Groups and Representations

Instruction 3 for the preparation of the lecture on 28 April 2021

1.7 Cosets and quotient groups

Definition: (coset)

Let G be a group and $H \subseteq G$ a subgroup. For $g \in G$ the set

$$
g H=\{g h: h \in H\}
$$

is called a left coset of H (in G). Similarly, we call $H g=\{h g: h \in H\}$ a right coset of H.

Remarks:

1. $g H, H g \subseteq G$.
2. If $g \in H \Rightarrow g H=H g=H$. Why?
3. $|g H|=|H|$. Why?
4. In the following we consider mostly left cosets.
5. Two cosets $g_{1} H$ and $g_{2} H$ are either identical $\left(\Leftrightarrow g_{1}^{-1} g_{2} \in H\right)$ or disjoint.
Proof: https://youtu.be/yJI8Rlju87g (2 min)
6. Can you see that this implies that $|H|$ divides $|G|$?

Example:

S_{3} and subgroups
$H_{1}=\{e,(12)\}$ (not normal) and https://youtu.be/SIA9F0klJKQ (10 min)
$H_{2}=\{e,(123),(132)\}$ (normal)
Definition: (quotient group)
Let H be a normal subgroup of G. We define the quotient group $(G / H, \cdot)$ as the set of cosets,

$$
G / H=\{g H: g \in G\}, \quad \text { with group law } \quad\left(g_{1} H\right) \cdot\left(g_{2} H\right)=\left(g_{1} g_{2}\right) H .
$$

Remarks:

1. $|G / H|=\frac{|G|}{|H|}$
2. $(G / H, \cdot)$ is actually a group:
https://youtu.be/N75Wz4j_Aa8 (3 min)

Where did we need that H is normal?

Example:

https://youtu.be/GodmqXXT-pM (1 min)

1.8 Direct product

Definition: (direct product)
For two groups (A, \circ) and (B, \bullet) the direct product is the Cartesian product $A \times B$ with group law

$$
\left(a_{1}, b_{1}\right) \cdot\left(a_{2}, b_{2}\right)=\left(a_{1} \circ a_{2}, b_{1} \bullet b_{2}\right) .
$$

Remarks:

1. $e_{A \times B}=\left(e_{A}, e_{B}\right)$ and $(a, b)^{-1}=\left(a^{-1}, b^{-1}\right)$
2. for finite groups: $|A \times B|=|A||B|$
3. $G=A \times B$ has a normal subgroup isomorphic to A, and $G / A \cong B$ (and vice versa):
https://youtu.be/OppFs0QuI9w (5 min)

Caveat: In general, for a normal subgroup H of $G, G \not \equiv H \times(G / H)$. Why not?

1.9 Example: The homomorphism from $\operatorname{SL}(2, \mathbb{C})$ to the Lorentz group

Let M be the Minkowski space, i.e. $M=\mathbb{R}^{4}$ with the Lorentz metric ${ }^{1}$

$$
\|x\|^{2}=x_{0}^{2}-x_{1}^{2}-x_{2}^{2}-x_{3}^{2} .
$$

We call $x=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ a four-vector. A (homogeneous) Lorentz transformation Λ is a linear map $M \rightarrow M$, which preserves the Lorentz metric, i.e.

$$
\|\Lambda x\|^{2}=\|x\|^{2} \quad \forall x \in M .
$$

The Lorentz group $L=\mathrm{O}(3,1)$ is the group of all (homogeneous) Lorentz transformations. We identify each $x \in M$ with a Hermitian 2×2 matrix:

$$
\begin{aligned}
& X=x_{0} \mathbb{1}+x_{1} \sigma_{1}+x_{2} \sigma_{2}+x_{3} \sigma_{3}, \quad \text { where } \\
& \mathbb{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \\
& \text { i.e. } \quad X=\left(\begin{array}{ll}
x_{0}+x_{3} & x_{1}-\mathrm{i} x_{2} \\
x_{1}+\mathrm{i} x_{2} & x_{0}-x_{3}
\end{array}\right) .
\end{aligned}
$$

The σ_{j} are called Pauli matrices. Convince yourself that $\operatorname{det} X=\|x\|^{2}$.
Let's define a homomorphism from $\mathrm{SL}(2, \mathbb{C})$ to $L=O(3,1)$:
https://youtu.be/GRIdoIQWCVg (5 min)

The homomorphism $\phi: \mathrm{SL}(2, \mathbb{C}) \rightarrow \mathrm{O}(3,1)$ is not an ismomorphism.

- Show that ϕ is not injective.
- ϕ is not surjective either:
https://youtu.be/YGpTOZ7cwXU (2 min)

[^0]
[^0]: ${ }^{1}$ More precisely, $\|x\|^{2}=d(x, x)$ with the pseudo-Riemannian metric $d(x, y)=x_{0} y_{0}-x_{1} y_{1}-x_{2} y_{2}-x_{3} y_{3}$.

