \text{i.e.} \quad X &= \begin{pmatrix} x_0 + x_3 & x_1 - \mathbf{i} x_2 \\ x_1 + \mathbf{i} x_2 & x_0 - x_3 \end{pmatrix} \,. \end{aligned}$$

The σ_j are called Pauli matrices. Convince yourself that det $X = ||x||^2$. Let's define a homomorphism from $SL(2, \mathbb{C})$ to L = O(3, 1):

$$\texttt{https://youtu.be/GRIdoIQWCVg} (5 \min) \tag{6}$$

The homomorphism $\phi : SL(2, \mathbb{C}) \to O(3, 1)$ is not an isomorphism.

- **Show** that ϕ is not injective.
- $\blacktriangleright \phi$ is not surjective either:

https://youtu.be/YGpT0Z7cwXU (2min) (7)

¹More precisely, $||x||^2 = d(x, x)$ with the pseudo-Riemannian metric $d(x, y) = x_0y_0 - x_1y_1 - x_2y_2 - x_3y_3$.